hartmann wavefront sensing beamline alignment · wavefront correction in the tender x-rays before...

29
SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01GD 1 Hartmann wavefront sensing Beamline alignment Guillaume Dovillaire

Upload: others

Post on 04-Aug-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 1

Hartmann wavefront sensing Beamline alignment

Guillaume Dovillaire

Page 2: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 2

Page 3: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 6

Metrology : Off-line metrology

EUREKA Eurostar project

Page 4: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 7

Off-line metrology

Optical head at BNL

1.5 meter long mirrors

50 nrad rms accuracy / 1.2mm

resolution

HFM and VFM configuration

mirror down to 1.5m of radius

of curvature

2D slopes maps, height

Page 5: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 8

Flat mirror characterization

Mirror flipped and data flipped

Mirror shifted

Page 6: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 9

Flat mirror characterization

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-80 -60 -40 -20 0 20 40 60 80

Slo

pe

err

or

in µ

rad

Mirror coordinate in mm

Zeiss Silicon mirror on 115mm : R=47km, slopes=0.15 µrad rms

A --> B

B --> A

B --> A Offset Gantry

Radii of curvature are =43.4km, 43.5km and 56.5km Max difference to average is 3.6 E-06 1/m (280km) On 90mm, differences are below 60 nrad rms

Page 7: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 10

Toroidal mirror characterization

7.51 nm rms 0.46 µrad rms 7.02 nm rms 0.45 µrad rms

1.39 nm rms 0.1 µrad rms

From A to B From B to A and data flipped

Page 8: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 11

EUV wavefront sensors The Hartmann sensor

Page 9: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 12

The wavefront

Geometrical approach: surface orthogonal to all rays

Collimated beam Flat wavefront No aberration

Diverging beam

Spherical wavefront No aberration

Beam

Distorted wavefront Some aberrations

Page 10: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 13

In radian

In micron

In wave

Amplitude Phase

)().()( rierarU

)(2)(

rr

Diffraction approach: surface defined by phase = constant

The wavefront

Page 11: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 14

The wavefront : The Zernike base

Page 12: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 16

Hartmann wavefront sensors

Holes are small enough to create diffraction on the CCD Holes pitch is large enough to avoid crosstalk

Page 13: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 18

Wave-front estimation from wave-front slope measurements W.H. Southwell, JOSA Vol70, No 8, Août 1980

hole

x

ji

x

ji

x

ji

x

ji

Pitch

SS ,,1,,1

2

Hartmann wavefront sensors : slopes integration

),( ,)(

,)(

,)1(

, kjmkj

mkj

mkj PErr

« Successive Over relaxation method »

How calculating the wavefront knowing the slopes ?

Page 14: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 19

Raw signal on the CCD sensor

Measured intensity profile

Measured wavefront

)().()( rierarU

Hartmann wavefront sensors

Page 15: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 21

EUV

HASO EUV

4 to 40nm /75 rms accuracy 72x72 holes

Page 16: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 22

Beam lines alignment

Page 17: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 23

Idea 1 : I understand the wave front I measure

Astigmatism The benders of my KB do not focus in the same plane

Coma One of my KB bender is not optimized My ellipsoid is not aligned

Something I don’t know…

Page 18: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 24

At- alignement of a Kirkpatrick-Baez optics

FERMI : KB alignement at 32nm FERMI : Giovanni de Ninno, Lorenzo Raimondi, LOA : Philippe Zeitoun

Intensity map Best wavefront (/4 rms)

5.5 x 6.2 µm2

5.1 x 6.0 µm2

D.L.: 4.1 x 5.9 µm2

Page 19: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 25

SLS : automatic control of a KB at 3.5 keV SOLEIL : Mourad Idir – Pascal Mercère – Pierre Lagarde

Idea 2 : I want an automatic alignement

Page 20: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 26

Wavefront correction in the tender X-Rays

Before correction After correction

7.7 nm rms

30.9 nm PV

0.8 nm rms

4.6 nm PV

-6090 -6080 -6070 -6060 -500

0

500

1000

1500

2000

FWHM = 2.40 µm

Knife Edge Scan of Vertical X-ray beam at LUCIA

Derivative of Knife Edge Data Gauss Fit

Der

ivat

ive

of

Flu

ore

scen

ce

Vertical Position (µm) 5025 5030 5030 5035 5040 5040 5045 5050 5050 5055 5060 5060 5065

-450

0 0

450

900 900

1350

1800 1800

2250

2700 2700

Derivative of Knife Edge Data Gauss Fit

Der

ivat

ive

of

Flu

ore

scen

ce

Horizontal Position (µm)

Knife Edge Scan of Horizontal X-ray beam at LUCIA

FWHM = 2.55 µm

Page 21: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 28

Idea 3: Coupling wavefront measurements

and optics simulation software

Page 22: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 29

Tzec Maun Foundation 1m diameter telescope Modified Cassegrain type

Example in visible : telescope alignment

Page 23: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 30

Expected performances /100 rms WFE Diffraction limited PSF

The simulation tool: Zemax

Page 24: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 31

The measurment tool : HASO4 BB

Measured performances /10 rms WFE The coma aberration reduces the images contrast

Page 25: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 32

The measurement is set in the model

The wavefront aberrations are defined by the Zernike coefficients and included in the simulation software

Page 26: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 33

The optimization process

Secondary mirror position is variable

Page 27: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 34

The result

The secondary mirror must be shifted and tilted to remove the measured aberration.

Just grab the screwdriver…

Page 28: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 35

Conclusion

Page 29: Hartmann wavefront sensing Beamline alignment · Wavefront correction in the tender X-Rays Before correction After correction 7.7 nm rms 30.9 nm PV 0.8 nm rms 4.6 nm PV -6090 -6080

SOS Trieste| October 4th, 2016 | G. Dovillaire| M COM PPT 2016.01–GD 36