he pt

130

Click here to load reader

Upload: trongphuckhtn

Post on 29-Jun-2015

312 views

Category:

Documents


12 download

TRANSCRIPT

Page 1: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

1

PHẦN 1.HỆ PHƯƠNG TRÌNH ĐƠN GIẢN 4 A.HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 4 I.HỆ PHƯƠNG TRÌNH CỔ ĐIỂN 4 B.HỆ PHƯƠNG TRÌNH BẬC NHẤT BA ẨN 13 C.HỆ PHƯƠNG TRÌNH BẬC HAI HAI ẨN 16

I.HỆ GỒM 1 PHƯƠNG TRÌNH BẬC NHẤT VÀ 1 PHƯƠNG TRÌNH BẬC HAI 16

II. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI 1 17 III. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI 2 29 IV. HỆ PHƯƠNG TRÌNH ĐẲNG CẤP 35 D. HỆ PHƯƠNG TRÌNH VÔ TỈ 42 E.HÊ PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI 75 F.HỆ PHƯƠNG TRÌNH LƯỢNG GIÁC 92 PHẦN 2. HỆ PHƯƠNG TRÌNH KHÔNG MẪU MỰC 103 PHẦN 3. TRẮC NGHIỆM 122 PHẦN 4. CÓ THỂ EM CHƯA BIẾT ? 133 PHẦN 5. PHỤ LỤC 137

Trang

Page 2: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

2

A.HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN I. Hệ phương trình cổ điển: 1/ Phương pháp:

Hệ pt bậc nhất 2 ẩn có dạng: 1 1 1

2 2 2

a x b y ca x b y c

* TH 1: a1 = b1= a2= b2=0, ta có; 1

2

00

cc

* TH2: 2 1 2 2

1 1 2 2 0a b a b .

Tính: 1 1

2 2

a bD

a b ; 1 1

2 2x

c bD

c b ; 1 1

2 2y

a cD

a c

+ Nếu 0D : hệ phương trình có 1 nghiệm duy nhất:

x

y

DxDD

yD

+ Nếu D = 0 0xD hay 0yD : hệ phương trình vô nghiệm. Dx = Dy = 0 : hệ phương trình có vô số nghiệm: x R , được tính theo x

2/ Ví dụ:

VD1: Giải hệ phương trình:

6 3 2 51 1

4 2 4 21 1

x yy xx yy x

Đặt 2 1,1 1

x yu vy x

. Hệ đã cho trở thành 23 2 512 4 22

uu vu v v

Ta được hệ phương trình:

2 1 2 02 2 1112 112

1 2

xxx yy

x y yyx

Vậy 10;2

S

VD2:Định m để hệ vô nghiệm

Đúng: hpt có vô số nghiệm ,x R y R

Sai: hpt vô nghiệm

Page 3: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

3

22 3 1 3

2

m x m yI

m x y y

22 3 1 3

2 2

m x m yI

mx m y

Ta có

2 3 22 2 3 1 2 7 3

3 2 6 1 3x

D m m m m m m m

D m m m

Hệ đã cho vô nghiệm

23 2

2

00

2 7 3 02 7 3 03 0 0

12 7 3 0 32

x

DI

D

m m mm m mm m

m m m m

Vậy hệ vô nghiệm khi: 132

m m

VD3: định m để hệ có vô số nghiệm:

4 16 2 3

x my mm x y m

Ta có:

2

2

2

8 6 6 8

2 1 3 2

4 3 1 6 11 18x

y

D m m m m

D m m m m m

D m m m m m

Hệ có vô số nghiệm 000

x

y

DDD

2

2

2

6 8 2 42 2 1 2

2 911 18

m m m mm m m m m

m mm m

Vậy hệ có vô số nghiệm khi m= -2. VD 4: Tìm các giá trị của b sao cho với mọi thì hệ phương trình sau có nghiệm

2

21

x ay bax a y b

Ta có:

2

2

1 210 2 1 0 12

D a a

D a a a a

Thì hệ luôn có nghiệm

Khi a = -1, hệ trở thành: 2

2

2

x y bx y b

Hệ có nghiệm 2 2 0 0 1b b b b b b

Page 4: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

4

Khi 12

a , hệ trở thành 22

x y bx y b

Hệ có nghiệm 2 12 2 1 0 02

b b b b b b

Vậy hệ có nghiệm với mọi a khi:

0 1

0102

b bb

b b

VD5: Giải và biện luận hệ phương trình sau:

1 1

1 1

a x by

b x ay

Hệ tương đương: 1 11 1

ax a by ax by abx b ay bx ay b

Ta có:

2 2

1x

y

D a b a b a b

D a b a bD a b

Biện luận: 1/ 2 20 0D a b a b Hệ có nghiệm duy nhất:

1

1

x

y

a b a bDxD a b a bD

yD a b

2/ 0; 0; 0x ya b D D D * 0b : Hệ có vô số nghiệm. 3/ ; 0; 2ya b D D b

0; 0; 0yb D D hệ vô nghiệm

4/ 0. 0. 1

0 :0. 0. 1

x ya b

x y

hệ vô nghiệm

VD6: Tìm m để hệ phương trình ( 1) 8 4

( 3) 3 1m x y m

mx m y m

có nghiệm duy nhất

Hướng dẫn giải:

Ta có: 1m

Dm

8

3m 2( 1)( 3) 8 4 3m m m m m

Hệ đã cho có nghiệm duy nhất 20 4 3 0D m m 1m và 3m .

VD7:Giải và biện luận hệ phương trình:2 (1)

4 6(2)mx y m

x my m

Hướng dẫn giải:

Page 5: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

5

Từ (1) suy ra 2y mx m , thay vào (2) ta được: 2 24 ( 2 ) 6 (4 ) 2 6x m mx m m m x m m

2( 4) ( 2)(2 3)m x m m (3)

i) 2 4 0 2m m : Hệ có nghiệm duy nhất: 22 3 2 3; 2 2

2 2 2m m m mx y mx m m

m m m

ii) m=2: Hệ trở thành 2 4

2 44 2 8

x yx y

x y

.

Hệ có vô số nghiệm ( ;2 4);x x x R iii) m=-2:(3) trở thành 0 4x :Hệ vô nghiệm. Bài tập củng cố:

Bài 1:Giải hệ phương trình:

( 3) 5))

( 2)( 5)

1 1 34

)1 1 2

6 5 15

x y xya

x y xy

x yb

x y

c/5 4 37 9 8

x yx y

d/3 2 75 3 1

x yx y

e/3 2 1

2 2 3 0

x y

x y

f

3( ) 7

5 53

x yx yx yy x

g/

6 5 3

9 10 1

x y

x y

Page 6: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

6

h/

6 2 32 2

3 4 12 2

x y x y

x y x y

k/

1 1

1 1

mx y x y

nx y x y

j/

4 1 31

2 2 41

x y

x y

l/2 4 1

2 4 2 5

x y

x y

Bài 2: Giải và biện luận hệ phương trình:

a)2

4 2x mymx y m

b)2

7 4 25 3 1

3 6

x yx y

mx y m

c/0

1x mymx y m

d/2 3 5( 1) 0

ax ya x y

e/4

2 ( 1)mx y m

x m y m

f/3 1

2 ( 1) 3mx y m

x m y

g/1 02 0

mx yx my

Page 7: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

7

Bài 3:Tìm các giá trị của m để nghiệm của hệ phương trình sau là số dương: 2

3x ymx y

Bài 4: Cho hệ phương trình: 2

1mx y mx my m

a/ tìm m đễ hệ có nghiệm duy nhất. Tìm hệ thức liên hệ x, y độc lập với m. b/ Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên.

Bài 5: Cho hệ phương trình: 3 02 1 0

x my mmx y m

a/ Định m để hệ có nghiệm duy nhất b/ gọi (x,y) là nhgiệm của hệ,tìm hệ thức liên hệ giữa x,y độc lập với m. Bài 6: Định m nguyên để hệ có nghiệm nguyên

1/2

( 1) ( 1) 1mx y mm x m y

; 2/ 2 2

2 2( 1) 1mx y mm x y m

Bài 7: Định m để hệ sau có vô số nghiệm:

1/2( 2) (5 3) 2( 2)( 2) 3 2

m x m y mm x my m

2/4 1

( 6) 2 3x my m

m x y m

3/2 ( 1) 2

3 2x m y

mx y m

Bài 8: Cho 4 số a,b,p,q thỏa mãn abpq (p-q) khác 0. Hãy giải hệ phương trình.

2 2 3 3

2 2 3 3 4 4

0

0

ap bq x ap bq y ap pq

ap bq x ap bq y ap bq

Bài 9: Bằng định thức, giải các hệ phương trình sau:

1/ 5 4 37 9 8

x yx y

2/

3 2 75 3 1

x yx y

3/

3 2 1

2 2 3 0

x y

x y

4/ 2 4 1

2 4 2 5

x y

x y

5/

4 1 31

2 2 41

x y

x y

6/

3( ) 7

5 53

x yx yx yy x

Page 8: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

8

7/

6 5 3

9 10 1

x y

x y

8/

6 2 32 2

3 4 12 2

x y x y

x y x y

9/ 1

2 5x ay x

10/

1 1

1 1

mx y x y

nx y x y

11/ 2

2 1x yx y

Bài 10: Một ca nô chạy trên dòng sông trong 8 giờ, xuôi dòng 135 km và ngược dòng 63 km. Một lần khác, ca nô cũng chạy trên sông trong 8 giờ, xuôi dòng 108 km và ngược dòng 84 km. Tính vận tốc dòng nước chảy và vận tốc của ca nô( biết rằng vận tốc thật của ca nô và vận tốc dòng nước chảy trong cả hai lần là bằng nhau và không đổi) Bài 11 : Một miếng đất hình chữ nhật có chu vi 2p ( mét). Nếu mở rộng miếng đất đó bằng cách tăng một cạnh thêm 3 mét và cạnh kia thêm 2 m thì diện tích tăng thêm 246 m2. Tính các kích thước của miếng đất đó ( biện luận theo p). Bài 12 : Giải và biện luận các hệ phương trình:

1/0

1x mymx y m

2/

2 3 5( 1) 0

ax ya x y

3/2 1

( 1)ax yx a y a

4/( 2) ( 4) 2( 1) (3 2) 1a x a ya x a y

5/

1 (2 3)( 1) 3 6a x a y aa x y

6/

13 2 3

x mymx my m

7/ 4

2 ( 1)mx y m

x m y m

8/

3( )

2 1

x y ax yx y ay x

9/6 . (2 ) 3( 1) 2

a x a ya x ay

10/12 1

x mymx y m

11/

. . 1. . 1

a x b y ab x a y b

12/ 1 02 0

mx yx my

13/2 2.

2a x by a bbx ay ab

14/

2

2

.a x y abx y b

15/

2

2

. .4

a x b y a bbx b y b

16/3 1

2 ( 1) 3mx y m

x m y

17/

5 ( 2)( 3) ( 3) 2

x a y aa x a y a

Bài 13 : Với giá trị nào của a thì mỗi hệ phương trình sau có nghiệm:

1/ ( 1) 1

( 1) 2a x y a

x a y

2/

( 2) 3 3 9( 4) 2

a x y ax a y

3/2

( 1) ( 1) 1ax y aa x a y

4/

3 13 4

x ayax y a

5/3

2 3 4

( 1) ( 1) 2( 1) ( 1) 1a a x a a y aa x a y a

Bài 14: Tìm tất cả các cặp số nguyên (a;b) sao cho hệ phương trình sau có nghiệm:

2

6 4ax by

x by

Bài 15 : Định m để các hệ phương trình sau vô nghiệm:

Page 9: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

9

1/ 2

1

( ) 2

mx my mm m x my

2/ 22 3( 1) 3

( ) 2 2m x m y

m x y y

3/

2

5

(2 ) 4(2 1) 2

m x m mmx m y m

Bài 16 : Định ( a; b ) để hệ phương trình sau vô nghiệm : ax by a bbx ay a b

Bài 17: Định m để hệ phương trình sau có vô số nghiệâm:

1/2( 2) (5 3) 2( 2)( 2) 3 2

m x m y mm x my m

2/4 1

( 6) 2 3x my m

m x y m

3/ ( 1)

3 (5 ) 2 1mx m y mx m y m

4/

2 ( 1) 23 2

x m ymx y m

5/ (1 ) ( )(5 ) 2( ) 1

a x a b y b aa x a b y b

6/ 2 2

2 2 4a x by a bbx by b

7/ 2 2 2 2 2( ) ( )

( ) ( ) 1a b x a b y aa b x a b y a

Bài 18: Định m để hệ phương trình sau có nghiệm duy nhất:

1/8 4 4 0

( 1) ( 2) 4 3 0mx y mm x m y m

2/

2 1( 1) 1

2 2( 3) 2( 2)

m m mx y

m mx y

3/( 5) (2 3) 3 2(3 10) (5 6) 2 4m x m mm x m y m

4/

( 1)( 2) 1

( 3) 2( 2) 2 4

m x m y m

m x y m

5/2

2

2( 3) 1

mx y mx m y m

6/

21

x y mmx my m

7/12

x mymx y m

Bài 19: Cho hệ phương trình :2

1mx y mx my m

1/ Định m để hệ phương trình có nghiệm duy nhất .Tìm hệ thức liên hệ giữa x và y độc lập với m. 2/ Định m nguyên để hệ nghiệm nguyên có nghiệm duy nhất của hệ là nghiệm nguyên. Bài 20: Định m nguyên để hệ có nghiệm nguyên:

1/2

( 1) ( 1) 1mx y mm x m y

2/

2 2

2 2

( 1) 1

mx y mm x y m

Bài 21: Định m nguyên để hệ có nghiệm duy nhất nguyên:

1/ 2 2

( 1) 2 1

2

m x y mm x y m m

2/

6 02 1 0

mx yx my m

3/32 1

mx y mx my m

Bài 22: Cho hệ phương trình: ( 1) 3 12 5m x my mx y m

Định m để hệ phương trình có nghiệm duy nhất (x;y) mà x2 + y2 nhỏ nhất

Page 10: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

10

Bài 23: Cho hệ phương trình 2

( 1) 2 1

2

m x my mmx y m

Định m để hệ có nghiệm duy nhất (x;y) mà x.y lớn nhất.

Bài 24: Cho hệ phương trình :. 2 2

1a x yx ay

1/ Chứng minh rằng hệ phương trình có nghiệm với mọi a. 2/ Tìm a để hệ có nghiệm ( x; y) thỏa mãn: x + y > 0 Bài 25: Tìm b để hệ phương trình sau có nghiệm với mọi giá trị của a:

2

3ax y bx ay b b

Bài 26: Xác định a, b, c để hệ phương trình 2

( 1) 10 3ax by a bc x cy a b

có vô số nghiệm,

đồng thời x = 1, y = 3 là một nghiệm trong các nghiệm đó.

Bài 27: Cho hệ phương trình:( 1) ( 1)(3 ) 3 2m x m y m

m x y

1/ Tìm các giá trị của m để hệ phương trình có nghiệm. Khi đó, hãy tính theo m các nghiệm của hệ . 2/ Tìm nghiệm gần đúng của hệ, chính xáx đến hàng phần nghìn khi m

Bài 28: Cho hệ phương trình: 3 02 1 0

x my mmx y m

1/ Định m để hệ có nghiệm duy nhất 2/ Gọi (x;y) là nghiệm của hệ. Tìm hệ thức liên hệ giữa x và y độc lập với m. B. HỆ PHƯƠNG TRÌNH BẬC NHẤT 3 ẨN: 1. Phương pháp:

Hệ phương trình bậc nhất ba ẩn có dạng :

1 1 1 12 2 2

2 2 2 2

3 3 3 3

, 0, 1,2,3i i i

a x b y c z da x b y c z d a b c ia x b y c z d

Các phương pháp giải hệ phương trình này là: pp Gau – xơ, pp Cramer, pp thế.

2. Ví dụ:

Page 11: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

11

VD1: Giải hệ:

3 2(1)4 2 3 15(2)2 4 7(3)

x y zx y zx y z

Hướng dẫn giải: Ta khử ẩn z ở phương trình (2) và (3) bằng cách nhân (1) với 3 rồi cộng vào (2), nhân (1) với -4 rồi cộng vào (3). Khi đó ta được:

3 27 7 21(2')

2 11 15(3')

x y zx y

x y

Giải hệ phương trình bậc nhất hai ẩn (2’) và (3’) ta được x=-2,y=1. Thay các giá rị này vào (1) ta được z=3. Vậy hệ đã cho có nghiệm (-2;1;3).

VD 2:Biết rằng hệ phương trình

ax by cbx cy acx ay b

có nghiệm

Hãy chứng minh: 3 3 3 3a b c abc Hướng dẫn giải:

Giả sử (x;y) là nghiệm của hệ đã cho. Khi đó:

ax by cbx cy acx ay b

, suy ra

2 3

2 3

2 3

( )( )( )

c ax by ca bx cy ab cx ay b

Cộng từng vế ta được: 3 3 3 2 2 2 2 2 2a b c a bx a cy b cx b ay c ax c by

( ) ( ) ( )3

ab ax by bc bx cy ca cx ayabc bca cab abc

Bài tập củng cố:

1/Giải hệ phương trình:

Page 12: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

12

2 1) 6 3 2 5

4 2 3 16

3 2 5) 0

4 5 3

2 5) 2 2 5

7 10

x y za x y z

x y z

x y zb x y z

x y z

x y zc x y z

x y z

d)4 4 0

5 2 38 2 1

x y zx y z

z y z

e)1 1

2 53 2 1 4

x y zx y zx y z

f)

2

2

2

234

x x y x zy y z x yz x z y z

g) 3 2 9

2 3 2 34 3 1 1

x y zx y zx y z

h) 3 2 2

2 5 53 7 4 8

x y zx y z

x y z

j) 5 2

2 9 2 83 4 5

x y zx y zx y z

2/ Giải và biện luận hệ phương trình theo tham số m,a

1 2

) 5 4 4 65 3 3 8

x y za a x y z

x a y z

2

) 32

ax y z ab x ay z a

x y az

Page 13: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

13

c)2

2 44 ( 1 )

x yx y

x y m z m

e)

12 3 3

3 2

x y zx y m x

x m y z

3/ Giải và biện luận hệ phương trình (với a,b,c là tham số, a+b+c 0) 0

) 00

)

ax by cza bx cy az

cx ay bz

ax by cz a b cb bx cy az a b c

cx ay bz a b c

c)

( )( )( )( )( )( )

a b x y cz a bb c y z ax b ca c x z by c a

d)

2 33 2

5 8

x y z ax y z b

x y z c

4/ Giải hệ phương trình:1/

6543127

xyx y

yzy zzx

z x

;

52) 11

7

( ) 43) ( ) 9

( ) 1

xy x yyz y zzx z x

x y zy z xz x y

Bài 5: Giả sử hệ : ax by cbx cy acx ay b

có nghiệm

Chứng minh rằng: 3 3 3 3a b c abc Bài 6: Cho tam giác ABC có các cạnh a = 7, b = 5, c = 3.Hãy tìm bán kính đường tròn tâm A, tâm B, tâm C đôi một tiếp xác nhau.

C.HỆ PHƯƠNG TRÌNH BẬC HAI HAI ẨN:

Page 14: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

14

I. Hệ phương trình gốm 1 phương trình bậc nhất và 1 phương trình bậc hai:

1. Phương pháp:

Có dạng : 2 2

ax by cdx exy fy gx hy k

Từ phương trình bậc nhất, ta tính y theo x ( hay x theo y) và thế vào phương trình bậc hai để được phương trình bậc hai theo 1 ẩn x ( hay ẩn y)

2. Ví dụ:

Bài tập củng cố:

Bài 1:Giải các hệ phương trình sau:

1/2

2 3 1

24

x yx xy

2/

3 4 1 03( ) 9

x yxy x y

3/

2 3 26 0

x yxy x y

4/ 2 4

2 5 0y x xx y

5/ 2 2

2 3 53 2 4

x yx y y

6/ 2 2

2 57

x yx xy y

7/2 23 2 5 4 0

2 4x xy y x yx y

8/

2 2

2

164

x yx y

9/2 25 7

2 1x xy y

x y

10/ 2 2

2 7 02 2 4 0

x yy x x y

11/ 2

4 9 63 6 3 0

x yx xy x y

12/2 22 3 7 12 1

1 0x xy y x y

x y

13/

(2 3 2)( 5 3) 03 1

x y x yx y

Bài 2: Giải các hệ phương trình sau:

1/

2 2

1 1 13 2 31 1 1

9 4 4

x y

x y

2/

2 2

1 1 11 31 1 1

( 1) 4

x y

x y

3/ 3 2

1 24

x y x yx y

x y

Bài 3: Giải các hệ phương trình :

1/4 2( ) 4( ) 117 025

x y x yx y

2/

2 2(18 18 18 17)(12 12 1) 03 4 0

x x y x xyx y

3/3 3

1

7

x yx y

4/ 2 2( )( ) 45

5x y x y

x y

Bài4: Giải các hệ phương trình:

1/2 2( ) 2( ) ( )( ) 22

x a y a x a y ax y

Page 15: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

15

2/2 2( ) ( ) 11

2 7x m y y x m

x y m

3/2 22( ) ( 2 ) 2

3 2 5x m y m m

x y m

Bài 5: Giải và biện luận theo tham số a của hệ phương trình:

4 4 4

x y ax y a

II. Hệ phương trình đối xứng loại 1:

1. Phương pháp:

Hệ đối xứng loại 1 có đặc trưng là nếu thay x bởi y, y bởi x thì mỗi phương trình trong hệ không đổi.

Cho hệ đối xứng loại 1: (I) ( ; ) 0( ; ) 0

f x yg x y

- Đặt S = x + y và P = x.y, biến đổi hệ (I) thành hệ theo S và P :

(II)( ; ) 0( ; ) 0

F S PG S P

Giải hệ (II) để tính S và P. Điều kiện để tồn tại x, y là 2

0 04 0S P Với mỗi cặp nghiệm ( S0 ; P0) của (II) thì x, y là nghiệm của phương trình X2 – S0P + P0 = 0.

Ngoài ra, ta cũng có thể đặt ẩn phụ thì hệ phương trình mới có dạng đối xứng, nhưng khi đó ta cần lưu ý đến điều kiện.

* Chú ý: Tính chất của nghiệm đối xứng : - Nếu ( xo ; y0) là một nghiệm thì ( x0 ; y0) cũng là một nghiệm của hệ. Do đó, nếu hệ có

nghiệm duy nhất ( x0 ; y0) thì nghiệm đó cũng là ( y0 ; x0), suy ra x0 = y0.

2. Ví dụ: VD1: Giải hpt sau:

2 2

3

2

x y xyI

x y y x

Đây là hpt đối xứng loại 1

3

2

x y xyI

xy x y

Đặt: S x yP xy

với 2 4 0S P

Hpt đã cho trở thành:

32

1221

S PSP

SP

lSP

Page 16: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

16

Với 21

SP

thì

21

x yxy

11

xy

Vậy hệ có nghiệm x = 1 và y = 1 VD2: Giải hệ phương trình:

2 2

2 2

87

x y x yx y xy

Hướng dẫn giải:

Ta có 2 2

2 2

87

x y x yx y xy

2

2

( ) 8( ) 7

x y xy x yx y xy

Có dạng 2

2

2 87

S P SS P

với

S x yP xy

2 2

2

2( 7) 87

S S SP S

thoả S2 – 4P 0

Với 2 3 1

3 1 3S x y x x

hayP xy y y

Với 3 1 2

2 2 1S x y x x

hayP xy y y

VD3: Giải hệ phương trình:

2 2

2 3 26

x xy yx y

Hướng dẫn giải: Đặt S x y ; P xy , ta có hệ:

2 2 2

2

2 10 6 2 ( 1) (3 2)2 3 22 6 2 3 2 2 3 2

S S SS PS P S P P S

2 2

2 2

4 2

6 4 2

S

P

S

P

Với 2 2S ; 2 2P ; x,y là nghiệm phương trình:

Page 17: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

17

22

(2 2) 2 2 02

XX X

X

Với 4 2S ; 6 4 2P ;x,y là nghiệm phương trình:

2 (4 2) 6 4 2 0X X : vô nghiệm.

Vậy hệ có nghiệm: (2; 2)và ( 2;2) . VD4: Giải hệ phương trình:

3 3 2( ) 2

x yxy x y

Hướng dẫn giải: 3 3 32 ( ) 3 ( ) 2( ) 2 ( ) 2

x y x y xy x yxy x y xy x y

Đặt: ;u x y v xy

Ta có 3 33 2 6 2

2 2u uv uuv uv

2 22 1

u uuv v

Vậy2

1x yxy

x,y là nghiệm của phương trình 2 2 1 0X X 1X

Vậy nghiệm ( ; )x y của hệ đã cho là (1;1) . VD5: Cho hệ phương trình:

2 2

x y xy mx y m

1/ Giải hệ với m=5 2/ Với giá trị nào của m thì hệ có nghiệm? Giải: 1/Với m=5, ta có:

2 2

55

x y xyx y

2

5( ) 2 5

x y xyx y xy

2 2

5 22 5 2 15 0

S P P SS P S S

32

510

SP

SP

Ta chỉ nhận 32

SP

thoả S2- 4P0

Ta chỉ nhận 32

SP

thoả S2 – 4P 0 nên x,y là nghiệm của phương trình X2 – 3X +2 =0

Page 18: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

18

12

XX

Vậy 1 22 1

x xhay

y y

2/ Giá trị của m để hệ có nghiệm Ta có:

2 2 2

(1)2 (2)

x y xy m S P mx y m S P m

với S x y

P xy

22 3 3 0

2( )P m S

S S mS m S m

1

1 1

2

2 2

1 1 3

1 1 3

S mP m S

S mP m S

( với điều kiện 1+3m 0 m - 13

)

Với m - 13

hệ phương trình sẽ có nghiệm nếu S24P hay:

21 122 2

44

S PS P

2

2

( 1 1 3 ) 4( 1 1 3 )

( 1 1 3 ) 4( 1 1 3 )

m m m

m m m

1 1 3 2 1 3 4 4 4 1 3

1 1 3 2 1 3 4 4 1 3

m m m m

m m m m

2 1 3 ( 2)

2 1 3 2 0

m m

m m

(loại vì m - 1

3)

( với m - 13

)

4(1+3m)m2+4m+4 m2-8m 0 m 0;8

Vậy m 0;8 Giả sử (x,y) là nghiệm của hệ phương trình:

VD6:Cho hệ phương trình 2 2 2

2 12 3

x y ax y a a

Xác định a để tích xy nhỏ nhất Giải

Ta có:

22 2

2 12 1

32 2 3 3 22

S sS aaS P a a P a

Để phương trình có nghiệm thì :S2 - 2P 0 (2a – 1)2-4(23

2a - 3a + 2)0

-2a + 8a -7 0 a 2 22 ; 22 2

Page 19: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

19

P = xy =23 3 2

2a a là biểu thức hàm bậc hai có hoành độ đỉnh cực tiểu nhỏ nhất tại a= 1 2-

22

Vậy xy đạt giá trị nhỏ nhất tại a=2- 22

VD7: Cho hệ phương trình 2 2 3 8x y xy a

x y xy a

a/ Giải hệ với a = 72

b/ Với giá trị nào của a thì hệ có nghiệm Giải

a/ Ta có :

2 2

2 2

3 8

7252

x y xy ax y xy a

x y xy

x y xy

72

5.2

S P

S P

152521

S

P

S

P

Ta chỉ nhận 521

S

P

thoả điểu kiện S2 – 4P 0 và x, y là nghiệm của phương trình

X2 - 52

X + 1= 0 212

X

X

Vậy 2 1

hay 2122

x xy y

b/ Trường hợp tổng quát . 3 8S P a

S P a

thì S,P là nghiệm của phương trình X2 – aX +3a – 8

=0 (1) Phương trình có nghiệm khi 2 4(3 8) 0a a

2 412 32 0

8a

a aa

Với điều kiện đó phương trình (1) có nghiệm

Page 20: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

20

2

1

2

2

12 322

12 322

a a aX

a a aX

Nếu chọn S=2 12 32

2a a a và P=

2 12 322

a a a thì hệ có nghiệm khi

S2 – 4P 0 ( 2 12 32a a a )2 8( 2 12 32a a a )

a2 – 10a +16 (a+4) 2 12 32a a

(a - 2)(a – 8) (a+4) ( 4)( 8)a a (2)

Nếu chọn S=2 12 32

2a a a và P=

2 12 322

a a a thì hệ có nghiệm khi:

S2 – 4P 0 (a – 2)(a – 8) -(a+4) ( 4)( 8)a a (3)

Từ (2) va (3) suy ra:

(a – 2)(a – 8) - 4a ( 4)( 8)a a (4)

Vì (a – 2)(a – 8) 0 2

8

aa

thì thỏa (4)

Do đó với a 2; 4 thì (a – 2)(a – 8) < 0 nên

(4)

2 2 2

2

( 2) ( 8) ( 4) ( 4)( 8)4 13 8 0

13 3 33 13 3 33;8 8

a a a a aa a

a

Kết hợp với các điều kiện trên ta thấy hệ phương trình đã cho có nghiệm khi a 13 3 338

hay a 8

Bài tập củng cố:

Bài 1/ Giải hệ phương trình: 2 2 4

2x xy y

x xy y

HD: Đặt S= x + y & P= xy với điều kiện S2 - P 0 ta được kết quả

Page 21: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

21

2 0 hay

0 2x xy y

Bài 2/ Giải hệ phương trình 30

35

x y y x

x x y y

HD: Đặt S= x y & P= xy ta được kết quả 9 44 9

x xhay

y y

Bài 3/ Giải hệ phương trình 2 2

2 3 26

x xy yx y

HD: Đặt S= x + y & P= xy với điều kiện S2 - P 0 ta được kết quả 2 22 2

x xhayy y

Bài 4/ Giải hệ phương trình

a) 2 2

2 2

1( ) 1 5

11 9

x yxy

x yx y

HD:

1 3 5 hay 23 5

12

xx

y y

Bài 5/Giải hệ phương trình:

2 2

5)

7x y

ax xy y

c)2 2

2 2

1 1 5

1 1 49

x yx y

x yx y

2 2

15)

42xy

bx y x y

3 3 3 3 17)

5x x y y

dx xy y

Bài 6/ Giải hpt sau: 5 5

9 9 4 4

1x yx y x y

( ĐS: 0;1 , 1;0 )

Giải hệ phương trình: 2 2 4

2x xy yx xy y

HD: Đặt S= x + y & P= xy với điều kiện S2 - P 0 ta được kết quả 2 0

hay 0 2

x xy y

Bài 7:

Page 22: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

22

Cho hệ phương trình 2 2

2

4 (1)3 4 (2)

x xy y ky xy

1/ Giải hệ với k = 1 2/ Chứng tỏ rẳng hệ có nghiệm với mọi k

HD: 1/ 1 1

hay 4 4

x xy y

2/ ket hợp 2 phương trình để tìm x theo y va thay vào phương trình còn lại để còn một phương trình theo ẩn y duy nhất

Bài 8: Cho hệ phương trình 2 2

2

2(1 )( ) 4

x y ax y

1/ Giải hệ với a=1 2/ Tìm các giá trị của a để hệ có đúng 1 nghiệm

HD: 1/ Đặt S= x + y & P= xy với điều kiện S2 - P 0 ta được kết quả 0 2

hay 2 0

x xy y

2/ 2 2

2

2(1 )( ) 4

x y ax y

2( ) 2 2(1 )2

x y xy ax y

12

xy ax y

Điều kiện có nghiệm là (x+y)2 – 4xy 0 4 – 4(1 – a) 0 a 0 Vậy x,y là nghiệm của phương trình có cùng biệt số ' a và có 4 nghiệm khác nhau X= 1

a , X’= -1 a khi a>0 ,nên để chỉ còn 2 nghiệm a thì a=0 , lúc đó X=x = y=1, X’=x=y= -1 Vậy hệ phương trình có đúng 2 nghiệm là (1:1) , (-1:-1) khi a=0

Bài 9: Cho hệ phương trình 2 2 2 2x y m

x y x

giải va biện luận theo m

HD: 1/ Nếu m=-1 Hệ vô nghiệm

2/ Nếu m -1, hệ có nghiệm

2

2

22( 1)

22( 1)

mxm

m mym

Bài10: Cho hệ phương trình 2 2

1x xy y mx y xy m

1/ Giải hệ với m=2 2/ Tìm m để hệ có ít nhất một nghiệm thỏa điều kiện x>0 : y>0 HD: 1/ Đặt S= x + y & P= xy với điều kiện S2 - P 0 ta được kết quả x=y=1 2/x,y là nghiệm của phương trình bậc hai X2 – SX + P =0 từ đó ta suy ra giá trị của m đệ hệ có ít nhất một nghiệm thỏa x>0, y>0

ĐS: m 10; hay m 24

Bài 11: Giải hệ phương trình 30

35

x y y x

x x y y

HD: Đặt S= x y & P= xy ta được kết quả 9 44 9

x xhay

y y

Page 23: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

23

Bài 12: Giải hệ phương trình 2 2

2 3 26

x xy yx y

HD: Đặt S= x + y & P= xy với điều kiện S2 - P 0 ta được kết quả 2 22 2

x xhayy y

Bài 13: Giải hệ phương trình 2 2

2 2

1 1 5

1 1 9

x yx y

x yx y

HD: 1 3 5

hay 23 512

xx

y y

Bài 7/ Giải và biện luận hệ sau:

a) 2

233

x my xy mx y

b) 5 4 41

x y xyx y xy m

( ĐS: 1 14

m m )

c) 2 2 212 3

x y mx y y x m m ( ĐS: m )

d) 2 221

xy x y mx y y x m ( ĐS: 31

4m m )

e) 2 2

2 222

x y mx yy x my x

(ĐS; 1m )

Bài 14: Giải các hệ phương trình sau đây:

1/2 2 10

4x yx y

2/

2 2 2512

x yxy

3/

2 2 651 1 18

x yx y

4/

2 2

5

7

x y xyx y xy

5/ 2 2 2( 2)

6x y xyx y

6/

2 2

5

8

x y xyx y x y

7/ 2 2

1

2

x y xyx y x y

8/ 2 2 6

5x y xyxy x y

9/ 2 2

3( )160

x y xyx y

10/

136

5

x yy xx y

11/

2 2

3 3

134

358

x y

x y

12/ 3 3

161

x yx y

Page 24: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

24

13/ 2

2

14425

xyx y

14/

990

x yxy

15/ 2 2 164

2x yx y

16/

2 2

2 2

( ) 18011

x y xyx y xy

17/ 3 3 3 3 17

5x x y yx y xy

18/

2 2 40

8

x yxy zx y

19/ 2 2 2

2 2 2

36

6050

x y zx y zx y z

20/

2 2 356

x yxyx y z

21/ 5( ) 2 1915 5( ) 175

x y xyxy x y

22/

2 2

1 1 13160

x yx y

23/

2 2

1 1 5

1 1 13

x y

x y

24/

1 32

42

xx yx

x y

25/ 3 3 2( ) 2

x yxy x y

26/

2 2

18

12

x yy x

x y

27/ 4 2 2 4

2 2

48137

x x y yx xy y

28/ 2 2 2

2 2

( ) ( ) 100( )( ) ( ) 34x xy x yx xy x y x xy x y

29/ 2 2 2 2

2 2

( 2 ) ( 2 ) ( 2 )( 2 ) 13( 2 )( 2 )( 2 2 ) 12x y y xy x y y xyx y y xy x y y xy

30/ 2 2 2 ( 3) 2 ( 3) 9 0

2( ) 6 0x y x y y x

x y xy

31/ 2 2

2 2

73

x y xyx y xy

32/

2

2 2

2( ) 10

x y xyx y xy

32/

22

1( 2 ) 10(2 )

2 32

x yx y

x yx y

Bài 15 : Tính hai cạnh góc vuông của một tam giác vuông có cạnh huyền thì 185m, biết rằng nếu giảm mỗi cạnh góc vuông đi 4 m thì diện tích giảm 506 m2. Bài 16: Tính các cạnh của một tam giác vuông biết rằng tổng hai cạnh góc vuông là 70m và tổng cạnh huyền với đường cao tương ứng với nó là 74 m.

Bài 17: Xác định m để các hệ phương trình sau có nghiệm:

Page 25: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

25

1/2

2 1x xy m

x y

2/

2 2 12

x y mxx y

3/2 2

1x y mxy

4/

2 2

2x y mx y

Bài 18: Xác định m để các hệ phương trình sau có nghiệm duy nhất:

1/2 2( 1)( 1)x y x y

x y xy m

2/ 2 2

3x y xyx y m

Bài 19: cho hệ phương trình : 2 2

1x y xy ax y xy a

Định a để hệ có ít nhất 1 nghiệm(x;y) thỏa điều kiện x > 0 và y > 0

Bài 20 : Cho hệ phương trình: 2 2

6x yx y a

Định a để: a/ Hệ phương trình vô nghiệm.

b/ Hệ phương trình có 1 nghiệm duy nhất. c/ Hệ phương trình có hai nghiệm phân biệt.

Bài 21: Giả sử x; y là nghiệm của hệ phương trình 2 2 2

2 1

2 3

x y ax y a a

Xác định a để tích x.y là nhỏ nhất.

Bài 21: Cho hệ phương trình : 2 2

2

2( 1)( ) 4x y ax y

a/ Giải hệ phương trình với a = 2 b/ Tìm các giá trị của a để hệ có nghiệm duy nhất. Bài 22: Giải hệ phương trình:

2 23 3

3 3

2( ) 3

6

x y x y xy

x y

Bài 23: Cho (x, y, z ) là nghiệm của hệ phương trình:

2 2 2 8

4x y zxy yz zx

Chứng minh rằng: 8 8, ,3 3

x y z

Bài 24: Giải hệ phương trình : 30

35

x y y x

x x y y

Bài 25: Chứng tỏ rằng với a 0, hệ phương trình sau có nghiệm duy nhất.

22

22

2

2

ax yy

ay xx

Page 26: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

26

Bài 26: Giải hệ phương trình sau:

22 4 1 52

32

x xyx y

xx y

Bài 27: Cho hệ phương trình:

2 2

2

2(1 )( ) 4x y ax y

1/ Giải hệ với a = 1 2/ Tìm các giá trị của a để hệ có đúng 2 nghiệm.

Bài 28: Cho hệ phương trình : 2 2 3 8

x y xy ax y xy a

1/ Giải hệ với a = 72

2/ Với giá trị của a thì hệ có nghiệm. Bài 29: Giả sử (x; y) là nghiệm của hệ phương trình:

2 2 2

2 1

2 3

x y ax y a a

Xác định a để hệ phương trình có hai nghiệm mà tích xy là nhỏ nhất.

III. Hệ phương trình đối xứng loại 2: 1. Phương pháp:

Hệ đối xứng loại 2 có đặc trưng nếu thay x bởi y, y bởi x thì phương trình này trở thành phương trình kia và ngược lại

Hpt : 1 1 2

2 2

( ; ) 0 ( ; ) ( ; ) 0( ; ) 0 ( ; ) 0

f x y f x y f x yf x y f x y

2

2 2

& ( ; ) 0( ) ( ; ) 0( ; ) 0 ( ; ) 0 & ( ; ) 0

x y f x yx y F x yf x y F x y f x y

Trong đó F(x;y) là biểu thức đối xứng của x,y. Chú ý: i) Có thể ta phải đặt ẩn phụ thì hpt mới có dạng đối xứng, nhưng khi đó ta cần lưu ý đến điều kiện của ẩn phụ. ii) Nếu các ẩn x,y có cùng một điều kiện thì thay vì giữ nguyên phương trình (2) ta

nên cộng hai phương trình lại với nhau để đưa hệ hai về dạng đối xứng loại 1.

2. Ví dụ:

VD1: Giải hệ phương trình:

2 1 3

2 1 3

x y

y x

Hướng dẫn giải:

Page 27: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

27

Điều kiện: 1; 1x y .

Đặt: 1; 1( , 0)X x Y y X Y , ta có hệ: 2 2

2 2

2( 1) 3 2 1(1)2( 1) 3 2 1(2)

X Y X YY X Y X

Lấy (1) trừ(2) vế theo vế: 2 22( ) ( ) 0 ( )(2 2 1) 0X Y X Y X Y X Y

2 2 1 0X Y

X Y

i) Với X=Y, thay vào (2) ta có: 2 12 1 0

2X X X (vì

50)4

X x y

ii) Với 12 2 1 0 (1 2 )2

X Y Y X , thay vào (1) ta có:

2

1 5 1 5 ( )4 44 2 1 0

1 5 ( )4

X Y lX X

X l

Vậy hệ có nghiệm 5 5;4 4

.

VD2: Giải hệ phương trình:

2 3 2

2 3 2

3 2 (1)3 2 (2)

y x x xx y y y

Hướng dẫn giải: Lấy (1) trừ (2) vế theo vế ta được:

2 2 3 3 2 2

2 2

2 2 2

3( ) 2( )( )( 2 2 2) 01 ( ) ( 2) 02

y x x y x y x yx y x xy y x y

x y x y x y x y

(vì 2 2 2( 2) 0)x y x y Thay x=y vào (1) ta được:

3 2 24 2 0 ( 4 2) 0x x x x x x

2

004 2 0 2 2

xxx x x

Vậy hệ có 3 nghiệm: (0;0);(2 2;2 2);(2 2;2 2) .

Page 28: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

28

VD3: Giải hệ phương trình:

2 2

2 2

2 2 (1)

2 2 (2)x y x yy x y x

Hướng dẫn giải: Trừ từng vế cua phương trình (1) cho (2) ta có: x2 – y2 – 2y2 + 2x2 = 2x – 2 y+ y– x

2 23( )( )(3 3 1) 0

03 3 1 0

1 33

x y x yx y x y

x yx y

x yxy

Thay vào phương trình (1) ta có: TH1: x = y x2 – 2x2 = 3x x ( x+3) = 0

0 03 3

x yx y

TH2: y = 1 3

3x

2

2 1 3 1 32 23 3

x xx x

2 29 2(1 6 9 ) 18 3 9x x x x x

29 3 5 0x x x Vậy x = y = 0 hoặc x = y = -3

VD4: Giải hệ phương trình: 2

2

2 5 42 5 4

x x yx y x

Hướng dẫn giải:

2

2

2 5 42 5 4

x x yx y x

2 2

2

( ) 2( ) 4( )2 5 4

x y x y x yx x y

2

( )( 2) 02 5 4

x y x yx x y

2

2

02 5 4 0

2 02 5 4 0

x yx x y

x yx x y

Page 29: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

29

TH1:

2 2

2

0

2 5 4 0 2 5 4 0

6 5 0 (a+b+c=0)

11 hay x=5 5

x y x yx x y x x x

x yx x

x y x yx x y

TH2:

2

2 2

2 02 5 4 0

2 22 13 0 ( 1) 12 0 2

x yx x y

y x y x xx x x y x

Hệ phương trình vô nghiệm

Vậy nghiệm của hệ phương trình đã cho là: 1 5

hay 1 5

x xy y

VD5: Giải và biện luận M theo hệ phương trinh sau: 2

2

1 (1)1 (2)

x myy mx

Giải: Lấy (1) – (2) ta được:

(1) – (2)

( )( ) ( )

( )( ) 0

x y x y m x yy x

x y x y my x m

TH1: y = x (1) 2 21 0 ( = 4)x mx m

Phương trình có nghiệm 0 4m

Khi đó hệ có nghiệm x = y =2 4

2m m

và x = y =2 4

2m m

(*)

TH2: y = -x – m

(1)2 2

2 2 2

1 0 4( 1) 3 4 0

x mx mm m m

Phương trình vô nghiệm Vậy 2 : ( ; ) , ( ; )m như trên

2m : vô nghiệm

VD6: Giải và biện luận theo m hệ: 2

2

2 (1)2 (2)

x xy y mxy xy x my

Trừ từng vế hai phương trình ta được :

(x – y)(x + y – m +1) =0 1 0

x yx y m

Thay x = y vào (1) ta được nghiệm

x = y = 0 hay x = y = 13

m

Thay x + y –m + 1=0 1y m x , thay vào (1):

Page 30: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

30

2 ( 1) 1 0x m x m có ( 1)( 5)m m Biện luận theo m biệt số để suy ra nghiệm x và y

Bài tập củng cố:

Bài 1/ Giải hệ phương trình sau: 2

2

3 2)

3 2x x yay y x

ĐS: (0; 0) , (5;5) , (2;-1) , ( 1; 2)

Bài 2/ Giải hệ phương trình sau: 3

3

2)

2x x y

ay y x

ĐS: (0;0) , (1;-1) , (-1;1) , ( 3; 3) ; (- 3; 3)

Bài 3/ Giải hệ phương trình sau:

2

2

1 0 (1)4) 1 0 (2)4

x ya

x y

ĐS: 1 1( ; ) 2 2

Bài 4/ Giải hệ phương trình:2

2

2)

2x y

ay x

3

3

5)

5x x y

by y x

Bài 5/ Giải hệ phương trình: a)

1 32

1 32

xy x

yx y

b) 3

3

3 83 8

x x yy y x

Bài 6/ Giải hpt sau: a)

2

2

2

2

23

23

yyx

xxy

( ĐS: 1x y )

b) 3

3

1 21 2

x yy x

( ĐS : 1 5 1 5 1 5 1 51;1 , ; , ;

2 2 2 2

)

Bài 7 : Giải hệ 2 2

2 2

2 2 (1)

2 2 (2)x y x yy x y x

Vậy x = y = 0 hoặc x = y = -3

Bài 8 Giải hệ phương trình sau: 2

2

2 5 42 5 4

x x yx y x

ĐS:1 5

hay 1 5

x xy y

Page 31: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

31

Bài 9: Giải hệ phương trình:2 1 3

2 1 3

x y

y x

ĐS: 5 5;4 4

Bài 10: Giải hệ phương trình: 2 3 2

2 3 2

3 2 (1)3 2 (2)

y x x xx y y y

Hệ có ba nghiệm 0;0 ; (2+ 2; 2 2) ; (2 2;2 2)

Bài 11: Giải các hệ phương trình:

1/2

2

22

x y xy x y

2/

2

2

22

x yy x

3/2

2

13 413 4

x x yy y x

4/

2

2

2 4 52 4 5

x y yy x x

5/3

3

22

x x yy y x

6/

2

2

3 23 2

x x yy y x

7/ 2 2

2 2

2 22 2

x y x yy x y x

8/

2 2

2 2

2 72 7

x y xy x y

9/ 2

2

22

x y xyy x xy

10/

2

2

2020

x yy x

11/ 3 2

3 2

22

x y yy x x

12/

2

2

32

32

x yx

y xy

13/

2

2

12

12

x yy

y xx

13/3

3

3 83 8

x x y my y x m

với m = 0 và m = 10

14/2 2

2 2

22

x y yxy x

15/

2 2 2

2 2

22 1

x y x yxy x

16/2

2

1 31 3

x yy x

17/

3 4

3 4

yx yxxy xy

18/2 2

2 2

2 3 22 3 2

x x yy y x

19/

3

3

33

x x yy y x

Page 32: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

32

20/

2

2

2 7

2 7

yxxxyy

21/3

3

3 23 2

x x yy y x

22/3

3

44

x x yy y x

23/

2

2

87 0

87 0

x yx

x yy

24/3 2

2 2

2 242 24

x x yxy y

25/

2

2

566 0

566 0

x yx

x yy

26/3 2

3 2

4 34 3

x x yy y x

27/

2 3 2

2 3 2

4 74 7

y x x xx y y y

28/2 2 2

2 2 2

7 207 20

x y x xy x y y

Bài 12: Tìm m để hệ phương trình sau có nghiệm duy nhất:3 2 2

3 2 2

77

x y x mxy x y my

Bài 13: Cho phương trình sau:2

3

2

7 0

7 0

ax yxay xy

Chứng minh rằng hệ có nghiệm duy nhất với mọi a. Bài14 : Giải và biện luận theo m của hệ phương trình:

2

2

22

x xy y mxy xy x my

Bài 15: Trong hệ sau đây hãy xác định a để hệ có nghiệm duy nhất: 2 3 2

2 3 2

44

y x x axx y y ay

IV. Hệ phương trình đẳng cấp: 1. Phương pháp:

Hệ đẳng cấp bậc 2 có dạng: 2 2

1 1 1 12 2

2 2 2 2

a x b xy c y da x b xy c y d

Xét xem x =0 (hay y=0) có thể là nghiệm của hpt không? Với x 0(hay y 0). Đặt y=tx(hay x=ty), ta có:

Page 33: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

33

2 2

1 1 1 12 2

2 2 2 2

(

(

x a b t c t dx a b t c t d

Chia hai vế của 2 pt ta được 1 pt bậc hai theo ẩn t, từ đó tính x và suy ra y. Chú ý: Đối với hệ pt đẳng cấp bậc ba ta cũng thực hiện tương tự.

2.Ví dụ:

VD1:Giải hệ phương trình

2 2

2 2

12 3 4 3x xy y

x xy y

Hướng dẫn giải: _Ta thấy x=0 không thoả hệ _Với 0x , đặt y=tx, thay vào hệ ta được

2 2

2 2

( 1) 1(1)(2 3 4) 3(2)

x t tx t t

Lấy (1) chia (2) ta được 2 23( 1) 2 3 4 1t t t t t

Với t=1, ta có 2 1x , suy ra hệ có nghiệm: (1;1);( 1; 1)

Với t=-1 ta có 2 13

x , suy ra hệ có nghiệm 1 1 1 1; ; ;3 3 3 3

VD2:

Giải hệ phương trình sau: 2 2

2 2

3 2 11

2 3 17x xy y

x xy y

Hướng dẫn giải:

Ta thấy x=0, y=0 không thoả hệ phương trình, nói cách khác hệ phương rình không có nghiêm x =0 Đặt x = ky và thay vào hệ ta được:

2 2

2 2

(3 2 1) 11 (1)( 2 3) 17 (2)

y k ky k k

2

2

3 2 1 112 3 17

k kk k

( 2 2 3k k 0)

2 251 34 17 11 22 33k k k k 240 12 16 0k k

45

12

k

k

Thay vào (1) ta được:

Page 34: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

34

k = 45

2 2 5

3y

5 43 35 43 3

y x

y x

12

k 2 4y

2 12 1

y xy x

ĐS: 4 5 4 5; ; ; ; 1;2 ; 1; 23 3 3 3

VD3: Giải hệ phương trình sau:

2 2

2 2

3 5 4 38

5 9 3 15x xy yx xy y

Hướng dẫn giải: Ta thấy x=0, y=0 không thoả hệ phương trình, nói cách khác hệ phương trình không có nghiêm x =0. Đặt x = ky và thay vào hệ ta được:

2 2 2 2

2 2 2 2

3 5 4 3 8

5 9 3 1 5x tx t xx tx t x

2 2

2 2

22

2

(3 5 4 ) 38 (1)(5 9 3 ) 15 (1)

13 5 4 38 354 417 145 0

1455 9 3 1518

x t tx t t

tt t t tt t t

Với t= 13

thì (2) x2 = 9 3 13 1

x yx y

Với t = 14518

thì (2) x2 = 15.10812655

: Phương trình vô nghiệm

Vậy 3 3

hay 1 1

x xy y

VD4: Giải hệ phương trình sau:

Page 35: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

35

2 2

2

6 5 0

4 2 6 2 7 0x y xy

x xy x

Hướng dẫn giải: Ta thấy x=0, y=0 không thoả hệ phương trình, nói cách khác hệ phương trình không có nghiêm x =0 Đặt x = ky và thay vào hệ ta được:

2 2 2 2

2 2

6 5 0

4 2 6 27x t y tx

x tx x

2 2

2 2

(1 6 5 ) 04 2 6 27x t tx tx x

2

2 2

6 5 1 04 2 6 27

t tx tx x

2 2

2 2

12

4 6 27

13

24 6 273

t

x x x

x

x x x

2

2

31 322

9 95 6 27 05 10

13

1 514 18 81 0 9.14

x yt

x x x y

t

x x x

1 153.

14y

ĐS: 3 1 5 1 15 1 5 1 15 9 93; ; 9 ; 3 ; 9 ; 3 ; ;2 14 14 14 14 5 10

VD5: Với giá trị nào của m thì hệ: 2 2

2 2

3 2 112 3 17

x xy yx xy y m

Vì x = 0, y = 0 không là nghiệm của hệ nên đặt: y = kx, hệ trở thành:

Page 36: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

36

2 2

2 2

3 2 11 1

1 2 3 17 2

x k k

x k k m

Chia (1) cho (2) ta được:

2 2

2

17 3 2 11 1 2 3

16 2 6 3 40 0 3

m k k k k

m k m k m

Ta có: 23 2 0, 1k k k luôn có nghiệm x. Xét :

16 0 16

3 44 88 0 2m m

k k

Vậy m = 16 ( nhận) Xét 16m :

(3) có nghiệm k 16

' 0m

2 2

16 16

10 338 06 16 3 40 0

m mm mm m m

5 11 3 5 11 3m hệ có nghiệm.

Bài tập củng cố: Bài 1/ Giải hệ phương trình sau:

a) 2 2

2 2

3 13 3 13x xy yx xy y

b) 2 2

2 2

2 4 13 2 2 7

x xy yx xy y

c) 2

2 2

3 44 1

y xyx xy y

d) 2 2

2 2

3 5 4 385 9 3 15x xy yx xy y

e) 2 2

2 2

2 3 94 5 5

x xy yx xy y

f) 2 2

2 2

2 3 134 2 6

x xy yx xy y

g) 2 2

2 2

3 5 4 39 11 8 6

x xy yy xy y

Page 37: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

37

Bài 2/Giải hpt sau :2

2 2

1228

xy yx xy

( ĐS: 7;3 , 7, 3 )

Bài 3/ Giải hệ sau: 2 2

2

43 4

x xy y ky xy

a)Giải hệ với k=1 b)Chứng minh rằng hệ có nghiệm với mọi k.

Bài 4 : Giải và biện luận hpt theo a: 2

2

04 0

x xy ayy xy ax

Bài 5: Giải hệ phương trình

1) 2

2 2

3 2 1603 2 8

x xyx xy y

2) 2

2 2

3 44 1

y xyx xy y

3) 2 2

2

6 5 04 2 6 27 0x y xy

x xy x

4) 2 2

2 2

3 8 4 05 7 6 0

x xy yx xy y

5) 2 2

2 2

2 3 92 2 2x xy y

x xy y

6) 2 2

2

2 12

x yxy x

7) 2

2 2

3 2 163 2 8

x xyx xy y

8) 2 2

2 2

2 4 15 2 3 6

x xy yx xy y

9) 2 2

2 2

2 3 93 4 7

x xy yx xy y

10) 2

2 2

3 44 1

y xyx xy y

11) 3 3 7( ) 2

x yxy x y

12) 2 2

3 2

8 122 12 0

x yx xy y

Bài 6: cho hệ phương trình sau:

2 2

2 2

3 2 112 3 17

x xy yx xy y m

( trong đó m là tham số)

Page 38: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

38

1/ Giải hệ phương trình với m = 0 2/ Với m nào thì hệ phương trình có nghiệm. Bài 7: Cho hệ phương trình ẩn x và ẩn y sau:

2 2

2

43 4

x xy y ky xy

với k là tham số

1/ Giải hệ phương trình với k = 1 2/ chứng tỏ rằng hệ phương trình có nghiệm với mọi k. Bài 8: Giải và biện luận theo a hệ phương trình sau:

22 2 2 2 2

2

4 0x y a x y

xy a

( 0)a

Bài 9 : Giải hệ phương trình sau:

2

2 2

2

1

y x y

x y x xy y

Bài 10: Giải hệ phương trình:

2 2

2 2

3 1)

3 3 13x xy y

ax xy y

2 2

2 2

2 4 1)

3 2 2 7x xy ybx xy y

2

2 2

3 4)

4 1y xy

cx xy y

ĐS:

) (1;2) ; 2;1 ; 1; 2 ; 2; 1

9 17 9 17) 1;1 ; 1; 1 ; ; ; ;161 161 161 161

) 1;4 ; 1; 4

a

b

c

Bài 11: Giải hệ phương trình: 2 2

2 2

3 5 4 38)

5 9 3 15x xy y

ax xy y

2 2

2 2

2 3 9)

4 5 5x xy y

bx xy y

c)2 2

2 2

2 3 134 2 6

x xy yx xy y

ĐS:

) 3;1 ; 3; 1

5 2 2 5 2 2) 3; 2 ; 3; 2 ; ; ; ;2 2 2 2

a

b

c) 4 25 4 252;1 ; 2; 1 ; ; ; ;139 139 139 139

Page 39: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

39

D. HỆ PHƯƠNG TRÌNH VÔ TỈ:

1. Phương pháp:

Đối với hệ phương trình vô tỉ ta còn có một số cách đặt trưng như sau: a. Phương pháp biến đổi tương đương:

B1: Đặt điều kiện cho các biểu thức có nghĩa

B2:Sử dụng các phép thế nhận được từ hệ một phương trình theo ẩn x hoặc y (đôi khi có thể là theo cả hai ẩn x, y). B3: Giải phương trình nhận được bằng các phương pháp đã biết đối với phướng trình chứa căn thức B4:Kết luận

2.Ví dụ: VD1: Giải hệ phương trính

)2(12

)1(3

3

yxyx

yxyx

Ñk:

yxyx

(1) ()( 6 yx 63 )yx

10)1()()()( 223

yxyx

yxyxyxyx .

Thay x=-y vào phương trình (2),ta được : y = -2 x = 2.

VD2: Giải hệ phương trình: 2 2

2 2

1 1 18(1)

1 1 2(2)

x x y x y x y y

x x y x y x y y

Hướng dẫn giải:

Điều kiện:

2

2

1 01 0

x x yy x y

Cộng tương ứng 2 vế:

2 21 1 10x x y y x y (4)

Thay (4) vào (1) : 8 8x y y x (5)

Thay (5) vào (4) :

Page 40: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

40

2 2 2 2

2 2 2 2

2 2 2

9 (8 ) 9 10 9 16 73 10

( 9) ( 16 73) 2 ( 9)( 16 73) 10

( 9)( 16 73) 9 8 4

x x x x x

x x x x x x

x x x x x x

Vậy, hệ có nghiệm duy nhất x=y=4.

Nhận xét: Với ý tưởng tạo ra 1 phương trình hệ quả từ hệ và liên tục sử dụng phép thế ta tìm được nghiệm của hệ ban đầu. VD3 : Giải hệ phương trình:

7 1

7 8

x yy x xy

x xy y xy

Hướng dẫn giải: Điều kiện: , 0x y

Hệ:

( ) ( ) 7

( ) ( ) 7 8

x y x y

x y x y

Suy ra x y và xy là nghiệm của phương trình:

12

2

1313 137 78 0

6 366

x yt x yt t

t xyxy

Suy ra ,x y là nghiệm của phương trình:

1

112

2 2

2

494

13 36 09 9

4

xyu

u uu x

y

Vậy, hệ phưong trình có 2 cặp nghiệm (4,9),(9,4)

VD4: Giải hệ phương trình:

4

28222

yx

xyyx

Giải Điều kiện :x 0 ,y 0 Hệ đã cho tương đương với hệ:

164

16422 22

xyyx

xyyx

Page 41: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

41

4

22 22

yx

yxyx

4

222 2222

yx

xyyxyx

4

0)( 2

yx

yx

2x

yx x = y = 4

Vậy hệ có nghiệm là (4;4)

VD5: Cho hệ phương trình: 5 2

2 5

x y m

x y m

Hướng dẫn giải:

Điều kiện:

5 02 0 22 0 25 0

xy xx yy

Các vế của hệ phương trình không âm, bình phương hai vế ta được:

3 2 ( 5)( 2)

3 2 ( 2)( 5)

x y x y m

x y x y m

(1)

( 5)( 2) ( 2)( 5)x y x y x y Thay x=y vào (1):

22 3 2 ( 5)( 2) 2 3 10 3 2x x x m x x m x

22 2

33 2 0 2

6 494( 3 10) ( 3 2 )4

2311

11

mxm xm mx x m x x

mx

xx

(I)

a. Với m=49, (I) có dạng

2311

11x

xx

Vậy, với m=49 hệ có nghiệm x=y=11 b. Hệ có nghiệm duy nhất khi và chỉ khi:

Page 42: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

42

2

2

6 49 34 2 76 49 24

m m mm m

m mm

Vậy,với 7m hệ có nghiệm duy nhất. b.Phương pháp đặt ẩn phụ:

1.Phương pháp: Phương pháp được sử dụng nhiều nhất để giải các hệ chứa căn thức là việc sử dụng các ẩn phụ. Tuỳ theo dạng của hệ mà lựa chọn phép đặt ẩn thích hợp. B1: Đặt điều kiện cho các biểu thức trong hệ có nghĩa.

B2: Lựa chọn đặt ẩn để biến đổi hệ ban đầu về các hệ đại số đã biết cách giải (hệ đối xứng loại I, II và hệ đẵng cấp bậc 2)

B3: Giải hệ B4: Kết luận

2.Ví dụ: VD1: Giải hệ phương trình:

2 2 2 8 2

4

x y x y

x y

Hướng dẫn giải: Điều kiện:

00

xy

Đặt

S x y

P x y

, điều kiện , 0S P và 2 4 0S P

Khi đó hệ phương trình có dạng:

22

2 2 2 8 2

4

x y xy xy xy

x y

22 2

2

2 2

2 2 2 8 2

4

32 128 88 0

432 128 (8 )

S P P P

S

P PP

PP P P

Vậy ta được:

44

44 4

x ySx y

P xy

Page 43: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

43

Chú ý: Nhiều hệ ở dạng ban đầu chưa thấy sự xuất hiện ẩn phụ, trong trường hợp này ta cần sử dụng một vài phép biến đổi phù hợp. VD2: Giải hệ phương trình:

2 2

4

1 2 8

x y x y

x y

Hướng dẫn giải: Điều kiện:

0

00

x y y xx y x x

x y y x

Viết lại hệ phương trình dưới dạng:

2 2 2 2

4 41 1( ) ( ) 128 ( ) ( ) 2562 2

x y x y x y x y

x y x y x y x y

Đặt:

, , 0u x y

u vv x y

Ta được:

4 4

04 4

3 2( 3 2 )2 5 6

4

u vu v u v

u vu v u vu v

u v

4

3 2u vu v

(I) Hoặc

40

u vu v

(II)

Giải (I): vô nghiệm.

Giải (II): 44

800

80 0 84 4

x yux y

x yvx

u x y yv x y

Vậy hệ phương trình có 2 cặp nghiệm (8,8) (8,-8). Chú ý: Khi đặt điều kiện để các biểu thức của phương rình, bất phương trình và hẽ có nghĩa là ta suy ra được cho ẩn từ đó có thể dẫn tới việc lựa chọn ẩn phụ bằng phương pháp lượng giác hóa mà chúng ta đã biết. VD3: Giải hệ phương trình:

2

2

1 1

1 1

x y

y x

Hướng dẫn giải:

Page 44: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

44

Điều kiện: , 1x y Đặt:

sinsin

xy

với ,2 2

Biến đổi phương trình về dạng:

sin cos 1sin cos 1 sin cos 1

0sin cos 1 sin( ) 0

VD4: Giải hệ phương trình

35

30

yyxx

xyyx

Giải Điều kiện :x 0 ; y 0

Đặt

yv

xu ;

00

vu

.

Ta được hệ

35

30)(33 vuvuuv

Đặt S=u+v ,P=uv ta có:

353

303 PSS

SP

65

PS

Vậy u, v là nghiệm không âm của phương trình:

X2-5X+6=032

XX

23

32

vu

vu

Vậy hệ có nghiệm là

49

94

yx

yx

VD5: Giải hệ phương trình

6

)(3)(233

3 23 2

yx

xyyxyx

Giải Đặt u= 3 x ,v= 3 y ta có hệ

6)(3)(2 33

vuvuuvvu

6

)(3]3))[((2 2

vuvuuvuvvuvu

6

3)336(2vu

uvuv

6

8vu

uv

24

42

vu

vu

Page 45: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

45

a)Với

42

vu

ta có

4

23

3

y

x

648

yx

b)với

24

vu

ta có

864

2

43

3

yx

y

x

Vậy hệ có 2 nghiệm là ( 8; 64 ),( 64 ; 8 ) VD6: Giải và biện luận hệ:

1 1

1 2

m x y m

x m y

Hướng dẫn giải: Đặt:

1x u

y v

( , 0)u v

Khi đó hệ có dạng: 1

2m u v mux m v

Ta có:

2

2

11

1

1 12

2

11

1 2

u

v

mD m

mm

D m mm

m a mD m

a. Nếu 20 1 0 1D m m

Hệ có nghiệm duy nhất 21

mum

và 1

1v

m

Vì điều kiện , 0u v nên ta có :

2 01 1

1 01

mm m

m

Khi đó ta được:

2

2

2 321 ( 1)11 1

1 ( 1)

mm xx mm

y ym m

Page 46: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

46

b. Nếu 2 10 1 0

1m

D mm

Với 1 0u vm D D , hệ có vô số nghiệm thoả 1 2x y

Với 1 2 0um D , hệ vô nghiệm.

c.Phương pháp sử dụng hàm số: 1. Phương pháp:

B1: Đặt điều kiện cho các biểu thức trong hệ có nghĩa. B 2: từ hệ ban đầu chúng ta xáx định được một phương trình hẽ quả theo 1 ẩn hoặc 2 ẩn, giải phương trình này bằng phương pháp hàm số đã biết. B3: Giải hệ. B 4: Kết luận.

2.Ví dụ: Có lẽ phương pháp này chúng ta chưa được học đến nên chúng tôi chỉ đề cập sơ lược

qua để giới thiệu thêm cho một số bạn cần chuyên sâu về hệ phương trình vô tỉ. Sau đây chúng tôi sẽ đưa ra 1 ví dụ để làm rõ phương pháp trên. Đối với một số bạn

muốn tìm hiểu rõ về pp nay thì có thể đọc phần tự học ở cuối sách.

VD1:Giải hệ phương trình:

3

4

1 1

( 1)

x y x

x y

Hướng dẫn giải: Điều kiện:

1 0 10 0

x xy y

Biến đổi về hệ có dạng

3

2 3

2

1 11 ( 1) 1

( 1)

x y xx x x

x y

3 21 1x x x x (1) Xét hàm số ( ) 1f x x , là hàm số đồng biến trên 1,D

Xét hàm số 3 2( ) 1g x x x x Miền xác đĩnh 1,D Đạo hàm:

2'( ) 3 2 1 0,g x x x x D hàm số đồng biến trên D

Do đó phương trình (1): ( ) ( )f t g t Nếu có nghiệm thì nghiệmđó là duy nhất. x=1 thoả mãn phương trình x=1. y=0 là nghiệm hệ . d.Phương pháp sử dụng đố thị: 1. Phương pháp:

Page 47: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

47

B1: Bằng các phép biến đổi tương đương, hoặc bằng phép đặt ẩn phụ, ta biến đổi hệ

ban đầu về dạng đa thức, giả sử có hệ: ( , , ) 0( , , ) 0

f x y mg x y m

(I)

B2: Xét các đường 1( ) : ( , , ) 0C f x y m và 2( ) : ( , , ) 0C g x y m trên cùng một hệ trục toạ độ, từ đó xác định phần đường cong 1X và 2X thỏa mãn 1( ) : ( , , ) 0C f x y m và 2( ) : ( , , ) 0C g x y m . B3: Vận dụng các kiế thức về vị trí tương đối của các đối tượng ta tìm được giá trị của tham số thoả mãn điểu kiện K.

2.Ví dụ: e.Phương pháp sử dụng điều kiện cần và đủ: 1.Phương pháp:

Phương pháp điều kiện cần và đủ thường tỏ ra khá hiệu qua cho lớp dạng toán: Tìm điều kiện tham số để:

Dạng 1: Hệ phương trình có nghiệm duy nhất. Dạng 2: Hệ phương trình có nghiệm với mọi giá trị của tham số. Dạng 3: Hệ phương trình nghiệm đúng với mọi x D . Dạng 4: Hệ phương trình tương đương với một phương trình hoặc một bất phương trình khác.

Khi đó ta thực hiện theo các bước sau: B 1: Đặt điều kiện để các biểu thức của hệ phương trònh có nghĩa. B 2: Tìm điều kiện cần cho hệ dựa trên việc đánh giá hoặc tính đối xứng của hệ. B 3: KIểm tra điều kiện đủ, trong bước này cần có được một số kĩ năng cơ bản.

2.Ví dụ: VD1: Xác định các giá trị của a sao cho hệ sau có nghiệm duy nhất:

1 1

2 1x y a

x y a

(I)

Hướng dẫn giải: Điều kiện cần:

Giả sử hệ có nghiệm 0 0 0 0( , ) ( 2, 2)x y y x cũng là nghiệm của hệ phương trình. Vậy hệ có nghiệm duy nhất thì điều kiện cần là 0 0 2x y

Khi đó hệ (I) có dạng:

0 0 0

0 0 0

1 1 2 12(2 3) 1

2 2 1 2 2 3y y a y a

a ay y a y a

2

02 6

4 2a

aa a

Vậy 2 6a là điều kiện cần để hệ có nghiệm duy nhất. Điều kiện đủ:

Với 2 6a , hệ (I) có dạng: 1 1 2 6 1 1 2 6

2(2 6) 1 ( 1) ( 1) 5 2 6

x y x y

x y x y

Đặt:

Page 48: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

48

1

; , 01

u xu v

v y

Ta được:

2 2

2 62 65 2 65 2 6

2

u vu v

u v uv

Suy ra u,v là nghiệm phương trình:

20

1 2 6 2 6(2 6) (5 2 6) 02 2 2

t t t u v

2 6 6 4 612 4

2 6 14 4 612 4

x x

y y

là nghiệm duy nhất.

Vậy hệ phương trình có nghiệm duy nhất khi 2 6a . VD2:

Xác định các giá trị của a sao cho hệ sau có nghiệm với mọi b:

2 22 1 ( 1) 1

1 0x b a by x

ax by

(I)

Hướng dẫn giải Điều kiện cần: Hệ có nghiệm với mọi b có nghiệm với b=0, khi đó:

(I) 2 1 11 1

1 0 11 0

x xx xax aax

Vậy s=1 là dđều kiện cần để hệ có nghiệm với mọi b. Điều kiện đủ: Với a=1, hệ (I) có dạng:

22 2

2 2 2

1 012 1 1 2 1 ( 1)1 01 0

1 0

xx bx b x x b xx byx by

x by

2

2

10

x bb by

ít nhất một nghiệm là 2 1x b

y b

Vậy hệ phương trình có nghiệm với mọi b khi a=1. VD3: Xác định các giá trị của m để hệ sau có nghiệm:

2

2

1

1 2

x y m

y x m

(I)

Hướng dẫn giải: Điều kiện cần: Giả sử hệ có nghiệm 0, 0( )x y suy ra:

0

0

1

1

x

y

tồn tại hai góc 0

0

sin, ( , ) :

sin2 2xy

Page 49: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

49

Khi đó:

(I)3 1sin cos sin( ) 3 1

sin cos 2 sin( ) 31

mm mm

m m m

Vậy 13

m là điều kiện cần để hệ có nghiệm.

Điều kiện đủ:

Với 13

m

Đặt:

sinsin

xy

, với , ( , )2 2

.

Hệ (I) có dạng:

sin( ) 3sin( )

mm

0 01

03

0 0 0

2

2

m

u vuv u v

(*)

Điều này chứng tỏ hệ có nghiệm.

Vậy 13

m hệ có nghiệm.

f.Phương pháp đánh giá: Bằng cách đánh giá tinh tế dựa trên các tính chất của bất đẳng thức, ta có thể nhanh chóng chỉ ra được nghiệm của hệ.

VD1: Giải hệ phương trình:

4

4

1 1

1 1

x y

y x

Hướng dẫn giải:

Điều kiện: 11

xy

Với 11

xy

Hệ:4

4

1 1

1 1

x y

y x

Vậy hệ phương trình có nghiệm x=y=1 VD2: Giải hệ:

2 24

4

2 2 2 2 2

3 3

x x y y

x y

Hướng dẫn giải: Điều kiện:

Page 50: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

50

2

2

2 2 002 2 0

303 0

x xxy yyx

y

Mà: 22 2

2 2 24

2 2 12 2 ( 1) 1 12 2 ( 1) 1 1 2 2 1

x xx x xy y y y y

2 242 2 2 2 2x x y y Vậy (1) có nghiệm x=y=1 thỏa (2). VD3: Giải hệ:

2 2

2 2

2(1)

2(2)

x y y x

x y x y

Hướng dẫn giải: Xét (1), sử dụng bất đẵng thức Bunhiacôpxki: 2 2 2 22 (1 1)( ) 2x y y x x y y x Vậy (1) tương đương với:

2 2 2 2 ( )( 1) 01

x yx y y x x y y x y x y

y x

Với x=y, hệ có dạng:

2 2 2

1 522 1 0

x y x yx y

x x x x x x

Với 1y x , hệ có dạng:

2 2 2

1 1( 1) ( 1) 2 0

y x y xx x x x x x

0 1

1 0x xy y

Vậy, Hệ phương trình có 4 cặp nghiệm. Bài tập; Bài 1:

)2(12

)1(3

3

yxyx

yxyx

Hướng dẫn giải:

Đk:

yxyx

(1) ()( 6 yx 63 )yx

10)1()()()( 223

yxyx

yxyxyxyx.

Thay x=-y vào phương trình (2),ta được : y = -2 x = 2. Bài 2:

Page 51: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

51

35

30

yyxx

xyyx

Hướng dẫn giải

Điều kiện :x 0 ; y 0

Đặt

yv

xu

;

00

vu

.

Ta được hệ

3530)(

33 vuvuuv

Đặt S=u+v ,P=uv ta có: Tính S ,P rồi suy ra u,v.Tính x,y theo u,v ( so sánh với đk) Nghiệm của hệ: (4;9), (9;4) Bài 3:

6

)(3)(233

3 23 2

yx

xyyxyx

Hướng dẫn giải:

Đặt u=3 x ,v=

3 y ta có hệ

6)(3)(2 33

vuvuuvvu

Tính u,v rồi tính x,y theo u,v vứa tìm được.

Hệ có 2 nghiệm ( 8; 64 ),( 64 ; 8 )

Bài 4:

4

186222

zyx

zyxzyx

Hướng dẫn giải: từ pt (1)36=(x+y+z)2 suy ra xy+ yz +xz =9 từ pt(3)

2)(16 zyx suy ra xyz= 4 Ta có hệ mới :

49

6

xyzzxyzxy

zyx

Hệ có các nghiệm (1 ;4 ; 1 ); (1;1;4); (4;1;1) Bài 5:

144))(( 2222

2222

yxyx

yyxyx

Hướng dẫn giải: Điều kiện :

Page 52: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

52

0yyx

yx

Bình phương hai vế của pt (1)…

thay (2) vào (1) 22 242 yx (3)

thay (3) vào (2) ta được x y

Vây hệ có nghiệm )4;52();4;52();0;32();0:32( Bài 6:

0

123

yxyx

yxyx

Hướng dẫn giải:

Đk :

0230

yxyx

Đặt u= 0 yx

v= 023 yx ...x y Hpt đã cho tương đương với hệ:

052

122 uvu

vu

Giải hệ tìm u,v rồi suy ra x,y Hệ có nghiệm (1;3)

Bài 7:

5

5 5 8.

00

x y

x y

xdk

y

Hệ tương đương:

355

55

1355

.355

1355

yyxx

yyxx

yyxx

yyxx

Đặt)5,(

5

5

vu

yyv

xxu

.

Ta có hệ:

5311

13

vu

vu

23

24713

23

24713

23

24713

23

24713

.3

6513

v

u

v

u

uv

vu

Page 53: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

53

Hệ đã cho vô nghiệm vì ..5

23

24713

Bài 8:Giải hệ phương trình sau:

71312

722

yx

yxyx

.(1)

Đk:

022;31

;21

yxy

yxx

. Hệ

13.1222.

131222

722

49)13)(12(2232

.49)22)((2232

yxyxyx

xxyxyx

yxyx

yxyx

yxyxyx

(3)

Từ (3)hệ (1)

1222

13

722

1322

12

722

yyx

yyx

yxyx

yyx

xyx

yxyx

. trường hợp 1:

54

74312

1

722

1

yx

xy

xy

yxyx

xy

. trường hợp 2:

37

73413

12

yx

yy

yx

Bài 9:

212

221

yx

yx

(1) Giải:

Điều kiện: 2,1 yx

Page 54: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

54

Hệ (1)

0)22()11(

221

xyyx

yx

Ta thấy (x;y)=(-1;-1) và (x;y)=(2;2) không là nghiệm

hệ (1)

0211

221

xyxyx

yxyx

yx

2151

2151

2151

2151

027

4)2)(1(23

221

2

y

x

y

x

xx

yx

xx

yx

yx

yx

Hai nghiệm trên đếi không thỏa điều kiện. Vậy hệ đã cho vô nghiệm. Bài 10:

12124

yxyx

(1) Giải: điều kiện :x 0,0 y

hệ (1)

21

214

xy

xy

4)2

1(2

12

110

xx

xy

x

phương trình cuối

444

21)1(

21

xxx

. x=1 là nghiệm của phương trình trên . 0 1 x thì vế trái của (2’) lớn hơn 0 . Vậy hệ đã cho có nghiệm duy nhất (1;0).

Page 55: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

55

Bài 11:

1153551 44

yxyx

Đk:

551

y

x

. Đặt

0,5

0,514

4

vyv

uxu

.

Ta có hệ phương trình:

165151

151651

12

21

143

44 yx

yx

vu

vu

vuvu

11

043

yx

yx

Vậy hệ đã cho có hai nghiệm: ( 3; 4 ), ( 0 ; -11 ). Bài 12:

.12

2122

212

yxx

yyx

Đk:

221

y

x

. Đặt .1

1220

212

kxyk

yx

Ta có : 101221 2 kkk

kk

.

.321

2121

212

yxyx

yx

Ta có hệ:

75

1232

yx

yxyx

. Vậy hệ đã cho có nghiệm ( 5 ; 7 ). Bài 13: Giải hệ phương trình:

1992199119921...11

1992199319921...11

199221

199221

xxx

xxx

Đk: -1 Niixi ,1992,...,1;1 . Áp dụng bất đẳng thức Bunhiacôpxki,ta có: 1992

)....1992(1992

)1...1)(1...11()1...1(19921993

19921

199212

19921

xx

xxxx

Vậy 1... 199221 xxx .

Tương tự: 19922.2

19921 )1...1(19921991 xx

Page 56: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

56

Hệ đã cho đương:1992

1...1...

1...1.1...1.1...

.1...)]....(1992[1992

19921

19921

1

1

19921

19921

19921

xxxx

xxxx

xxxx

xx

n

n

Bài 14:

)1997,...,2,1(

2.19971996.19971998.1997

)1...1()1...1(

)1...1;1...1(

.21997

.2

.1997,...,2,1)1;1(

.1997199619971...11

1997199819971...111

1997

1

1997

1

1997

1

219971

219971

1997

1

1997119971

1997

1

1997

1

199721

1997321

iaaa

a

xxxxa

xxxxa

a

a

ixxa

xxx

xxxx

ii

ii

i

ii

ii

ii

ii

i

iii

chứng tỏ các véctơ có cùng phương ,cùng độ dài . Suy

ra: 199719981...11.... 199721199721 xxxxxx

Vậy hệ đã cho có nghiệm:.

19971... 199721 xxx

Bài 15:

4

221122 yx

yxxyyx

Đặt :

u (x;y), ).1;1(

xyv

Khi đó 222

yxu.

1.1.

.2211.. 22

xyyxvu

yxxyyxvu

Từ kết quả trên hệ đã cho có dạng:

Page 57: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

57

11

.1

1

2

1),cos(

.

2

xxyy

kyx

kxyvku

u

vu

vuvu

u

Do 1,1 yx nên bình phương hai vế, ta được:

0))(( 222323 yxyxyxxyxxyy Do yxyxyx 22

>0 nên y-x=0. Từ phương trình (2) của hệ ,ta có : + 242 2 xx

Do x > 0 nên nghiệm của hệ : x = y = 2 . Bài 16:

4221

121

xyy

xyx

.

Đặt 021;02;01 cybxyax

Hệ có dạng:

41

bcba

Mặt khác : 2222 cba .

Thay(1),(2) vào (3): .325013102 2222 bbbcba

Vậy nghiệm của hệ là : ( 24 )632;493 . Bài 17:

532

33103

yxyx

yxyx

Đặt .303

10102

33

yxvyxv

yxuyxu

Ta có : 77

.323

23 vuxxvu

vu

Mà 71033

232 vuvxy

(2) .

Thay x,y vào phương trình thứ hai của hệ: )3(357125 23 vvu . Với v=3-u,thay vào phương trình (3): .12012265125 23 vuuuu Vậy nghiệm của hệ : (1;2). Bài 18:

.80

53153122 yxyx

yyyxxx

Page 58: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

58

Đk: .5;1 yx

Đặt

byax

33

; Thay vào phương trình (1) của hệ ,ta được: 2222 bbbaaa .

Do đó dễ dàng nhận thấy 633 xyyxba . Thay vào phương trình thứ hai của hệ,ta được phương trình bậc hai theo x.

2555

2155701972

yxxxVậy hệ phương trình có

nghiệm:

2

555;2

557

. Bài 19:Giải hệ:

3

7

2164yxyx

yxyx

Giải: Đặt x-y = a ; x+y = b .

ĐK:

00

ba

yx

.Ta được hệ:

.26

84

40)2164(

)2164()2164(49

4

69

23

23

yx

yxyx

aaa

a

ba

ab

ba

Bài 20:

.4121

.212

2

xyyzx

xyz

Giải :Ta co

41112 2 xyzxy

.

Mà xy41 tồn tại khi và chỉ khi :

41041 xyxy

. Do đó ta có hệ:

41

41

0121

.21

4121

2141

2

2

2

2

xy

xy

x

z

xyyzx

xyz

xy

Page 59: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

59

Do đó ta có:

41

10

0111

41

41

0121.21

4121

.2141

2

2

2

2

2

2

y

xz

xz

xy

xy

x

z

xyyzx

xyz

xy

Nghiệm của hệ:

)0;41;1(),0;

41;1(

.

Bài 21:

bxyyx

ayxxy

)1()1(

)1)(1(

.

Giải : Đặt .)1)(1(;0 yxvxyu .)(12 xyyxu

Bình phương phương trình thứ hai của hệ: .1)( 22 bvu Do đó ,ta có hệ:

22 1)( bvu

avu

.

Suy ra

21 bvu

2

22

2

22

2

2

21

211

21

2121

babayx

baxy

bav

bau

Do đó x,y là nghiệm của pt:

.021)11(

22

22

baXbaXTừ đó suy ra x,y.

Bài 22:

)2.(55

)1(3322

2

xxy

yx

.

Tacó: 330;33 22 yxyx .

Suy ra

00

yx

.Thay vào (2),ta thấy thoả.

Page 60: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

60

Vậy nghiệm của hệ là : (0;0). Bài 23:

).221()(11

)21(2322422

422242

xyxxxyx

yxxyxyx

Hệ đã cho

).2.(221)(1

)1.(2)1(4234262

42422

yxxxxyx

xxyyx

Cộng (1) và (2) theo từng vế ,ta được :

)3.(1)()(1)1(4

12)(1)1(4223222

4236222

yxyxyx

yyxxyxyx

Ta thấy:

21)()(1

2)1(42232

22

yxyx

yx

Nên (3) xảy ra

101

11)(

1)(1

.2)1(4

23

2

223

2

22

yxyx

yxyx

yx

yx

yx

Bài 24:Giải hệ:

.121

12122

22

xxy

yyx

. Đk: .1;1 yx Từ hệta suy ra:

yxyxyxyx

yxyx

yxyxyx

yxyx

yxyxyxyxyx

xxyyyx

011

12121

)(

0))((112121

))((0112121

112121

22

22

2222

2222

Vậy hệ đã cho tương đương

với:

)1.(121 22 xxx

yx

).2)(2(1

2

521

4.411521)1(

2

222

xx

x

x

x

xxxx

.20

52111)2(

111)2(

2

x

xx

xx

Vậy hệ có nghiệm x=y=2. Bài 25

Page 61: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

61

2)1)(1(111 22

yxxyyx

. ĐK: .1;1 yx Đặt x = cost ; y = cosz với .1;0 zt Hệ đã cho trở thành:

2)cos1)(cos1(1)sin(

2)cos1)(cos1(1sin.cossin.cos

ztzt

zttzzt

2cos.sinsincos12

tttt

zt

Đặt :

).4

sin(2cossin tttw

Ta co

.2

1cos.sin2wtt

Thay vào phương trình thứ hai của hệ , giải ra ta được : w=1(loại nghiệm w=-3).

Kết hợp với điều kiện:0;

20

2 zttzt

. Vậy nghiệm là (0;1). Bài 26:

)2.(1

)1.(1

22

22

22

22

byx

yxxy

ayx

yxyx

.

Đk: 01 22 yx . Cộng (1),(2) và trừ (1),(2) theo từng vế,ta được:

)4).((1)1)((

)3).((1)1)((2222

2222

bayxyxyx

bayxyxyx

(3).(4):

)5.(

))(1()1)((2222

222222222222

bayx

bayxbayxyxyx

Thay (5) vào (3):

.1

.1

11)(

1

1)(

22

22

22

22

22

22

22

22

babaaby

bababax

bababayx

bababayx

Bài 27:

Page 62: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

62

.752

)1.(725

yx

yx

Từ hệ suy ra yxyxyxyxyx )5)(2()2)(5(5225 .

Thay vào (1): 725 xx .

Đặt .2;5 xbxa Ta có hệ:

.11417

77

22

xa

baba

baba

Vậy hệ có nghiệm (11 ;11). Bài 28:

.111

133

33

yx

yx

Từ hệ trên.

1)1)(1()11()1)(1(3)(311 3333333

xyyxxyyxyxyxxyyxyx

. Thay vào pt(1):

.1

01133

yx

xx

Bài 29:

)2.(1

)1.(3

xyz

xz

zy

yx

Từ (1)suy ra :x,y ,z cùng dấu và từ (2) suy ra x,y,z > 0 . Bất đẳng thức Cô si cho ba số dương ,ta có:

.33 xz

zy

yx

xz

zy

yx

Do đó x = y = z.

Thay vào (2): .113 xx Vậy nghiệm của hệ: (1;1;1). Bài 30::

).3.(1

).2.(1

).1.(1

xz

zy

yx

Từ (1) ,01 yx tương tự y > 0; z > 0.Vai trò x,y,z bình đẳng như nhau , Do đó giả sử ).4.(0 zyx

Từ (3) xz 1 .

Page 63: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

63

Ta có xyxz 11 . Vậy ).5.(xz Từ (4),(5),ta có: x = y = z .

Do đó hệ đã cho trở thành phương trình:.

251011

xxxxx

Nên .

251

2

x

Vậy nghiệm của hệ :.;

4526;

4526;

4526

Bài 31:

4 4

4 4

57 40 5

: 57 ; 40

x x

dat u x v x

, Ta có hệ sau :

224 4 2 2

4

5597 2 2 97

5

2 100 528 0

55

66

44

23 41

2432

u vu vu v u v uv u v

u v

uv uv

u vu v

uvuv

uv

uv x

xuv

(uv=44 loại) Bài 32: Giải phương trình :

3 3

3 3

(34 ) 1 ( 1) 3434 1

x x x xx x

Điều kiện để hệ phương trình có nghĩa là :

3 334 1 0x x <=> 34x x+1 <=>x

332 (1)

Với điều kiện (1) , ta đặt u= 3 34 x ;v=

3 1x . Ta sẽ đưa phương trình sau về hệ ẩn u, v, rồi giải hệ suy x Khi đó ta có hệ sau :

3 33 3

3 3

3535

( ) 303

u v u vu v v u uv u vu

u v

Page 64: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

64

<=>

3 5( ) 3 ( ) 356( ) 30

u vu v uv u vuvuv u v

<=>

32

uv

hoặc

23

uv

<=>

34 271 8

xx

hoặc

34 81 27

xx

<=> x=7hoặc x=26

Bài 33:

2217 3x x

Giải

Đặt u= x ; v=3- x , khi đó đưa phương trình đã cho về hệ sau :

<=> 2 2

3

17

u v

u v

<=>4 4

3

17

u vu v

Vậy hệ có nghiệm u=2 , v=1 hoặc u=1 , v=2

<=>

2

3 1

x

x

hoặc

3 2

1

x

x

<=> x=4 hoặc x=1 Vậy phương trình đã cho có hai nghiệm x1=4 hoặc x2=1 Đây là 2 ví dụ về pp giải phương trình bằng cách đưa về hệ phương trình . Bài 34:

)2(12

)1(3

3

yxyx

yxyx

Đk:

yxyx

(1) ()( 6 yx 63 )yx

10)1()()()( 223

yxyx

yxyxyxyx.

Thay x=-y vào phương trình (2),ta được : y = -2 x = 2. Bài 35:

35

30

yyxx

xyyx

Giải: Điều kiện :x 0 ; y 0 Đặt

yv

xu

;

00

vu

. Ta được hệ

Page 65: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

65

35

30)(33 vuvuuv

Đặt S=u+v ,P=uv ta có:

353

303 PSS

SP

65

PS

Vậy u,v là các nghiệm không âm của pt:

X2-5X+6=0 32

XX

23

32

vu

vu

từ đó hệ có 2 nghiệm

49

94

yx

yx

Bài 36:

6

)(3)(233

3 23 2

yx

xyyxyx

Giải:

Đặt u=3 x ,v=

3 y ta có hệ

6)(3)(2 33

vuvuuvvu

6

)(3]3))[((2 2

vuvuuvuvvuvu

6

3)336(2vu

uvuv

6

8vu

uv

24

42

vu

vu

a)với

42

vu

ta có

4

23

3

y

x

648

yx

b)với

24

vu

ta có

864

2

43

3

yx

y

x

Vậy hệ có 2 nghiệm ( 8; 64 ),( 64 ; 8 ) BÀI 37:

1153551 44

yxyx

Đk:

Page 66: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

66

551

y

x

. Đặt

0,5

0,514

4

vyv

uxu

. Ta có hệ phương trình:

165151

151651

12

21

143

44 yx

yx

vu

vu

vuvu

11

043

yx

yx

Vậy hệ đã cho có hai nghiệm: ( 3; 4 ), ( 0 ; -11 ). BÀI 38:

532

33103

yxyx

yxyx

Đặt .303

10102

33

yxvyxv

yxuyxu

Ta có

77

.323

23 vuxxvu

vu

71033

232 vuvxy

(2) . Thay x,y vào phương trình thứ hai của hệ:

)3(357125 23 vvu . Với v=3-u,thay vào phương trình (3):

.12012265125 23 vuuuu BÀI 39:

).221()(11

)21(2322422

422242

xyxxxyx

yxxyxyx

Hệ đã cho

).2.(221)(1

)1.(2)1(4234262

42422

yxxxxyx

xxyyx

Cộng (1) và (2) theo từng vế ,ta được :

)3.(1)()(1)1(4

12)(1)1(4223222

4236222

yxyxyx

yyxxyxyx

Ta thấy:

21)()(1

2)1(42232

22

yxyx

yx

Page 67: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

67

Nên (3) xảy ra

101

11)(

1)(1

.2)1(4

23

2

223

2

22

yxyx

yxyx

yx

yx

yx

Bài 40: Định M để các hệ phương trình sau có nghiệm:

a) 4 1 43

x yx y m

b) 1 23

x y mx y m

Giải:

a) Ta có:

4 1 43

x yx y m

22 2

4; y 14; y 14; y 14 04 04 01 01 01 0444

21 33 5 2 3 52

xxxu xu xu xv yv yv y

u vu vu vmu v m uvu v uv m

Do đó u, v là nghiêm khong âm của hai phương trình: 2 21 34 0 (*)

2mX X

Hệ phương trình đã cho có nghiệm khi va chỉ khi phương trình (*) có 2 nhgiệm không âm. Điều này xảy ra khi và chỉ khi:

21 34 02' 0

21 30 02

0 4 0

m

mPS

3 13 0 13 721 3 0 7m

mm

b) Tương tự: 3 21 3 212 2

m

Bài 41:Giải hệ phương trình:

a)5613

x y xy

x y

b) 2 2

1484

x y xyx y xy

c)

2 2 2 8 2

4

x y xy

x y

Page 68: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

68

d) 2 23 3

3 3

2( ) 3( )

6

x y x y xy

x y

HD : Tìm điều kiện cua x, y để căn có nghĩa:

a) KQ:4 9

; 9 4

x xy y

b) KQ: 8 2

; 2 8

x xy y

c) Biến đổi tương đương: KQ: 4;4 Bài 42:Giải hệ phương trình:

a)2 2

2 2

x y

x y

b)

1 7 4

1 7 4

x y

y x

c)2 2

2 2

1 1 18 (1)

1 1 2 (2)

x x y x y x y y

x x y x y x y y

c)

2 2 7

2 1 3 1 7

x y x y

x y

HD: Đặt điều kiện để căn có nghĩa:

a) Chuyển vế rồi bình phương. KQ: (0 ; 0); (2 ; 2) b) Bình phương 2 vế của cả hai phương trinh. KQ (8 ; 8) c) Công 2 vế phương trình (1) và (2) . KQ (4 ; 4) d) Bình phương 2 vế của cả hai phương trinh. KQ (4 ; 5); (7 ; 3)

Bài 43:Giải hệ phương trình: 2 2 2

6 (1)18 (2)

4 (3)

x y zx y z

x y z

HD : Bình phương (1) sau đó bình phương (3), sử dụng phương trình (2) suy ra được: 6

94

x y zxy xz yz

xyz

Giải hệ vừa tìm đươc: 1;1;4 ; 1; 4;1 ; 4;1;1

Bài 44:Giải hệ phương trình:1 7 4 (1)

1 7 4 (2)

x y

y x

HD: Đặt điều kiên cho căn có nghĩa: 1 7; 1 7x y . Hai phương trình bằng nhau nên: 1 7x x = 1 7y y (1)

Để hàm số f(x)= 1 7x x đồng biến trên đoạn 1;7 nên từ (1) suy ra x = y.Vậy hệ phương trình

trở thành 1 7x x =4 Áp dụng bất đẳng thức Bunhiacopxki ta có: 1 7x x 4 Dấu bằng xảy ra khi: x + 1 = 7 – x hay x = 3 Vậy nghiệm của hệ là: (3 ; 3)

Bài 45:Giải hệ phương trình:4

4

1 1 (1)

1 1 (2)

x y

y x

Page 69: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

69

HD: Để căn thức có nghĩa thì 1; y 1x . Khi đó 4 1 1 x y , dấu bằng xảy ra khi và chỉ khi x = y = 1

Thử lại ta thấy x = y = 1 là nghiệm của hệ đã cho. Vậy nghiệm của hệ là: (1 ; 1)

Bài 46:Giải hệ phương trình:2

1

x y x y

y x y x

HD: Bình phương 2 vế phương trình 2 lần. KQ: 17 5;12 3

Bài 47:Giải hệ phương trình:

3

3

1

x y zy z x

y z xx y z

xyz

HD Ap dụng bất đẳng thức Cauchy. Ta có: x = y = z = 1 Bài 48/Định m để các hệ sau có nghiệm duy nhất:

a/1 1

1 1

x y m

x y m

Đáp số : m=-1

b/2

2

2

2

x y m

y x m

Đáp số : m= 2

Page 70: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

70

myx

xy2)2( 2

240m

m2y1x

4y2x

mxx

xy2)24(2 2

240m

mx

xy2)85( 2

240m

)1(0264802

25)(

24 0m

mxxxf

xy

01116252x-4y

xx

5

11x

1x2x -4y

5

2y&

5

11x

2y & 1x

)52,

511(

E. HỆ PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI:

ể giải bài toán về hệ chứa dấu giá trị tuyệt đối có rất nhiều phương pháp và những phương pháp mà chúng tôi đưa ra chỉ là một số phương pháp đặt trưng.

Thông thường khi gặp dạng toán này chúng ta có thể đặt điều kiện cho hệ có nghĩa( nếu cần), sau đó ta lựa chọn phương pháp giải phù hợp và tối ưu nhất.

.Phương pháp biến đối tương đương.

Bước 1: Đặt điều kiện cho các biểu thức trong hệ có nghĩa.

Bước 2: Sử dụng các phép thế để nhận được từ hệ một phương trình theo ẩn x hoặc y (đôi khi có thể là theo cả hai ẩn x, y).

Bước 3: Giải phương trình nhận được bằng các phương pháp đã biết đối với phương trình chứa căn thức.

Bước 4: Kết luận về nghiệm cho hệ phương trình.

VD1: Cho hệ phương trình:

a. Giải hệ phương trình với m = 3.

b. Tìm m để hệ có hai nghiệm với hoành độ trái dấu.

Giải

Biến đổi tương đương hệ về dạng:

(I)

a. Với m=3, ta được :

ĐI

Page 71: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

71

0m

0byax)1(222 xyxx

1a

baxx

xx

baxyx

x

1

222

1

22x 2y

1x

)2(02)2(2)1()(0x1

)()1(02)2(2)1()(10

bxbaxaxg

Ibxbaxaxfx

310

y&32

x2y&2x

2y&0x

32

x2x

0x

02x3x 20x1

02xx 21x0

01).g(0)(a

01).f(0)-(a

Vậy, với m=3 hệ có nghiệm (1,2) và

b. Để hệ có hai nghiệm với hoành độ trái dấu

(1) có hai nghiệm trái dấu

a.f(0) < 0 64-m2 < 0 m>8.

Vậy, với m>8 thoả mãn điều kiện đầu bài.

Ví dụ 2: Cho hệ phương trình:

a. Giải hệ phương trình với a=-b=2.

b. CMR nếu hệ sau luôn có nghiệm với mọi b

Giải

Nhận xét rằng không là nghiệm của hệ.

(I)

a. Với a=-b=2, ta được :

Vậy, với a=-b=2 hệ có 3 cặp nghiệm.

b. Ta có :

(a-1).f(0) = (a-1)(-b-2),

(a+1).g(0) = (a+1)(b+2),

=> (a-1).f(0).(a+1).g(0) = (a2-1)(-b-2)(b+2)

= -(a2-1)(b+2)2 ≤ 0, với |a| > 1.

Page 72: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

72

)(52x3

4m21)y-(mmxI

my

m422

3x-5-m1).-(mmx

5m2y3x

4m21)y-(mmx(I)

3487

487m0

m-3114m2

0m-3

mm

4m22

3x5m1).(mmx

5m2y3x

4m21)y-(mmx

53

m487

487m

035m

114mm 2

03-5m

(2)

)1(487m

487m

hệ (I) luôn có nghiệm với mọi b.

Vậy, với |a| >1 hệ luôn có nghiệm với mọi b.

Ví dụ 3 : Tìm m để hệ sau có nghiệm duy nhất :

Giải

a. Với x ≥ 0, ta được :

2mx + (m-1)(m-5)-3x(m-1) = 4+8m

(3-m)x = -m2+14m-1

Khi đó (I) có duy nhất nghiệm không âm

b. Với x<0, ta được :

2mx+(m-1)(m-5)+3x(m-1) = 4+8m

(5m-3)x= -m2+14m-1 (2)

Khi đó (2) có duy nhất nghiệm âm

Vậy hệ có nghiệm duy nhất

Có nghiệm duy nhất x ≥ 0 và (2) vô nghiệm

Có nghiệm duy nhất x < 0 và (1) vô nghiệm

Page 73: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

73

)2(2

(1)1y 2x 2

3333 yxyxyx

(4)0yx&03y3x

(3)0yx&03y3x

0y)3)(xy(3x

3)y(3x3)3y(x3y3x33yx

1yx

0x

33y--5x3-3yx

3-3y5x3-3yx

033y5x3-3yx

y)2(x3)y(3x33yx(2)

1y&0x

1y&0x

0x

1y2

0x

1y2

x2

(I)

0y&1x

1y&0x

0xy

1

1yx

1y2

x2

(I)yx

(1)1yx

0x

33y--5x3-3yx

3-3y5x3-3yx

033y-5x3-3yx

y)2(x3)y(3x33yx(2)

1y&0x

(1)1y&0x

0x

1y2

0x

1y2

x2

(I)

Vậy với hệ có nghiệm duy nhất.

Ví dụ 4 : Giải hệ phương trình :

Giải

Biến đổi (2) về dạng :

a. Với (3)

. Với x=0

. Với x+y = 1

b. Với (4)

. Với x=0

Page 74: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

74

(2)m3

y3

x3

)1(y-x myx

0y

0x 0 )y x(xy

0m

0y

0m

0x

21ym1x

1m1y1xm

Vậy hệ có ba cặp nghiệm : (0,1),(1,0),(0,-1)

Ví dụ 5 : Giải và biện luận hệ phương trình sau theo tham số m :

Giải

Nhận xét rằng :

. Nếu xy ≥ 0 thì |x+y|= |x| + |y|.

. Nếu xy ≤ 0 thì |x-y|= |x| + |y|.

Do đó, từ (1) ta có :

m ≥ |x| + |y|

=> x3+|y|3 = m3 ≥ (|x| + |y|)3= |x|3 +|y|3 + 3|xy|(|x| + |y|)

Mặt khác x3 ≤ |x|3, nên ta có :

. Với x=0, thay vào (1) và (2), ta được :

. Với y=0, thay vào (1) và (2), ta được :

Vậy, nếu hệ có nghiệm thì m=0 và từ đó chỉ có một nghiệm x=y=0.

Kết luận :

- Với m ≠ 0 hệ vô nghiệm.

- Với m =0 hệ có nghiệm x=y=0.

II. Phương pháp đặt ẩn phụ:

Đây có thể xem là phương pháp được sử dụng nhiều nhất trong việc giải hệ phương trình loại này. Và nhớ nên chọn ẩn phụ cho phù hợp.

Bước 1 : Đặt điều kiện cho các biểu thức trong hệ có nghĩa.

Bước 2 : Lựa chọn ẩn phụ để biến đổi hệ ban đầu về các hệ đại số đã biết cách giải (hệ đối xứng loại I, loại II và hệ đẳng cấp bậc 2).

Bước 3 : Giải hệ nhận được.

Bước 4 : Kết luận về nghiệm cho hệ.

Ví dụ 1 : Giải và biện luận hệ phương trình :

Page 75: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

75

0vu,,v1y

1x

u

2mvux

1mvmu

1m

2mu

1m

1v

1m

01mm

1

01m

2m

1m1

1y1,2

1m2m

1x1,2

1m

11y

1m

2m1x

21y1x

),y 2,x 2(),y 1,x 2(),y 2,x 1(),y 1,x 1( 21y1x

mxx2

y

myy2

x

Giải

Đặt

Khi đó hệ (II) có dạng :

Ta có :

D=m2-1, Du=m2+m-2, Dv=m-1.

a. Nếu D≠0 m2-1≠0 M m≠ ± 1

. Hệ có nghiệm duy ,

. Vì điều kiện u,v ≥ 0 , nên ta phải có :

. Khi đó ta được :

b. Nếu D=0 m2-1=0 m=±1

. Với m=1, suy ra Du = Dv= 0, hệ có vô số nghiệm thoả

. Với m=-1, suy ra Du=-2 ≠ 0 , hệ vô nghiệm.

Kết luận :

- Với m>-1, hệ phương trình có 4 cặp nghiệm :

- Với m=1, hệ phương trình có vô số nghiệm thoả mãn

- Với m=-1, hệ phương trình vô nghiệm.

Ví dụ 2 : Cho hệ phương trình :

Page 76: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

76

x

y

v

u

muu 2v

mvv 2u

(1)0 mu2u 2f(x)

vu

2vu

0vu

2u

0u

vu

0 2uu 2

vu

2&2

2&2

2&2

2&2

0

2

0

yx

yx

yx

yx

yx

yx

yx

1m

01

0m

0m1

0m

02S

0a.f(0)

0Δ '

0a.f(0)

u 2u10

u 20u1

a. Giải hệ phương trình với m=0

b. Tìm m để hệ phương trình có nghiệm.

Giải

Đặt :

, điều kiện u,v ≥ 0

Hệ được biến đổi về dạng :

Trừ từng vế hệ phương trình, ta được :

u-v=-(u2-v2)+(u-v) u2-v2=0 u=v

Khi đó hệ phương trình tương đương với :

a. Với m=0, ta được

Vậy, với m= 0 hệ có 5 cặp nghiệm là

(0,0),(2,2),(2,-2),(-2,2) và (-2,-2)

b. Hệ có nghiệm khi và chỉ khi

(1) có ít nhất một nghiệm không âm

Page 77: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

77

22232 2

222.32 12

xyy

yxx

2yu

1yu

023uu2

yu

2u2

3u2u2

yu

2y

1x

1y

0x

2y

22x

1y

12x

01uu2

u-1y

2u)-(12

3u2u2

1 uy

u1y

yu01)yy)(u3(u

)y2u 2(v)3(u)y2u 22(2u

23y2y

2

2y2

3u2u2

Vậy, hệ có nghiệm khi m≤1.

Ví dụ 3 : Giải hệ phương trình :

Giải

Đặt u = 2|x|, điều kiện u ≥ 1.

Hệ có dạng :

Với u=v, hệ phương trình tương đương với :

. Với y=1-u, hệ phương trình tương đương với :

Vô nghiệm

Vậy, hệ có ba cặp nghiệm là (0,1),(1,2) và (-1,2).

III. Phương pháp hàm số:

Ta thực hiện theo các bước sau :

Bước 1 : Đặt điều kiện cho các biểu thức trong hệ có nghĩa.

Page 78: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

78

(2)ysinxsinyx

(1)0m5xxy2x 2

cost1

cost1(t)f

0t0,(t)f

)3(0523)(05222

yx

mxxxg

yx

mxxx

32

yx

1yx

32

x

1x

yx

025x3x 2

yx

)32

,32

(

Bước 2 : Từ hệ ban đầu chúng ta xác định được một phương trình hệ quả theo 1 ẩn hoặc cả hai ẩn, giải phương trình này bằng phương pháp hàm số đã biết.

Bước 3 : Giải hệ mới nhận được.

Ví dụ 1 : Cho hệ phương trình :

a. Giải hệ phương trình với m=2.

b. Tìm m để hệ có hai nghiệm với tung độ trái dấu.

Giải

Biến đổi (2) về dạng :

x-sin|x|=y - sin|y|.

Xét hàm số

f(t) = t-sin|t|

. Miền xác định D=R

. Đạo hàm :

( nếu t > 0)

( nếu t < 0)

. hàm số đồng biến.

Suy ra (3) tương đương với :

Khi đó, hệ được chuyển về dạng :

a. Với m=2, ta được :

Vậy, với m=2 hệ có hai cặp nghiệm (1,1) và

b. Để hệ có hai nghiệm với tung độ trái dấu

Page 79: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

79

t1

tf(t)

)2()22(yx1y)(x 21)-(y

(1)52x 2

yy

y

)3(1)1( 21y)(x 21)-(y(2) yyx

(4)1y

11y

yx

1yx

1y

11)(y2

yx

1y)(x2

(3)

Dt0,t 21

1f(t)

01yyx

01yyx1)f(y)yxf((4)

2y1x

1x

1y

1yyx

1yyx

01y

1yyx

2

1

1

42

1

522(I)

y

x

x

y

x

yx

(3) có hai nghiệm trái dấu

a.g(0) <0 m<0

Vậy, với m<0 thoả mãn điều kiện đầu bài.

Ví dụ 2 : Giải hệ phương trình :

Giải

Biến đổi (2) về dạng :

a. Với y=1, ta được :

(3) 0=-|x+1| x=-1 không thoả mãn (1).

b. Với x+y=0, ta được :

(3) 1-y=0 y=1 => x=-1 không thoả mãn (1).

c. Với x+y ≠ 0 và y-1 ≠ 0, ta được :

Xét hàm số

- Miền xác định D=R\{0}

- Đạo hàm :

hàm số luôn đồng biến trên D

Khi đó :

Với x=-1

Page 80: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

80

2y1x

044y5y 2

2y1x

5y22y)(1 2

2y1x

5y2x 2(I)

5242

y

52421

x

2y1x5

242y

)5

2421,

52421

(

1y2

x1yaax

2

2a0a

1y2

1ya

Với x=1-2y

Vậy hệ phương trình có 2 cặp nghiệm: (-1,2) và

VI. Điều kiện cần và đủ.

Phương pháp điều kiện cần và đủ thường tỏ ra khá hiệu quả cho lớp dạng toán ‘‘Tìm điều kiện tham số để’’ :

Dạng 1 : Hệ phương trình có nghiệm duy nhất.

Dạng 2 : Hệ phương trình có nghiệm với mọi giá trị của một tham số.

Dạng 3 : Hệ phương trình đúng với moị giá trị x € D.

Dạng 4 : Hệ phương trình tương đương với một phương trình hoặc một bất phương trình khác.

Khi đó ta thực hiện theo các bước :

Bước 1 : Đặt điều kiện để các biểu thức của hệ phương trình có nghĩa.

Bước 2 : Tìm điều kiện cần cho hệ dựa trên việc đánh giá hoặc tính đối xứng của hệ.

Bước 3 : Kiểm tra điều kiện đủ, trong bước này cần có được một số kỹ năng cơ bản.

Ví dụ 1 : Tìm a để hệ sau có nghiệm duy nhất :

Giải

Điều kiện cần : Nhận xét rằng : nếu hệ có nghiệm (xo,yo) thì (-xo,yo) cũng là nghiệm của hệ.

Do đó hệ có nghiệm duy nhất thì : xo=-xo xo=0

Với xo=0 ta suy ra :

Page 81: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

81

1y

1x

1yx2

01y

(II)(2)y1x

2(1)1-y2x 2

1y

0x0x

21y

0x

(I)m 2yx

2

1)(mxy2y

2x

(II))2(m 2y

(1)y2y

1

0VP (1)

0VT (1)

Điều kiện đủ :

. Với a=0, hệ có dạng :

Do đó a=0 không thoả mãn.

. Với a=2, hệ có dạng :

Từ (1) => y ≥ 1

Từ (2) => -1 ≤ y ≤ 1

Vậy hệ (II) tương đương với

Là nghiệm duy nhất

Vậy với a=2 hệ có nghiệm duy nhất

Ví dụ 2: Tìm m để hệ sau có nghiệm duy nhất:

Giải

Điều kiện cần: Nhận xét rằng nếu hệ có nghiệm (xo,yo) suy ra (-xo,yo)

cũng là nghiệm.

Vậy để hệ có nghiệm duy nhất thì xo =- x0 xo=0

Khi đó :

Từ (2) => y ≥ 0 2y ≥ 1, khi đó :

Page 82: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

82

0yx0yx

2

yx

)4(02

)3(22

0yx2

xy2y

2x

yx

yyxx

0mm

2y

0y

(I)1y

2xtg

2

sinxy1aax2

2a

0a

1y20

y 01-a(I)

1y2

xtg2

sinxy1

Vậy hệ (II) tương đương với :

Đó chính là điều kiện cần để hệ nghiệm duy nhất

Điều kiện đủ : Giả sử m=0, khi đó hệ có dạng :

. Giải(3)

Xét hàm số f(t)=2t+t đồng biến trên R.

Vậy, phương trình (3) được viết dưới dạng :

f(|x|) = f(|y|) |x| = y

Khi đó hệ có dạng :

Là nghiệm duy nhất của hệ

Vậy với m=0 hệ có nghiệm duy nhất.

Ví dụ 3 : Tìm a để hệ phương trình có nghiệm duy nhất.

Giải

Điều kiện cần : Nhận xét rằng nếu hệ có nghiệm (xo,yo) thì cũng có nghiệm (-xo,yo). Khi đó để hệ có nghiệm duy nhất là :

xo=-xo x0=0 (*)

Với x0=0, ta được :

Điều kiện đủ : a. Với a=0 hệ có dạng

Page 83: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

83

Zk,1y

k πx

(2)1y2

xtg2

)1(sinxy12x 2

1y

0x

1xtg 2

sinxx 22

1y

(I)(2)2yxyx

(1)1y 4x 4

(4)0yx&0yx

(3)0yx&0yx0y)y)(x(x

1y)y)(x)(xy 2x 2(1)y 2x 2)(y 2x 2(

hệ có vô số nghiệm dạng :

Vậy a=0 không thoả mãn

b. Với a=2 hệ có dạng :

Từ (1) ta có : y ≥ 1 và từ (2) ta có :

-1 ≤ y ≤ 1 => y=1

Vậy, hệ có dạng :

Là nghiệm duy nhất của hệ.

Vậy, với a=2 hệ có nghiệm duy nhất.

V. Phương pháp đánh giá :

Bằng cách đánh giá tinh tế dựa trên các tính chất của bất đẳng thức, ta có thể nhanh chóng chỉ ra được nghiệm của hệ.

Ví dụ 1 : Giải hệ phương trình :

Giải Biến đổi (I)về dạng :

Page 84: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

84

0y

1x

1x

0y 4

2yxyx

1y 4x 4(I)

0y

1x

1x

0y 4

2yx-yx-

1y 4x 4(I)

(I)(2)1xy

(1)2yxyx

44xy)y2

x2

2(y2

x2

2)y2

x2

2(

y2

x2

2y)(x2

y)(x2

4(1)

1yx

1yx

1xy

yx

0y 2x 22

a. Với (3) b. Với (4) Vậy hệ có 2 cặp nghiệm (1,0) và (-1,0) Ví dụ 2 : Giải hệ phương trình :

Giải Biến đổi (1) về dạng : Vậy hệ tương đương với : Vậy hệ có 2 cặp nghiệm (1,1) và (-1,-1)

Ví dụ 3 : Giải hệ phương trình sau: 2 22 3 0 (1 )

2 (2 )

x xy yx x y y

Giải: (1) được xem là phương trình bậc hai theo x và có biệt số 2 2 2' 3 4y y y nên

(1)3

x yx y

Do đó hệ phương trình trở thành:

Page 85: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

85

2

33 3 2

132 223 1

8 2 2

x yy y x x

x yy y y y

x yx yy y xx y

yy y

Vậy x = y = -1 hay

32

12

x

y

Bài tập củng cố:

1) Giải hệ phương trình:1 1 3 0

2 2 3 0

x y

x y

2) Giải hệ phương trình:2 22 3 0

2x xy yx x y y

3) Giải hệ phương trình:

2 2 8219

1 10 10 13 3

x y

x x y yy y

4) Định m để hệ sau có nghiệm:2 2 4

x y x y m

x y m

5) Định m để hệ sau có đúng 8 nghiệm phân biệt:2 2

2 1x y

x y a

6) Định a để hệ có nghiệm:2

4

2 2 2 0

x y

x y x y a

7) Giải hệ phương trình:2 22 3 0

2x xy yx x y y

8) Giải hệ phương trình:3 5 9 0

2 7 0

x y

x y

9) Giải hệ phương trình:2

2

2 1

1

x x y

x y

Page 86: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

86

10) Giải hệ phương trình:

2 2 9736

1 13 13 16 6

0; 0

x y

y x y xx x

x y

11) Định a để hệ sau có nghiệm duy nhất:2 2 2

1 1 1x y

x y m

12) Định m để hệ sau có 4 nghiệm phân biệt:2 2 2

4x y

x y m

13) Định m để hệ sau có nghiệm duy nhất:2 2

2

2 2 2 0

x y

x y x y m

F. HỆ PHƯƠNG TRÌNH LƯỢNG GIÁC:

I. Phương pháp thế:

Bài 1 : Giải phương trình : Giải

Ta có : Với thay vào (2), ta được

Với thay vào (2), ta được

Bài 2 : Giải hệ phương trình : Giải Cách 1 :

Hệ đã cho :

Page 87: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

87

Cách 2 : Hệ đã cho

Bài 3 : Giải hệ phương trình : Giải Cách 1 :

Hệ đã cho Lấy (1) chia cho (2) ta được :

( do là nghiệm của (1) và (2) )

Thay vào (1) ta được :

Do đó : hệ đã cho

Page 88: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

88

Cách 2 : Ta có : Hệ đã cho

Bài 4 : Giải hệ phương trình : Giải Ta có :

với

, với

Thay vào (2) ta được :

hay hay (loại)

Do đó :

Page 89: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

89

Hệ đã cho

Bài 5 : Giải hệ phương trình Giải Lấy (1) + (2) ta được :

Thay vào (1) ta được :

Đặt (với )

Vậy nghiệm hệ II.Phương pháp cộng:

Bài 6 : Giải hệ phương trình : Giải Điều kiện :

Cách 1 : Hệ đã cho :

Page 90: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

90

(nhận do ) Cách 2 :

Thế (1) vào (2) ta được :

III. Phương pháp đặt ẩn phụ:

Bài 7 : Giải hệ phương trình :

Giải Đặt

Hệ đã cho thành :

Do đó :

Page 91: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

91

Hệ đã cho :

.

Bài 8 : Cho hệ phương trình :

a/ Giải hệ phương trình khi b/ Tìm m để hệ có nghiệm. Giải

Hệ đã cho :

Đặt với thì X,Y là nghiệm của hệ phương trình

(*)

a/ Khi thì (*) thành :

Vậy hệ đã cho

b/ Ta có :

Xét (C) trên

Page 92: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

92

thì :

Hệ đã cho có nghiệm có 2 nghiệm trên [-1,1]

cắt (C) tại 2 điểm hoặc tiếp xúc trên [-1 , 1]

Cách khác có 2 nghiệm thỏa

Bài : Cho hệ phương trình : a/ Giải hệ khi b/ Với giá trị nào của m thì hệ có nghiệm. Giải Đặt với

Hệ thành : Lấy (1) - (2) ta được :

Hệ thành hay

a/ Khi ta được hệ

Vậy hệ đã cho vô nghiệm khi . b/ Ta có với

Page 93: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

93

(do m không là nghiệm của *)

Xét trên ;

Do đó hệ có nghiệm Xét (**) : Ta có :

Kết luận : -Khi thì (I) có nghiệm nên hệ đã cho có nghiệm -Khi thì (I) vô nghiệm mà (**) cùng vô nghiệm (do nên hệ đã cho vô nghiệm ) Do đó : Hệ có nghiệm Cách khác Hệ có nghiệm (*) hay

(**) có nghiệm trên

hay

hay hay

hay hay hay

IV. Hệ phương trình không mẫu mực: Bài 10 : Giải hệ phương trình :

Cách 1 :

Ta có :

Page 94: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

94

Vậy hệ đã cho (2)

Ta có :

Thay vào (2) ta được

(loại)

Thay vào (2) ta được

Do đó hệ có nghiệm

Cách 2 : Do bất đẳng thức Cauchy

Dấu = xảy ra

Do đó

Dấu = tại (1) chỉ xảy ra khi

Page 95: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

95

(I) (II)

Thay (I) vào (2) : ta thấy không thỏa

thay (II) vào (2) ta thấy chỉ thỏa khi k lẻ

Vậy : hệ đã cho Bài 11 : Cho hệ phương trình :

Tìm m để hệ phương trình có nghiệm Giải

Hệ đã cho

Do đó hệ có nghiệm Bài tập củng cố:

1. Giải các hệ phương trình sau :

a/

b/

Page 96: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

96

c/

d/

e/

f/

g/

h/

k/

l/

2/Cho hệ phương trình : a/ Giải hệ khi

b/ Tìm m để hệ có nghiệm ( ĐS hay m = 0 \bigg ) 3.Tìm a để hệ sau đây có nghiệm duy nhất :

(ĐS ) 4.Tìm m để hệ sau đây có nghiệm.

a/ (ĐS )

b/ (ĐS )

Page 97: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

97

PHẦN 2: HỆ PHƯƠNG TRÌNH KHÔNG MẪU MỰC

goài các dạng như đối xứng loại I, đối xứng loại II, hệ đẳng cấp bạc hai, còn nhiều bài toán liên quan đến hệ phương trình khác. Các bài toán có các cách giải khác nhau rất phong

phú: đặt ẩn số phụ, trừ từng vế, dùng bất đẳng thức, tính chất dãy tỉ số bằng nhau, nhân các vế của hệ cho cùng một số nào đó để được tích hoặc hằng đẳng thức,……. Các bài toán:

Bài 1: Giải hệ phương trình 3 2

2 2

20

x yx xy y y

Hướng dẫn giải: Giả sử hệ có nghiệm. Do đó phương trình thứ hai có nghiệm hay 2 2( 1) 0y x y x có nghiệm.

Ta có 2 21 ( 1) 4 0x x

hay 23 2 1 0x x 113

x

Mặt khác 2 2 0x yx y y

2 22 4( ) 0y y y

hay 23 4 0y y

403

y

do đó 3 2 1 16 49 227 9 27

x y . Vậy phương trình thứ nhất vô nghiệm. Mâu

thuẫn. Vậy hệ đã cho vô nghiệm.

Bài 2: Giải hệ phương trình

4 4 4

1x y zx y z xyz

Hướng dẫn giải: vì

4 4 4 4 4 44 4 4

2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2

2 2 2

2 2 2

2 2 2( )

x y y z z xx y z

x y y z y z z x z x x yx y y z z x

xy z xyz x yz xyz x y z

mà 1x y z ; 4 4 4x y z = xyz

do đó x=y=z suy ra x=y=z= 13

.

Bài 3: giải hệ phương trình

N

Page 98: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

98

2

22 4x y z

xy z

Hướng dẫn giải:

hpt 2

22 4

z x yz xy

Do đó: 2

2 2

2 2

2 2

2 4 (2 )2 4 4 4 4 2( 4 4) ( 4 4) 0( 2) ( 2) 0

2 2 02

xy x yxy x y x y xyx x y yx y

x yx y

do đó 2z Vậy nghiệm của hệ pt đã cho là (2;2;-2)

Bài 4:Biết 1 2 3 4 5; ; ; ;x x x x x thoả mãn hệ:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

9 25 49 819 25 49 81 121

25 49 81 121 169

x x x x x px x x x x qx x x x x r

Tính 1 2 3 4 549 81 121 169 225x x x x x theo p; q; r Hướng dẫn giải:

Ta có: 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

p=x +9x +25x +49x +81x + -3q=-27x -75x -147x -243x -363x

3 75x +147x +243x +363x +507xr

1 2 3 4 53 3 49 81 121 169 225p q r x x x x x Vậy 1 2 3 4 549 81 121 169 225x x x x x = 3 3p q r

Bài 5:Giả sử hệ phương trình sau đây có nghiệm

ax by cbx cy acx ay b

Chứng minh rằng 3 3 3 3a b c abc Hướng dẫn giải: Gọi 0 0;x y là nghiệm của hệ phương trình đã cho; ta có:

0 0

0 0

0 0

(1) (2) (3)

ax by cbx cy acx ay b

Nhân hai vế phương trình (1); (2); (3) lần lượt với 2 2 2; a ; bc ta có

Page 99: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

99

2 2 3

0 02 2 3 3 3 3 2 2 2

0 0 02 2 3

0 0

(1) (2) (3)

ac x bc y cba x ca y a a b c a b b c ac xcb x ab y b

+

2 2 20a c ab bc y

Nhân cả hai vế (1); (2); (3) lần lượt với ; bc; acab ta có: 2 2

0 02 2 2 2 2 2 2 2

0 0 0 02 2

0 0

3 ( ) ( )a bx ab y abcb cx bc y abc abc a b b c ac x ab bc a c yac x a cy abc

Vậy 3 3 3 3a b c abc Bài 6:Tìm nghiệm x, y, z thoả:

1 1 1 1

x y z x y z

x y z

Hướng dẫn giải:

1 1 1 1

x y z x y z

x y z

1 1 1 1

x y z y x z

x y z

2 ( ) 21 1 1 1

x y z y x y z y x xz z

x y z

( )1 1 1 1

y x y z xz

x y z

( ) ( ) ( ) 01 1 1 1 1 11 1

1 1 10; 1( )( ) 01 1 1 1 1 1 10; 1

2 1; 1 (1)

2 1; 1 (2)

y x y yz xz y x y z x y

x y z x y z

x yx y x zx y z

y zx y zx y z

x yx z

y zy x

Giải (1) ta được:

Vì x; y nguyên nên 2 1 1x z 2z x xz

2 0 ( 1) 2( 1) 2xz x z x z z

Page 100: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

100

2 2; 1 1

( 1)( 2) 22 1; 1 2

4; 23; 3

x zz x

x z

x zx z

Do đó : 4 34 ; 32 3

x xy yz z

Giải (2) ta được: 2 34 ; 34 3

x xy yz z

( ; ; ) (2 3;2 3;2 3);(2 3;2 3;2 3)x y z Ta có thể sử dụng các bất đẳng thức để giải hệ phương trình.

Ví dụ:

Bài 7: Giải hệ phương trình: 3 9

( )3 6

xyI

x y

Hướng dẫn giải: Ta giả sử ( ; )o ox y là nghiệm của hệ (I) Khi đó:

3 9(1)( )

3 6(2)o o

o o

x yI

x y

Từ (1) 3;o ox y cùng dấu ;o ox y cùng dấu Kết hợp (2): ;o ox y cùng dương Áp dụng BDT Cauchy, ta có:

343 4o o o o o o o ox y x y y y x y

Hay 46 4 9

3 2 3

1,5 3 (vô lí) Vậy hpt vô nghiệm.

Bài 8: Giải hệ phương trình:

11414

x y z t

xy yz zt tx

xy yt tz zx

Hướng dẫn giải:

AD:2( )

4a bab

. Dấu " " a b

Page 101: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

101

Ta có: 2( ) 1( )( )

4 4x y z txy yz zt tx x z y t

Dấu”=” xảy ra, do đó 12

x z y t

Tương tự:1( )( )4

xy yt tz zx x t y z

Dấu “=” xảy ra nên 12

x t y z

Vậy ;x y z t

Do đó 1 1( ; ; ; ) ( ; ; ; ),2 2

x y z t a a a a a

Bài 9: Giải hệ phương trình: 4 2

2 2

689 (1)81

3 4 4 0(2)

x y

x y xy x y

Hướng dẫn giải: 2 2(2) ( 3) ( 2) 0x y x y

pt có nghiệm 0x 2 2( 3) 4( 2) 0y y

713

y (3)

Ta lại có 2 2(2) ( 4) 3 4 0y x y x x pt có nghiệm 0y

2 2( 1) 4( 3 4) 0x x x

403

x (4)

Từ (3) và (4) ta có: 4 2 256 49 697 698

81 4 81 81x y (mâu thuẫn (1))

Vậy hpt vô nghiệm.

Bài 10:Giải hệ phương trình:

2

2

2

4 14 14 1

x yy zz x

(I)

Hướng dẫn giải: Từ ( ) ; ; 0I x y z Vai trò x;y;z hoán vị vòng quanh, nên không mất tính tổng quát, ta giả sửx là số lớn nhất ( , )x y x z Ta có: 4 1 4 1x z x z 2 2y x Mà , 0x y y x Mặt khác: x y x y

Page 102: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

102

Ta có: 2 2 4 1 4 1x y x y z x x z Vậy x y z Thế vào 1 trong 3pt đầu bài ta được nghiệm

Bài tập củng cố: 0)Giải hệ phương trình:

2 21 2 2 3

2 22 3 3 4

2 23 4 4 5

2 24 5 5 1

2 25 1 1 2

1

2

2

2

2

21995

x x x xx x x xx x x xx x x xx x x xx

HD: Cộng từng vế của 5pt đầu, đưa về tổng bình phương nghiệm 1 2 3 4 5 1995x x x x x

1) Giải hệ phương trình: 2

2

2

2

2

2

212

12

1

x yx

y zy

z xz

HD: Nghịch đảo 3 pt, đưa về tổng bình phương nghiệm của hệ là (0;0;0);(1;1;1) 2) Giải hệ phương trình:

2

1 1 1 2

2 1 4

x y z

xy z

HD:Đặt 1 1 1; ;a b cx y z , giải tương tự 3vd

3) Giải hệ phương trình: 2

2

2

4 2

4

6 4 2

21

31

41

x yx

y zy y

z xz z z

Page 103: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

103

HD: Cộng từng vế 3pt, ta được 2 2 3 2 3 2

2 4 2 6 4 2( 1) ( 1) ( 1) ( 1) 0

1 1 1x x y y z z z z

x y y z z z

Ta thấy từng số hạng của biểu thức đều 0 , do vậy đẳng thức xảy ra khi từng số hạng bằng 0.

nghiệm của hệ là (0;0;0);(1;1;1). 4) Giải hệ phương trình:

4 4 4

1x y z x y zxyz

HD: Giải tương tự 2vd . 5) Giải hệ phương trình:

4 4

3 2 2

2(1)2 2 (2)

x yx x x y

HD: 2 3 2 2(2) 1 2 2 1 ( 1)( 1)y x x x x x x Xét x với các giá trị: *x>1

*0<x<1 *x<0 *x=0 *x=1

nghiệm:1 11 1

x xy y

6) Giải hệ phương trình:

3 2

3 2

3 2

9 27 27 09 27 27 09 27 27 0

y x xz y yx z z

HD: Cộng từng vế của 3pt, ta thấy (3;3;3) là nghiệm của phương trình, chứng minh đó là nghiệm duy nhất.

7) Giải hệ phương trình:

1 2 1 3 2 3 4

1 2 1 4 2 4 3

1 3 1 4 3 4 2

2 3 2 4 3 4 1

2222

x x x x x x xx x x x x x xx x x x x x xx x x x x x x

8) Giải hệ phương trình: 4

4

4

4

19523

1

x xyzty xyztz xyztt xyzt

HD: Cộng từng vế của 4pt, ta giải được hpt vô nghiệm 9) Giải hệ phương trình:

Page 104: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

104

2 2 2

2

2

2

12

x y yz

y z xz

z x xy

x y z

HD: cộng từng vế của 3 pt đầu. nghiệm (2;2;2)

10) Giải hệ phương trình: 2

2

1 2

1 2 1 4

z xy

x yz xy

HD: nghiệm 1 1(1; ;0);( 1; ;0)4 4

11) Giải hệ phương trình:

3

1

x y zy z x

xyz

HD: áp dụng bdt cô-si nghiệm (1;1;1).

12) Giải hệ phương trình: 1995197519451997

xyzt xxyzt yxyzt zxyzt t

13) Giải hệ phương trình: 2 2 1995

3 5

19 5 1995 9 39y x

x y zx y x y

14) Giải hệ phương trình:

2

5

3

x y z x y z x yz

x y z y z x y xz

x y z x y z z xy

15) Giải hệ phương trình: 2 2

2 2

2 3 134 2 6

x xy yx xy y

16) Giải hệ phương trình: 2 2

3 2 2 3

56

x y x yx x y xy y

17) Giải hệ phương trình:

Page 105: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

105

( )( ) 187( )( ) 154( )( ) 238

x y y zy z z xz x x y

18) Giải hệ phương trình:

2

21

x yxy z

19) Giải hệ phương trình: 3 2

2 2 2

2 4 3 02 0

x y yx x y y

20) Giải hệ phương trình:

5 5

131

x yx y

21) Giải hệ phương trình: 1 1

1 1

1 1

xy

yz

zx

22) Giải hệ phương trình: 2 2

3 2

8 122 12 0

x yx xy y

23) Giải hệ phương trình:

2

1 1 1 2

2 1 4

x y z

xy z

24) Giải hệ phương trình: 2

2 2

1 02 2 1 0

y xyx x y y

25) Tìm tất cả số nguyên k để hpt sau có nghiệm: 2 2

2 2

( 2 4) 4 8 42 2 4 ( 1) 2 2

x x y k y yy y x y x k k

26) Giải hệ phương trình: 2 2

2 2

2 4 2 13 2 6 4 5

x y x yx y x y

27) Giải hệ phương trình:

Page 106: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

106

2 2 2

2 3

2 02 3 4x y x y

x x y

28) Giải hệ phương trình(2000 ẩn số):

1 22

2 33

1999 20002000

2000 11

12

12

...............12

12

x xx

x xx

x xx

x xx

HD: AD bdt Cô-si nghiệm = 1 hoặc -1

29) Giải hệ phương trình(2000 ẩn số):

1 2 3 2000

2 2 2 2 21 2 3 2000

2000 2000 2000 2000 20001 2 3 2000

...

...............

...

x x x x ax x x x a

x x x x a

30) Giải hệ phương trình sau: 2 2

2 2

2 2

37 (1)28 (2)19 (3)

x y xyx z xzy z yz

HD: Lấy (1) – (2) ; (2) – (3) vế theo vế

Hệ có 4 nghiệm 10 1 8 10 1 84;3;2 ; 4; 3; 2 ; ; ; ; ; ;3 3 3 3 3 3

31) Giải hệ phương trình sau:

2 (1)3 4 (2)

7 8 (3)15 16 (4)

x y z tx y z tx y z t

x y z t

HD: Ta có:

2 (1)3 4 (2)

7 8 (3)15 16 (4)

x y z tx y z tx y z t

x y z t

Page 107: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

107

2 2 (1)4 4 (2)8 8 (3)

16 16 (4)

x x y z ty x y z tz x y z tt x y z t

Đặt x + y + z + t = k. Ta có: 2 24 48 8

16 16

x ky kz kt k

12

14

18

116

kx

ky

kz

kt

Cộng từng vế:

4 6416 8 4 2k k k k k k

Thay k vào tính được x, y, z,t 32) Giải hệ phương trình sau:

31 2

2 3 4

1 2 3 4

1 4

158

xx xx x x

x x x xx x

HD:Đặt 31 2

2 3 4

xx xx x x

=k

1 2 3 4 3 42 2

2 3 2 4 2 43 3

3 4 1 4 4 4

28

x kx x kx x kxx kx x k x x k x kx kx x k x x k x

Thay k vào tính được x, y, z,t 33) Giải hệ phương trình sau:

2 2

3 3

13

x y xyx y x y

HD: Do 2 2 1x y xy , phương trình thứ hai có dạng: 3 3 3x y x y 2 2 2 2( 3 )( ) 2 ( ) 0x y x y xy y x x y

Hệ có hai nghiệm , 1;0 ; 1;0x y

Page 108: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

108

34) Giải hệ phương trình sau: 4 1

4 1

4 1

x y z

y z x

z x y

HD: Nhân 2 rồi cộng cả ba phương trình ta được:

2 2 24 1 1 4 1 1 4 1 1 0x y z

4 1 1

4 1 1

4 1 1

x

y

z

0,50,50,5

xyz

35) Giải hệ phương trình sau:

3 2

3 2

2 3 56 7

x x yy xy

HD: Ta có: 3 2

3 2

2 3 56 7

x x yy xy

3 2

3 2

8 12 206 7

x x yy xy

3

3 23 2

2 3 (1)2 272 9 7 0 (2)6 7

x yx yy yy xy

Giải (2) ta được y = 1; y = 7 1054

nghiệm 5 105 7 105 5 105 7 1051;1 ; ; ; ;8 8 8 8

36) Giải hệ phương trình sau:

2 2 22 2 2

1 1 1 514

1 1 1 77116

x y zx y z

x y zx y z

HD: Đặt 1 1 1; ; u x v y p zx y z

Hệ có dạng 2

2 2 2 2

2 2 2

51 (1)2601 514 3 ( )

867 16 4 (2)16

u v pu v z u v p

u v z

Sử dụng bất đẳng thức Bunhicopxki: 2 2 23 u v z 2( )u v p

Từ (1) và (2) suy ra 174

u v p

Hệ đã cho có 8 nghiệm

1 1 1 1 1 1 1 1 1 1 1 14;4;4 ; 4;4; ; 4; ;4 ; ;4;4 ; ; ; ; ; ; 4 ; ; 4; ; 4; ;4 4 4 4 4 4 4 4 4 4 4 4

37) Giải hệ phương trình sau: ( )( ) 187( )( ) 154( )( ) 238

x y y zy z z xz x x y

Biết x; y; z dương

Page 109: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

109

HD: Nhân cả ba vế phương trình; ta có: 2 26853924 2618x y y z x z

Vì x; y; z dương 2618x y y z x z

187( ) 2618 14 10154( ) 2618 17 7238( ) 2618 11 4

x z x z xx y x y yy z y z z

38) Giải hệ phương trình sau: x y z xyzy z x xyzz x y xyz

HD: Cộng từng vế ; ; 0;0;0 ; 1;1;1 ; 1; 1; 1x y z 39) Giải hệ phương trình sau:

9 (1) 1 (1)1 1 1 1) 1 (2) ) (2)

21 1 127 (3) 2 (3)

1 1 1

x y z x y z

a b xy xz yzx y z

xy xz yzx y z

HD: a) Từ (1) ta có:

9x y z

2 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

( ) 2( ) 812.27 81 (thay (2) )

2( ) 2 2 2

0

x y z x y z xy xz yzx y zx y z xy xz yz

x y z xy xz yz

x y y z z x x y z

Do đó: 9 3

31 1 1 31

x y z xx y z y

zx y z

b) Từ (1) Hệ vô nghiêm. 40) Giải hệ phương trình sau:

2 3 14 (1)

1 1 1 1 (2)2 3 6 2 3 6

x y z

x y zx y z

Page 110: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

110

HD: Phương trình (2) 3 2 1 3 2 36

6 3 2 22

x y zx y z

x y x z z yy x z x y z

Vì x, y,z 0 6 3 2 22x y x z z yy x z x y z

Dấu đẳng thức xảy ra khi: x = y = z thay vào (1) x = y = z = 2 41) Giải hệ phương trình sau:

3

3

3

3

( ) 12( ) 12( ) 12( ) 12

x y z ty z t xz t x yt y x z

HD: Đặt S = x + y + z + t. Ta có:

3

3

3

3

( ) 12( ) 12( ) 12( ) 12

S t tS x xS y yS z z

Không mất tổng quát, ta giả sử x = max ; ; ;x y z t

Khi đó 12x 12y, hay 3( )S x 3( )S t S x S t t x. Mà x t Vậy x = t CMTT, ta có: x = y = z = t Từ phương trình đầu ta có:

3 23 12 27 12 0x x x x

0

12 227 312 227 3

x

x

x

Vậy hệ đã cho có ba nghiệm:

0

23

23

x y z t

x y z t

x y z t

42) Giải hệ phương trình sau:

2

4 2 1 42 1 4

7

x yy x

x y

HD: 4 2 1 42 1 4x y

y x

Page 111: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

111

Đặt z = 42 1x

y

(z0)

Do đó: z + 4. 1z

=0 2z

Thay vào ta được hệ:

2

4 22 1

7

xy

x y

8 56 hay

1 7x x

y y

43) Cho hệ phương trình sau:

33 2 22 2 1

6

x y m x x y xy y m

x y

a)Giải hệ phương trình khi m = 0 b)Giải hệ phương trình khi m = 1

HD: Thay các giá tri của m vào rồi giải phương trình bằng cách đưa về dạng tổng- tích:

a) 3 2

hay 3

x xy y

b)6 6

hay 6 6

x x

y y

44) Giải hệ phương trình: 3 3 2

3 3 2

3 3 2

( ) 14( ) 21( ) 7

x y x y z xyzy z y x z xyzy x z x y xyz

45) Giải hệ phương trình:

2 2

2 2

2 2

111

x y zx y zx y z

46) Giải hệ phương trình:

245

247

4

xyzx yxyz

y zxyz

x z

47) Giải hệ phương trình: 5 6( )7 12( )3 4( )

xy x yyz y zxz x z

48) Giải hệ phương trình:

Page 112: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

112

1 1

1 1

1 1

xy

yz

zx

49) Cho các số thực a; b; c thoả mãn hệ:

1 1 (1)

1 1 (2)

1 1 (3)

a bc b

b ca c

c ab a

a) Cho a = 1, hãy tìm b, c b) Chứng minh rằng nếu a, b, c đôi một khác nhau thì 2 2 2 1a b c

HD:Với a = 1. Ta có: 1 11 1

1 1 1; 1+

b cb c

c bb b c

Do đó: 2 2

11+

11 2 2 1 0 1

2

b bb

bb b b b

b

b = 1 thì c = 1b

= 1

b = 12

1 thì c = 1b

= -2

b)

Ta có : 1 1 (1)

1 1 (2)

1 1 (3)

a bc b

b ca c

c ab a

(1)

(2)

(3)

b ca bbc

c ab cca

a bc aab

2 2 2

a b b c c aa b b c c a

a b c

Vì a, b, c đôi một khác nhau nên: a b b c c a 0

Vậy 2 2 2a b c = 1 51) Giải hệ phương trình:

Page 113: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

113

2

2

2

222

xy zyz xzx y

52) Giải hệ phương trình: 15

) 167

)

xy yza yz zx

zx xy

x y xyzb y z xyz

z x xyz

53) Giải hệ phương trình:2

2

2x –x 2y 4xyx 2xy 4

54) Giải hệ phương trình:

2 2

2 2

2 2

x y zy z xz x y

Một số bài tập áp dụng pp sử dụng bất đẳng thức ( pp đánh giá)

1) Giải hệ phương trình:

1 1 1 16 3 2 6 3 2

39

yx zx y z

x x y z

2)Giải hệ phương trình:2 2 2 2 2 2 3

3x xy y y yz z z zx x

x y z

3)Giải hệ phương trình:

23 21 1 2

2 3 4 2 1

x y y

x x x

4) Giải hệ phương trình:

2 2 2

3

6

x y zy z x z x y

xy yz zx

5) Giải hệ phương trình:

4 4 4

2 2 2

2 2 2

60 36 6

60 36 6

x y zy z x

x y z

6) Định m để phương trình sau có nghiệm duy nhất:1

1

x y m

x y m

Page 114: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

114

7) Giải hệ phương trình:

2

2

26 13

1 1 1 32 3 1 7 3

x yx z

x x x

8) Giải hệ phương trình:3 3

11 1 4 2 3

x y

x y xy

9) Giải hệ phương trình:2 2

5 3

1

125 125 6 15 0

x y

y y

10) Giải hệ phương trình:2 2 2 1

2 1x y z

xy yz xz

11) Giải hệ phương trình:2 2 2

2 2 2

1 1 1 514

1 1 1 77116

x y zx y z

x y zx y z

12) Giải hệ phương trình: 2 2 2

324 4 2 96

xyzx xy y z

13) Giải hệ phương trình:2003 2003

2003 2003

x y

x y

14) Giải hệ phương trình:

2

2

2

111

x yy zz x

15) Giải hệ phương trình:

4

4

4

2 4 12 4 12 4 1

x yy zz x

16) Định m để hpt sau có nghiệm duy nhất:1 6

6 1

x y m

x y m

Page 115: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

115

PHẦN 3: TRẮC NGHIỆM

1. Giải hệ phương trình: 2 2 4

2x y xyx y xy

a. S 0;2 ; 2;0 c. Vô nghiệm

b. S 0; 2 ; 2;0 d. Đáp số khác

2. Giải hệ phương trình: 33 3 175

x y xyx y xy

Page 116: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

116

a. S 1;0 ; 0;1 c.

1 1S 0; ; ;02 2

b. S 1; 2 ; 2;1 d. Đáp số khác

3. Giải hệ phương trình:

2 22 2

1 1 9

1 1

x yx y

x yx y

a. 3 5 3 5S 1; ; ;12 2

c. Cả a và b đều đúng

b. 3 5 3 5S 1; ; ;12 2

d. Đáp số khác

4. Giải hệ phương trình:

2 2

4 4

12

14

x xy y

x y

a. 1 1S 0; ; ;02 2

c.

1 1S 0; ; 0;2 2

b. 1 1S 1; ; ;12 2

d. Đáp số khác

5. Giải hệ phương trình: 3

3

22

x x yy y x

a. S 1;1 ; 0;0 c. S 3; 3 ; 3; 3

b. S 0;0 ; 3; 3 ; 3; 3 d. Đáp số khác

6. Giải hệ phương trình:

3 3 72

x yxy x y

a. S 1;1 ; 1; 1 c. Vô nghiệm

b. S 1; 1 ; 0;1 d. S 1; 2 ; 2;1

7. Giải hệ phương trình: 2 2

3 82 3 5 4x y

x xy y

Page 117: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

117

a. 36 4 246 36 4 246S ;0 ; ;05 5

b. S 2;2 ; 8;0

c. 3 89 3 89S 1; ; 1;10 10

d. S 19 12 3;9 4 3 ; 19 12 3;9 4 3

8. Giải hệ phương trình: 3 3

28

x yx y

a. 1 33 3 33 1 33 3 33S ; ; ;2 2 2 2

b. S 0;2

c. S 2;0

d. Đáp số khác.

9. Giải hệ phương trình: 3 3

39

x yx y

a. S 1;2 c. S 2;1

b. S 1;2 d. Đáp số khác.

10. Giải hệ phương trình: 2 22 3 0

2x xy yx x y y

a. 3 1S ;5 5

c. 3 1S ;

5 5

b. 3 1S ;5 5

d. Đáp số khác.

11. Giải hệ phương trình: 2 2

3 3

626

x y y xx y

a. S 3; 1 ; 1;3 c. Vô nghiệm.

b. S 3;1 ; 1;3 d. Đáp số khác.

12. Giải hệ phương trình:

1 72

1 73

xy

yx

Page 118: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

118

a. 5S 1; ; 3;22

c. 1 1S ; ; 2;33 2

b. 1 1S ; ; 3; 22 3

d. Vô nghiệm.

13. Giải hệ phương trình: 2 2

2 2

87

x y x yx y xy

a. S 3;1 ; 1; 3 c. S 2;1

b. S 1;2 d. a b c đúng

14. Giải hệ phương trình: 2 2 2 8 2

4

x y xy

x y

a. S 4;4 c. S 1;2

b. S 2;1 d. Đáp số khác.

15. Giải hệ phương trình: 2 2

4 2 2 4

37481

x xy yx x y y

a. S 3;4 ; 4; 3 c.

S 3; 4 ; 4;3 ; 3; 4 ; 4; 3

b. S 3;4 ; 4;3 d. a, b, c đều sai

16. Giải hệ phương trình: 1

1 1 1

x y

x y

a. 1 1 1 1S ; ; ;2 2 2 2

c. Vô nghiệm

b. 1 3 1 3S ; ; ;4 4 4 4

d. Đáp số khác

17. Giải hệ phương trình: 1

1 1 1 1

x y z

x y z

a. S 1;0;0 ; 0;1;0 ; 0;0;1

b. 1 1 1S ; ; ; 1;0;03 3 3

c. 1; ; 1; ; 1;S x z y y y x z z z y x x

Page 119: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

119

d. Vô nghiệm

18. Giải hệ phương trình: 2 2

2 2 2

2 23 28

x yx y x

a. S 1;2 ; 1; 2 ; 1; 2 ; 1; 2

b. S 2; 10 ; 2; 10 ; 2; 10 ; 2; 10

c. Vô nghiệm d. Đáp số khác

19. Giải hệ phương trình: 30

35

x y y x

x x y y

a. S 4;9 c. a b đúng

b. S 9;4 d. Đáp số khác.

20. Giải hệ phương trình: 4

2 2

x y xy

x y

a. S 2;2 c. a, b đều sai

b. Vô nghiệm d. Đáp số khác.

21. Giải hệ phương trình: 6 10 24 3 2 1

x y z

x y z

a. S 3; 5; 1 c. S 5;3; 1

b. S 1; 5;3 d. Đáp số khác

22. Giải hệ phương trình: 2 3 2 05 0

x y x yx y

a. 7 3S ; ; 3; 22 2

c.

7 3S ; ; 3; 22 2

b. 7 3S ; ; 3; 22 2

d. Đáp số khác.

23. Giải hệ phương trình: 3 5

3 5

x y

y x

a. 1 5 1 5S ; ; 4;42 2

c. S 4;4

Page 120: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

120

b. S 5;3 ; 3;5 d. Đáp số khác.

1a

22 2 4 42 2

x y xy x y xyx y xy x y xy

Đặt SP

x yxy

; điều kiện 2 4 0S P

Hệ đã cho trở thành: 22 2 44

2 2S SS P

S P P S

Giải hệ trên, ta được: 2 3

0 5

S SP P

Thử lại nghiệm:

Với 20

SP

ta có: 2 4 0S P

2 0 20 2 0

x y x xxy y y

Với 3

5SP

ta có: 2 4 9 20 0S P

cặp nghiệm này không thỏa mãn. Vậy S 0;2 ; 2;0 2b

33 3 175

x y xyx y xy

Giải tương tự câu 1, đặt SP

x yxy

; điều kiện 2 4 0S P

Giải hệ với hai ẩn S, P ta có: 2 3

3 2

S SP P

Thử lại, ta được nghiệm của phương trình. Vậy S 1;2 ; 2;1 3c

Page 121: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

121

2 22 2

1 1 9

1 1

x yx y

x yx y

Đặt:

1

1

a xx

b yy

điều kiện 2

2

a

b

Giải hệ tìm a; b, xét điều kiện của a;b rồi giải hệ tìm x, y theo a, b, ta được nghiệm: 3 5 3 5 3 5 3 5S 1; ; ;1 ; 1; ; ;1

2 2 2 2

4d

2 2

4 4

12

14

x xy y

x y

Đặt SP

x yxy

; điều kiện 2 4 0S P

24 4 2 22 2x y S P P Giải hệ Theo S;P ta có:

1 1 2 2

0 0

S S

P P

Giải tìm x; y.

Tập nghiệm 1 1 1 1S 0; ; ;0 ; 0; ; ;02 2 2 2

5b 6d

3 3 72

x yxy x y

Khi x=0 thì hệ vô nghiệm, đặt y=tx, hệ trở thành:

3 3

3

1 7 (1)

1 2 (2)

x t

x t t

vì t=0 hay t=1 không là nghiệm của hệ (1) và (2) nên lấy (1) chia (2) ta được:

3

21 7 2 1 71 2

t t t tt t

22 5 2 0t t 1 2 1

21 22

x xty yt

Vậy S 2;1 ; 1; 2 7d

Page 122: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

122

2 2 2 2

3 8 8 3 (1)2 3 5 4 2 3 5 4 (2)x y x y

x xy y x xy y

Thế (1) vào (2) ta được: 2 22 8 3 3 8 3 5 4y y y y

2 18 33 0y y

19 12 3 19 12 3

9 4 3 9 4 3

x x

y y

8c

3 3 3 3

2 2 (1)8 8 (2)

x y x yx y x y

Thế (1) vào (2) ta được: 3 32 8y y

3 23 6 0y y y 20 ( 3 6 0)y y y

2x Vậy nghiệm của hệ: S 0;2 9d

3 3 3 3

3 3 (1)9 9 (2)

x y x yx y x y

Thế (1) vào (2) ta được: 3 33 9y y

2 3 2 0y y 2 1

1 2

x xy y

10c 2 22 3 0 (1)

2 (2)x xy yx x y y

(1)3

x yx y

Thay các giá trị của x vào phương trình (2), ta loại và nhận nghiệm của hệ. 3 1S ;5 5

11a

2 2

33 3

6626 3 26

xy x yx y y xx y x y xy x y

Đặt SP

x yxy

; điều kiện 2 4 0S P

3

6 233 26

SP SPS PS

Page 123: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

123

3 1

1 3x xy y

12b 1 7 321 14 0

6 6 212 21 7 1 76 6 141 7 2 23

yy xx xxy yyxxy x xyy yx

13 3 2 1

2

yxy x

13d

22 2

2 2 2

2 887 7

x y xy x yx y x yx y xy x y xy

Đặt SP

x yxy

; điều kiện 2 4 0S P

Hệ trở thành: 2 2

2 2 2

2 8 77 2 14 8 0

S P S P SS P S S S

3 2

2 3S SP P

1 2 1 3

2 1 3 1x x x xy y y y

Vậy S 1;2 ; 2;1 ; 3;1 ; 1; 3 14a

2 2 2 8 2 (1)

4 (2)

x y xy

x y

Điều kiện: 00

xy

(1) 2 2 8 2 2 0 8x y xy xy

Hệ (1) và (2) 2 2 2 8 2

2 16

x y xy xy

x y xy

2 2 2 8 2

16 2

x y xy xy

x y xy

216 2 2 2 8 2xy xy xy

Đặt ;0 8t xy t Giải phương trình ta được: 4t 4x y 15c

Page 124: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

124

2 2

4 2 2 4

37481

x xy yx x y y

Nếu 2

4

370

481y

xy

(Loại)

Nếu 2

4

370

481x

yx

(Loại)

Đặt SP

x yxy

; điều kiện 2 4 0S P

Giải hệ S, P rồi tìm (x;y) thỏa hệ. Tập nghiệm S 3; 4 ; 4;3 ; 3; 4 ; 4; 3 16c

11 1 1

x y

x y

(1)

Đặt SP

x yxy

; điều kiện 2 4 0S P

(1)1

1

SS PS

P

2 4 0S P

Hệ phương trình vô nghiệm. 17c

11 (1)

1 1 1 1 (2)

x y zx y zxy yz zx xyz

x y z

(1) +(2) 1 0x y x xy yz zx xyz

1 1 1 01

x y zx y z

1 1 1, , ,

x y zz y y x z z y x x

18b 2 2 2 2

2 2 2 2 2

2 2 2 2 (1)3 28 2 2 (2)

x y y xx y x x y

Thế (1) vào (2), ta được: 4 22 28 0x x

Đặt: 2 ( 0)x t t

Nghiệm của hệ phương trình: ;x y là 2; 10 ; 2; 10 ; 2; 10 ; 2; 10

19c 20a

Page 125: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

125

4

2 2

x y xy

x y

Đặt 2 2x y S

x y S Pxy P

Nghiệm của hệ phương trình: S 2;2 21a

34 3 2 156 10 2 24 30 4 2

4 3 2 1 4 3 2 1 1

xx y z x y zy

x y z x y z z

22d

2

2

53 2 05 3 5 2 0 (1)5 0

y xx y x yx x x xx y

(1) 22 5 3 2 5 2 0x x 22 13 21 0x x

732

3 22

x xyy

23c 3 5

3 5

x y

y x

Đặt 3x u 3y v

Điều kiện: 00

uv

Giải hệ theo (u; v) suy ra giá trị của (x;y), xét điều kiện để nhận nghiệm S 4;4

Page 126: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

126

PHẦN 4: CÓ THỂ EM CHƯA BIẾT ?

VĂN HÓA TOÁN HỌC

Ngày nay, ai cũng học suốt đời và đều bắt đầu bằng quảng đường đời học sinh. Trong quảng đời này quá trình học được chia ra nhiều công đoạn dài ngắn khác nhau: tiết học, tuần học, tháng học, học kì, năm học , khóa học. Có thể ví một công đoạn học như một chu trình sản xuất : đầu vào gồm kiến thức đã có, đầu ra vẫn gồm những kiến thức được củng cố vững chắc hơn và thêm những kiến thức mới học được; tư duy là công nghệ để nối các kiến thức mới và cũ với nhau thành một chỉnh thể, sự nổ lực phấn đấu học là năng lượng. Sự so sành này là khập khiểng vì trong sản xuất, kh kết thúc một chu trình thì chu trình mới sẽ lặp lại y nguyên chu trình cũ khi giữa hai chu trình không có đổi mới công nghệ; còn trong học tập, công đoạn kế sau khác công đoạn trước vì đầu vào của công đoạn sau là đầu ra của công đoạn trước: kiến thức đã chắc thêm và giàu thêm những kiến thức mới;:không những thế trình độ tư duy, trình độ nhân cách người học cũng đã trưởng thành lên so với khi bắt đầu công đoạn trước. Sự giàu thêm về kiến thức thì thấy rõ, nhiều khi chỉ qua một tiết học là đã có thêm kiến thức mới, còn sự trưởng thành về tư dyu và nhân cách thì thương phải qua một công đoạn dài(năm học, khóa học) mới thấy rõ. Sự tích lũy ở đây có thể ví với sự tích lũy của từng hạt cát về tư duy và nhân cách nhưng khó thấy, khó đo.Vì vậy mà khi nói đến học kiến thức, rầt ít người nói đến học “tư duy” và rèn “ nhân cách”, vô hình chung bỏ đi cái rất quan trọng mà đã ví với công nghệ và năng lượng sản xuất. Ngay các giáo viên thường cũng chỉ lo sao dạy cho hết chương trình ( hoàn thành nhiệm vụ về cung cấp kiến thức), còn tư duy và nhân cách học sinh được nâng lên đấn đâu qua môn mình dạy thì được chăng hay chớ.. Sự coi nhẹ này còn tai hại ở chổ nó lãng phí rất nhiều sự tác động qua lại trong việc học các bộ môn khác nhau. Sự tác động qua lại này được biểu hiện ở ba mức:

- Mức kiến thức: Kiến thức môn này hỗ trợ cho việc học môn khác, dụ như kiến thức toán cần cho học lí, kiến thức địa cần cho học sử.

- Mức tư duy: Kiểu tư duy ở môn này có thể vân dụng sang môn khác, ví dụ tư duy logic trong toán học cũng phục vụ cho việc tạo bố cục cho một bài văn, cho việc xây dựng một cách nhất quán tình cách một nhân vật tiểu thuyết.

- Mức nhân cách: Những phẩm chất của người học hình thành nên ở môn học này cũng được phục vụ tốt cho việc học tốt các môn khác ví như, trong học toán thì “ ý thức đòi hỏi chính xác” được rèn dũa và điều đó cũng có ích cho việc học văn phạm của bất cứ thứ tiếng nào.

Nhờ sự tác động qua lại này ở cả ba mức mà hệ thồng kiến thức trung học phổ thông trở thành một chình thể trong đó có ba sợi dây liên kết là kiến thức, tư duy và nhân cách. Hai sợi dây tư duy và nhân cách tạo nên mặt văn háo trong từng bộ môn. Sau đây xin đề cập văn hóa toán học. Môn toán có một đặc thù khiến cho nó được mệnh danh là “ môn thể dục của trí não”. Nhưng thương người ta chỉ nghĩ đến việc rèn luyện tư duy logic, trong lúc toán học liên quan đến nhiều loại tư duy: logic, hình tượng, biện chúng,quản lí, kinh tế, kĩ thuật, thuật toán.. Ngay tư duy logic cũng chỉ được quan tâm một cách phiến diện, chẳng hạn như rất coi nhẹ “ quy nạp”. Kho học một

Page 127: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

127

định lí , học sinh có thể hiểu được những mắt xích logic nối giả thiết với kết luận nhưng không hiểu được người ta hiểu như thế nào mà phát minh ra định lí đó.Nguyên do là vì lâu nay ta không dạy cho học sinh một “toán học” đang vận động phát triển mà dạy cho học sinh một “ toán học” đã hình thành xong xuôi, biến học sinh thành những người tham quan lâu đài toán học chứ không đặt họ vào vị trí những người cảm xúc, suy nghĩ, thiết kế và thi công lâu đài đó. Muốn làm việc này thì phải huy động , ngoài tư duy logic, nhiều tư duy khác và đó cũng là cách tốt nhất để phát triển chúng không những phục vụ cho việc học toán mà còn cho việc học các nôn khác. Sau đây, vì khuôn khổ bài viết chỉ xin hạn chế ở tư duy biện chúng và tư duy hình tượng. Nếu ta xem mỗi sự vật A chỉ lả A thì dù có giỏi khám phá cái mới, ta cũng chỉ quanh quẩn trong A. Nhưng nếu ta xem A không tĩnh tại, mà đang vận động để trở thành một cáI A’, khác A, thì hiểu biết về A cho ta ngay mầm mống những hiểu biết về A’. Ví dụ, nếu coi tam giác (A) là tam giác (A’) ( có một cạnh bằng không) thì từ định lí về đường trung bình trong tam giác, ta sẽ có ngay nghi vấn khoa học: “ Vởy trong tứ giác (A’), có những định lí nào mở rộng về đường trung bình trong tam giác ( tứ giác (A’) đặt biệt có 1 cạnh bằng không). Có nghi vần tức là phát kiện được vấn đề, bước đầu tiên của sự sáng tọa. Muốn sáng tạo phải cảm thụ được cái đẹp. Trong toán học đ1o là cài đẹp của sự tài tình biến hóa, là cáI đẹp của sự gọn gàng, tiết kiệm, đó là cái đẹp của sự mềm mại uyển chuyển trong tư duy, tránh được các nếp cũ, đưo2ng mòn, nhìn ra được sự thống nhất giữa những cái đối lập, đó là cái đẹp của sự táo bạp dánh bay vút lên những nấc rất cao của sự trừu tượng và rồi lại từ đó là là xuống thấp đến những ứng dụng thiết thực của đời thường. Cho nên một tác phẩm văn học như Tây Du Kí cũng có ích cho việc học toán. Ta học cách T6n Ngộ Không dùng các phép biến hóa thần thông một cách có mục đích rõ ràng và tùy cơ ứng biến. Chẳng hạn, mướn ép Bà La Sát cho mượn quạt thì lấy cái đích là “ Chui vào bụng bà mà đạp” và đã tùy cơ ứng biến lợi dụng lúc bà uống nước, biến thành con bọ rơi vào cốc nước để trôi xuống dạ dày. Trong toán học các phép biến đổi còn phong phú hơn rất nhiều các phép của họ Tôn. Ngay từ lớp một đã gặp rồi và ở lớp này có thể lợi dụng tân lí thích các chuyện thần thoại để cho các nhà toán học nhí đóng vai các cô tiên để biến những phép tính khó( đối với trẻ lớp 1) như “ cộng thêm chín” và “ trừ đi một”. Về rèn luyện nhân cách ( và cả tư duy) thì toán học có đặc thù là uyê cầu cao về tính chính xác và tính trừu tượng.Nó sẽ rèn luyện người học phẩm chất “ đòi hỏi chính xác, chống đại khái tùy tiện” , “ tầm nhìn xa trông rộng” do không bị hạn chế bởi những cái cụ thẻ trước mắt. Phạm vi ứng dụng của toán học, tuy đã mở ra rất rộng nhưng vẫn có hạn, còn phạm vi ừng dụng của văn hóa toán học thì rộng hơn nhiều, lan đấn cả nhiều lĩnh vực phi toán, ví như phương châm “ dĩ bất biến ứng vạn biến” mà trong toán học ta gặp hàng ngày ( vì mỗi định lí chứa đựng một chân l bất biến và được ứng dụng để làm rất nhiều bài tập”, thì có thể ứng dụng khắp nơi trong cuộc sống. Cuối cùng có câu hỏi : “ Dạy và học kiểu này có khó không?”.Xin trả lời: “ Bản chất” và có “ cái khó” do “ định kiến” rồi không dám tiếp cận, “ kính nhi viễn chi” nên cứ thấy khó mãi. Xin mạnh dạng tiếp cận rồi sẽ tự tìm ra câu trả lời. “ Dạy con hổ “ người ta còn làm được là nhờ dám tiếp cận nó rồi vạch lộ trình chinh phục nó.

Page 128: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

128

KF GAUSS- ÔNG VUA CỦA TOÁN HỌC âu đài toán học hiện nay thực là đồ sộ mà ít có ai có thể đi khắp được các phòng của nó. Lâu đài ấy được xây dựng trên những cột trụ vững vàng. Một trong những cột trụ sừng sửng trong số ấy là KF. Gauss.

Ông vua của toán học sinh ở Gottingen năm 1777 và 3 thập kỉ sau, thế giời toàn học nói nhiều đần trường đại học Gottingen, đến nước Đức bởi các công trình toán học, vật lí học và thiên văn học của Gauss. Chúng hãy trở lại đầu thập kỉ 80 của thế kỉ XVI. Cậu bé Gauss đã biết làm tính trước khi đi học. Người ta còn kể lại một giai thoại Gauss lúc 3 tuổi đã phát hiện ra giúp bố một lần khi ông tính sai giá tiền công. Một giai thoại khác nổi tiếng hơn kể vè chuyện Gauss, cậu học sinh vừa học số học đã tính được rất nhanh tổng của các số tự nhiên từ 1 đến 100. Mười lăm tuổi Gauss vào học ở trường trung học hoàng gia Brunswick nhờ sự tài trợ của quận công Brunswick là K.W.Ferdinand. Gauss nắm rất vững các ngôn ngữ cổ và đã từng mơ ước trở thành triết gia. Nhưng toán học vẫn hấp dẫn cậu học sinh trung học yêu toán này. 18 tuổi Gauss vào học đại học ở Gottingen và một năm sau cậu sinh viên này trở nên nổi tiếng sau khi giải được phương trình 17 1 0x và từ đó dựng được đa giác đều 17 cạnh bằng thước thẳng và copa. Gauss bộc lộ một trí nhớ siêu việt và khả năng tính toán tuyệt vời. Nhờ đó ngay từ những năm học trung học Gauss đã nắm vững các ý tưởng của Euler, Lagrange, Newton. Gauss đã độc lập với A.M.Legendre tìm ra phương pháp bình phương tối thiểu ngaytừ những năm 18 đến 21 tuổi. Năm 1795 Gauss viết luận án tiến sĩ và đã đưa ra quy luật thuận nghịch bậc 2 thuộc lí thuyết đại số. Lí thuyết số hiện đại,mà một đỉnh cao của nó là góp phần giải được bài toán lớn Fermat, có thể nói được khởi thủy từ 1801. Đó là năm mà tác phẩm Disquistionex Arithemetikae của Gauss được công bố. Như vậy có thể nói được rằng Gauss là một trong những thủy tổ của lí thuyết số.Ông còn có nhiều công trình về số phức, sự tương đẳng, hình học hipecbolic, lý thuyết các mặt cong … 32 tuổi, Guass trở thành giáo sư toán học thiên văn học của đại học Gottiengen kiêm giám đốc đài thiên văn ở đây. Người ta từng bảo rằng Gauss tìm ra các hành tinh chỉ bằng cách gọt bút chì. Chuyện kể rằng nhà thiên văn Piazzi và Olbergs đang quat sát tiểu hành tinh Ceres( do Piazzi tìm ra) thì bị mất hút tâm tích của nó. May thay 1801 Gauss đã đưa ra phương pháp tính toán quỹ đạo của các hành tinh và Piazzi, Olbergs cùng các nhà thiên văn khác hướng ống kính về phía mà Gauss đã chỉ ra bằng tính toán đã tìm lại được tiểu hành tinh “ bị đánh mất”. Cần nói thêm là lúc đó Gauss mới 24 tuổi. Môn cơ học thiên thể ra đời không thể quên ghi công khai sáng càu Gauss bởi công trình lý thuyết chuyển động của các thiên thể vào năm ông 32 tuổi. Cùng với các công trình toán học, các công trình thiên văn học, vật lí học trở thành các cành nhánh khổng lồ của cây đại thụ của Gottiengen: Gauss. Sẽ thật là thú vị khi ta biết rằng Gauss còn là người chỉ huy việc lập bảng đồ ở vương quốc Hanover bằng phương pháp tam giác đạc. Hình dạng gần chính xác của trái đất chúng ta cũng được Gauss vẽ ra hoàn chỉnh bởi cây bút sáng tạo ra những công trình trắc địa cao cấp. Kính phát tín hiệu đo, phương pháp xử lí kết quả đo và nhiều định lí cơ bản trong lí thuyết sai số thuộc phương pháp tính được khai sinh vào thập kỉ 20 của thế kỉ XIX vẫn bởi bộ óc và bàn tay thiên tài ấy. Vật lí học cón ghi dấu ấn của Gauss trong công trình Cường độ từ lực trái đất đưa về độ đo tuyệt đối và từ đó thời gian tính bằng giây, độ dài tính bằng milimet và khối lượng tính bằng gam trở thành ba đơn vị cơ bản của các đơn vị đo. 1833 với máy` điện báo, 1839 với Lí thuyết tổng quát về các lực hút và đẩy tác dụng tỉ lệ nghịch với bình phương khoảng cách. 1840 với lí thuyết dựng ảnh trong các quan hệ phức tạp, 1845 với tốc độ hữu hạn của sự truyền tương tác điện từ… 1837 từ kế dây treo và 1839 thì công trình Lí thuyết tổng quát về địa từ gây tiếng vang lớn. Tên ông trở thành đơn vị đo vecto cảm úng từ. Người đời còn tốn nhiều giấy bút để viết về cuộc đời và những cống hiến kinh ngạc của ông. Bởi người ta ít thấy một địa hạt toán học nào vắng bóng dáng ông. Chỉ đáng tiết rằng ông cũng đã từng nghiên cứu hình học phi Euclide như Lobachevski nhưng ngại không công bố các phát minh ấy vì sợ những kẻ dốt nát không hiểu sẽ cười cợt ,chế nhạo.

L

Page 129: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

129

Ngọc nào mà chẳng có vết. Dẫu có điều ấy Gauss vẫn mãi mãi trở thành một cột móc vĩ đại trên con đường nhận thức của nhân loại. Dân tộc Đức vĩ đại có quyền tự vì thế giới không có nhiều người như Gauss , chỉ có Newton, Euler và một số người khác...

TOÁN VUI

Xếp thứ tự theo số cá câu được Bốn chàng trai là Văn, Phong, Cường, Tuấn đem số ca câu được của mỗi người ra so sánh với nhau thì thấy _ Của Tuấn nhiều hơn của Cường _ Của Văn và Phong cộng lại bằng của Cường và Tuấn cộng lại. _ Của Phong và Tuấn cộng lại ít hơn của Văn và Cường cộng lại. Hãy xác định thứ tự các chàng trai theo số cá câu được Vận tốc dòng nước Một cây bèo trôI theo dòng nước và một người bơI ngược dòng nước cùng xuất phát cùng một thời điểm tại một mố cầu. Người bơI ngược dòng nước được 20 phút thì quay lại bơI xuôI dòng và gặp cây bèo cách mố cầu 4 km. Bằng lập luận hãy tính vận tốc dòng nước biết rằng vận tốc bơI của người không thay đổi Những quả bóng màu Trong hộp có 45 bóng màu, gồm 20 màu đỏ, 15 xanh và 10 vàng. Cần lấy ra bao nhiêu bóng để chắc chắn có 3 bóng:

a) Màu đỏ b) Cùng màu c) Khác màu nhau.

Lá sen phủ kín mặt hồ Trong hồ trồng một cây sen, cứ sau một ngày diện tích lá sen lại tăng gấp đôi. Từ 6h ngày 11/ 6 đến 6h ngày 19/6( 8 ngày) lá sen phủ kín mặt hồ. Hỏi phảI trồng ít nhất bao nhiêu cây sen và trồng vào những ngày nào để 6h ngày 19/6 lá sen phủ kin 25/64 diện tích mặt hồ? Các vận động viên thể thao Trong một thi thể thao, đoạt các giảI đầu là các vận động viên mang áo số 1,2,3 và 4, nhưng không ai có số áo trùng với thứ tự giảI. Hãy xác định thứ tự giảI của các vận động viên, biết rằng: Vận động viên đoạt giảI tư có số áo như thứ tự giảI của vận động viên mang áo số 2. Vận động viên mang áo số 3 không đoạt giảI nhất. Gặp gỡ_ làm quen Một nhà văn có 20 người thân quen ( 11 đàn ông và 9 đàn bà) và thường mời họ đến nhà mình chơi. Trong mỗi dịp,đều mời 3 người đàn bà và 2 người đàn ông. Hỏi nhà văn cần ít ra bao nhiêu lần mời để mọi người khách ( 20 người) đều có dịp gặp gỡ _ làm quen với nhau tại nhà của nhà văn? Thanh toán nợ nần trong sinh viên Có 7 sinh viên sống trong một phòng tập thể. Trong năm học họ đã cho nhau vai những món tiền nhỏ.Mỗi người đều ghi số tiền mình vay, và số tiền người cho vay nhưng lại không ghi cho ai vay và vay của ai. Trước khi nghỉ hè họ quyết định thanh toán nợ nần với nhau. Bằng cách nào có thể thnah toán sòng phẳng nợ nần giữa các sinh viên? Bạn hãy tìm cách giảI quyết sao cho đơn giản. Tuổi ba cô gái Ba cô gáI là Mùi, Tâm ,Lan nói chuyện về tuổi của họ như sau: _ Tâm: TôI 22 tuổi. TôI ít hơn Lan 2 tuổi và nhiều hơn Mùi 1 tuổi. _ Lan: TôI không trẻ nhất. TôI và Mùi chênh nhau 3 tuổi. Mùi 25 tuổi. _ Mùi: TôI trẻ hơn Tâm 23 tuổi. Lan nhiều hơn Tâm 3 tuổi.

Page 130: He pt

Cô sôû BDVH - LTĐH Cao NguyeânBMT www.luyenthicaonguyen.com

ĐC: 128/39 Ywang - BMT ĐT: 0984.959.465-0945.46.00.44

130

Thực ra mỗi cô gáI chỉ nói đúng 2 ý còn một ý sai. Bạn hãy xác định giúp xem tuổi của mỗi người ra sao? Trồng hoa trong ô tròn Bên trong một ô vườn hình tròn bán kính 1m có trồng 4 cây hoa. Chính minh rằng có ít ra một cặp( hai cây) sao cho khoảng cách giữa chúng nhõ hơn căn 2 m. Mau gà Ông hàng thịt nói: Hai con gà tây này cân chung nặng 20 fun. Nhưng giá tiền 1 fun gà tây con đắc hơn 1 fun gà tây lớn là 2 xento. Bà Xmit mua con gà tây với giá 82 xento. Còn bà Braun trả 2 Dola 96 xento để mua con lớn. Vậy mỗi con giá bao nhiêu? Chia tiền công Hopxơ và Nopxo nhận trồng khoai tây trên rưộng của chủ trại Xnopxo với tiền công là 5 dola. Nopxo có thể đặt củ cho một luống khoai mất 40 phút và lấp đất 1 luống cũng mất chừng đó thời gian. Còn Hopxo thì đặt củ cho một luống chỉ mất 20 phút, nhưng cứ lắp được 2 luống đất thì Nopxo lắp được 3 luống. Hopxo và Nopxo làm việc suốt trong thời gian với tốc độ không đổi cho đế khi trồng xong mảnh rưo, mổi người vừa đập củ vừa lắp luống. Biết rằng mảnh ruộng được chia thành 12 luống,hãy cho biết làm thế nào chia năm lô ra cho hai người để mỗi người nhận được phần tiền công tương ứng với công việc đã làm.