hctm ece students

Upload: munish-verma

Post on 07-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 HCTM ECE STUDENTS

    1/22

    VLSIDESIGN

    Astt.Prof.Munish VermaECEDeptt.HaryanaCollegeofTechnology&Management

  • 8/4/2019 HCTM ECE STUDENTS

    2/22

    Ids versusVds relation

    )()(arg

    timetransitElectronQchannelininducedeChII csdds ==

    )(

    )(

    vVelocity

    LchannelofLength

    sd

    =

    dsEvvelocitybut =

    L

    VE dsds =

    L

    V

    v

    ds=

    )1(2

    ds

    sdV

    Lthus

    =

    sec/240

    sec/650

    2

    2

    Vcm

    Vcm

    p

    n

    =

    =

  • 8/4/2019 HCTM ECE STUDENTS

    3/22

    Ids versusVds relation

    oinsgEareaunitechNow =/arg

    The non-saturated region: Vds

  • 8/4/2019 HCTM ECE STUDENTS

    4/22

    Ids versusVds relation

    ( ) )3(2

    2

    =dsdstgsds

    VVVVL

    WKIor

    thatsoL

    WKAlsoor =,

    ( ) )1.3(2

    2

    = dsdstgsdsV

    VVVIor

    D

    WL

    Ccecapacichannelgate

    oins

    g

    =

    tan/

    WL

    CKhavewillwe

    g=

    ( ) )2.3(2

    2

    2

    =

    dsdstgs

    gds VVVV

    L

    CIthatso

    WLCCAlso og =,

    ( ) )3.3(2

    2

    = dsdstgsodsV

    VVVL

    WCIthatso

  • 8/4/2019 HCTM ECE STUDENTS

    5/22

    Ids versusVds relationSaturated region: Vds=Vgs - Vt

    ( ))4(

    2

    2

    tgs

    ds

    VV

    L

    WKI

    =

    ( ) )1.4(22

    tgsds VVIor =

    ( ) )2.4(2

    2

    2 tgs

    g

    ds VVL

    CIor =

    ( ) )3.4(2

    2

    tgsods VVL

    WCIor =

  • 8/4/2019 HCTM ECE STUDENTS

    6/22

    MOStransistortransconductancegm &O/Pconductancegds

    Transconductance expresses the relationship between output current Ids& the inputvoltage Vgs. tconsV

    V

    Ig dsgs

    dsm tan==

    we know,

    QcIds =

    Thus change in currentds

    dsQc

    I

    =

    Now,ds

    ds

    V

    L

    2

    =

    Thus2

    L

    QcVI dsds

    =

    but change in chargegsgc VCQ

    =

    so that2

    L

    VVCI

    dsgsg

    ds

    =

    Now, 2L

    VC

    V

    I

    g

    dsg

    gs

    ds

    m

    ==

  • 8/4/2019 HCTM ECE STUDENTS

    7/22

    MOStransistortransconductancegm &O/Pconductancegds

    In saturation

    ( )tgsg

    m

    tgsds

    VVL

    Cg

    VVV

    =

    =

    2

    substituting forD

    WLC oinsg =

    )( tgsoins

    m VVL

    W

    Dg =

    The output conductance gds can be expressed as:

    21

    ==

    LV

    Ig

    gs

    dsds

  • 8/4/2019 HCTM ECE STUDENTS

    8/22

    MOStransistorfigureofmerit o:

    === sdtgs

    gmo VV

    LC

    g

    1)(2

    switching speed depends on gate voltage above threshold and on carrier mobility

    and inversely as the square of channel length.

  • 8/4/2019 HCTM ECE STUDENTS

    9/22

    ThenMOSinverter

    Vout

    Vdd = 5V

    VdspdVin

    [Vthpu = -0.6Vdd = -3V]

    [Vthpd = 0.2Vdd = +1V]

    (W/L)pu

    (W/L)pd

    Vgspu

    Vgspd

    Vgspu= 0 always (nMOS)Gate tied to source

    Vdspu

    I

    pullup tx :depletionmodetransistor (onatVgs=0V)pulldown tx :enhancementmodetransistor (offatVgs=0V,onatVgs>Vthpd)

    Vth :devicethreshold(ON)voltage,valueofVgswhendevicebeginstoconductfromdraintosource

  • 8/4/2019 HCTM ECE STUDENTS

    10/22

    IdealInverterVoltageTransferCharacteristic

    Ideal inverter characteristic :V

    OH= V

    dd(5V)

    VOL = OV

    Vout

    Vdd

    Vinv

    o Vinv Vdd

    Vinv (inverter switching threshold voltage) - point where Vout = Vin

  • 8/4/2019 HCTM ECE STUDENTS

    11/22

    PracticalInverterVoltageTransferCharacteristic

    In practice the pull-down device behaves differently than an ideal switch.It generally exhibits a leakage current in the off state, a finite resistance

    in the on state and a transition region where the switch can neither be

    considered as ON or OFF. This deviation from the ideal leads to a nonideal transfer characteristics

  • 8/4/2019 HCTM ECE STUDENTS

    12/22

    In practice, nMOS inverter transfer characteristic is not idealVOL 0Slope < and is affected by ratio

    ..

    ..

    ..

    ..

    dp

    up

    dp

    up

    Z

    Z

    LW

    L

    W

    =

  • 8/4/2019 HCTM ECE STUDENTS

    13/22

    Zpu/Zpd ratiofornMOSinverterdrivenbyanothernMOS

    inverter

    For depletion mode devices, Vgs=0; V inv = 0.5VDD at this point both transistors are in saturation

    In the depletion mode

    In the enhancement mode

    Equating (since currents are the same) we have

    ( )2

    2tgsds

    VV

    L

    WKI =

    ( ) 0sin2

    2

    ..

    .. == gstd

    up

    upds Vce

    VLWKI

    ( ) invgstinvdp

    dpds VVceVV

    LWKI == sin

    2

    2

    ..

    ..

    ( ) ( )2..

    ..2

    ..

    ..td

    up

    uptinv

    dp

    dp VLWVV

    LW =

  • 8/4/2019 HCTM ECE STUDENTS

    14/22

    Zpu/Zpd ratiofornMOSinverterdrivenbyanothernMOS

    inverter

    Define

    We have

    Whence

    Substituting typical values

    ..

    ..

    ....

    ..

    .. ; up

    up

    updp

    dp

    dp W

    L

    ZW

    L

    Z==

    ( ) ( )2..

    2

    ..

    11td

    uptinv

    dp

    VZ

    VVZ

    =

    dpup

    tdtinv

    ZZ

    VVV

    ... /=

    )arg(5.0

    6.02.0 ;

    insmequalforVV

    VVVV

    DDinv

    DDtdDDt

    =

    ==

    dpup ZZ ... /6.02.05.0 +=

    1/4/2/ ...... == dpupdpup ZZthusZZ

  • 8/4/2019 HCTM ECE STUDENTS

    15/22

    Zpu/Zpd ratiofornMOSinverterdriventhroughoneormore

    passtransistors

    connection of pass transistor will degrade the logic 1 level into inverter 2

    Critical case is when A is at 0 volts.

    Vdd Vdd

    A B C

    Inverter 1 Inverter 2

    Vin1 Vout

    Inverter 1 with input=VDD inverter 2 with input=VDD-Vtp

  • 8/4/2019 HCTM ECE STUDENTS

    16/22

    for the p.d. transistor

    ( )

    =

    2

    21

    11..

    1.. ds

    dstDDdp

    dp

    ds

    VVVV

    L

    WKI

    Therefore

    ==

    2

    11

    11..

    1..11

    dstDDdp

    dp

    ds

    ds

    VVVW

    L

    KI

    VR

    Vds1 is small and Vds1/2 can be ignored. So,

    = tDDdp VVZKR

    111..1

    for the p.u. transistor in saturation with Vgs=0

    ( )2

    2

    1..

    1..

    1td

    up

    up

    ds

    V

    L

    W

    KII

    ==

    The product I1R1=Vout1 ,Thus

    ( )2

    1

    2

    1..

    1..111 td

    tDDup

    dpout VVVZ

    ZRIV

    ==

  • 8/4/2019 HCTM ECE STUDENTS

    17/22

    =

    ttpDD

    dpVVV

    ZK

    R)(

    112..2

    ( )2

    12

    2..2

    td

    up

    V

    ZKI

    =

    Thus ( )2

    1 2

    2..

    2..222

    td

    ttpDDup

    dpout

    V

    VVVZ

    ZRIV

    ==

    For two outputs' to be equal Vout1=Vout2. therefore

    ( )( )ttpDD

    tDD

    dp

    up

    dp

    up

    VVV

    VV

    Z

    Z

    Z

    Z

    =

    1..

    1..

    2..

    2..

    taking typical values DDtpDDt VVVV 3.0;2.0 ==

    =5.0

    8.0

    1..

    1..

    2..

    2..

    dp

    up

    dp

    up

    Z

    Z

    Z

    Z

    1

    82

    1..

    1..

    2..

    2..==

    dp

    up

    dp

    up

    Z

    Z

    Z

    Z

  • 8/4/2019 HCTM ECE STUDENTS

    18/22

    Vss

    Vdd

    Vo

    Vin

    R Pull-Up

    Pull Down

    Alternativeformofpullupckt:

    Basic Inverter: Transistor with sourceconnected to ground and a load resistorconnected from the drain to the positive

    supply railOutput is taken from the drain and controlinput connected between gate and ground

    Resistors are not easily formed insilicon- they occupy too much area

    Transistors can be used as the pull-updevice

  • 8/4/2019 HCTM ECE STUDENTS

    19/22

    Vdd

    Vss

    Vo

    Vin

    D

    S

    D

    S

    Pull-Up is always on Vgs = 0; depletion

    Pull-Down turns on when Vin > Vt

    With no current drawn from outputs, Idsfor both transistors is equal

    NMOSDepletionModeTransistorPull Up:

    Vin

    VtV0 Vdd

    Non-zero output

  • 8/4/2019 HCTM ECE STUDENTS

    20/22

    NMOSEnhancementModeTransistorPull Up:

    Vss

    Vo

    Vin

    S

    D

    S

    Vdd

    Vgg

    Vt (pull down)

    V0

    VddVt (pull up)

    Non zero output

    Vin

    Dissipation is high since current flows when Vin = 1

    Vout can never reach Vdd (effect of channel)

    If Vgg is higher than Vdd, and extra supply rail is required

  • 8/4/2019 HCTM ECE STUDENTS

    21/22

    Both On

    Vout

    Vin

    VddVss

    Vtn Vtp

    P on

    N off

    N on

    P off

    1 2 3 4 5

    Vin

    1: Logic 0 : p on ; n off

    5: Logic 1: p off ; n on

    2: Vin > Vtn.Vdsn large n in saturationVdsp small p in resistiveSmall current from Vdd to Vss

    4: same as 2 except reversed p and n

    3: Both transistors are in saturationLarge instantaneous current flows

    CMOStransistor

  • 8/4/2019 HCTM ECE STUDENTS

    22/22

    Current through n-channel pull-down transistor

    ( )22

    tninn

    dsn VVI =

    Current through p-channel pull-up transistor

    ( )22

    tpDDinp

    dsp VVVI =

    At logic threshold, Idsn= -Idsp

    ( ) ( )( )

    ( ) ( )( )

    ( )

    tpDDtnp

    n

    p

    n

    in

    tpDDintninp

    n

    tpDDinp

    tninn

    tpDDinp

    tninn

    VVVV

    VVVVV

    VVVVV

    VVVVV

    ++=

    +

    ++=

    +=

    +=

    1

    22

    22

    22

    p

    n

    p

    n

    tntpDD

    in

    VVVV

    +

    ++=

    1

    If n=p and Vtp= Vtn

    2

    DDin

    VV =

    n

    nn

    p

    pp

    L

    W

    L

    W =

    Mobilities are unequal : n = 2.5 p

    n

    n

    p

    p

    L

    W

    L

    W5.2=

    CMOStransistor