head regulator design

73
Coefficients for Sluice gates Coefficients (contraction, discharge) b/h Cc Cd 1 2 3 0 0.611 0.611 0.1 0.608 0.59 0.2 0.605 0.57 0.3 0.604 0.5552 0.4 0.6044 0.542 0.5 0.6072 0.53 0.6 0.612 0.523 0.65 0.617 0.519 Variation of dicharges coefficient with boundary form b=opening of the gate h= u/s head of water over crest Cc= coefficient of contration Cd= coefficient of discharge q= Cd*b*(2gh)^.5 Cd= Cc/[1+Cc*(b/h)] Cc =< Pi/(pi+2)=0.611 Drowning Ratio 1 2 0.85 3.09 0.87 2.9 0.885 2.8 0.9 2.7 0.91 2.6 0.92 2.5 0.93 2.4 0.94 2.3 0.946 2.2 0.953 2.1 0.96 2 1 2 1 2 b/B Cc 0.000 0.611 0.458 0.640 0.675 0.680 0.743 0.700 0.897 0.780 0.950 0.840 0.990 0.940 1.000 1.000 Drowning Ratio Co- efficient (C) 0.8 0.85 0.9 0.95 1 Drowning Ratio vs Coefficient Drowning Ratio Co-efficient C 0 2 4 6 8 10 12 0 5 10 15 Contraction Co-efficient for Orific b=90 degree b/B Cc 0 2 4 6 8 1 0 2 4 6 8 10 12 Coefficients Cd, Cc vs for Sluice gate b/h Coefficients Cd,

Upload: wilfredo-salgado

Post on 01-Dec-2014

942 views

Category:

Documents


92 download

TRANSCRIPT

Page 1: Head Regulator Design

Coefficients for Sluice gatesCoefficients (contraction, discharge)

b/h Cc Cd1 2 3

0 0.611 0.6110.1 0.608 0.590.2 0.605 0.570.3 0.604 0.55520.4 0.6044 0.5420.5 0.6072 0.530.6 0.612 0.523

0.65 0.617 0.519

Variation of dicharges coefficient with boundary formb=opening of the gateh= u/s head of water over crestCc= coefficient of contrationCd= coefficient of dischargeq= Cd*b*(2gh)^.5Cd= Cc/[1+Cc*(b/h)] Cc =< Pi/(pi+2)=0.611

Drowning Ratio

1 20.85 3.090.87 2.9

0.885 2.80.9 2.7

0.91 2.60.92 2.50.93 2.40.94 2.3

0.946 2.20.953 2.1

0.96 21 2

1 2b/B Cc

0.000 0.6110.458 0.6400.675 0.6800.743 0.7000.897 0.7800.950 0.8400.990 0.9401.000 1.000

Drowning Ratio

Co-efficient (C)

Q=C' b H3/2

0.8

0.85

0.9

0.95

1

Drowning Ratio vs Coefficient C

Drowning Ratio

Co

-eff

icie

nt

C

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Contraction Co-efficient for Orifice flowb=90 degree

b/B

Cc

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Coefficients Cd, Cc vs b/hfor Sluice gate

b/h

Co

eff

icie

nts

Cd

, C

c

Page 2: Head Regulator Design

1 2h/H C'/C0.00 1.000.10 0.990.20 0.980.30 0.970.40 0.960.50 0.940.60 0.91 0.820.70 0.860.80 0.780.90 0.621.00 0.61

Figures in Table ByProf. GibsonFor BroadCrested Wier

Modified Discharge Coefficient for Submerged Flow

1 21-H/Hw C'/C

0.80 1.000.83 1.000.90 0.980.93 0.940.95 0.840.97 0.700.98 0.670.99 0.50

0.995 0.401.00 0.101.00 0.00

Take C = 2.1 (in Meteric Units) C = 3.80 (in Feet Units)

Q=C' b H3/2

0 0.2 0.4 0.6 0.8 1

00.10.20.30.40.50.60.70.80.9

1

Co-Efficient C'/ C Vs h/H

Hh

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.8

0.85

0.9

0.95

1

Modified discharge co-efficients for submerged flow

C'/C

1-H

/Hw

Page 3: Head Regulator Design

Free Fall condition Q=Cd*A*{2g(d1-d2)+v1^2]^.5

Submerged condition Q=Cd*A*{2gH]^.5

0.8

0.85

0.9

0.95

1

Drowning Ratio vs Coefficient C

Drowning Ratio

Co

-eff

icie

nt

C

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Contraction Co-efficient for Orifice flowb=90 degree

b/B

Cc

h b=opening

wsEl

EGL

v^2/2g

Cc*b= at vena contracta

v1^2/2g

h D1

u/s wsEl

EGLv^2/2g

D2

v2^2/2g

^2/2gH

Flow

Ds

d/s wsEl

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Coefficients Cd, Cc vs b/hfor Sluice gate

b/h

Co

eff

icie

nts

Cd

, C

c

v1^2/2g

Page 4: Head Regulator Design

0 0.2 0.4 0.6 0.8 1

00.10.20.30.40.50.60.70.80.9

1

Co-Efficient C'/ C Vs h/H

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.8

0.85

0.9

0.95

1

Modified discharge co-efficients for submerged flow

C'/C

1-H

/Hw

Page 5: Head Regulator Design

GIVEN DATA OF CHANNEL & STRUCTURE:-UP STREAM DATA

u/s Designed Discharge Q(des)u/s 1935.00 cs

U/S Bed level of the structure USBL 618.91 315.61

USFSL USFSL 625.53 6.62

USBW USBW 105.00

u/s Manning's Constant US n 0.02220 f =0.89u/s Channel Side Slope SS 0.50u/s Water Surface Slope USWSS 0.000150 ft/ft 0.0001U/S Free Board USFB 3.00

DOWN STREAM DATAd/s Designed Discharge Q(des) d/s 1873.00 cs 2153.95d/s full supply level DSFSL 622.53d/s Bed level DSBL 616.02 6.51 6.51DSBW DSBW 105.00 ftd/s Manning's Constant DS n 0.0223 f=.90d/s Channel Side Slope SS 0.50 ft/ftd/s Bed Width DSBD 105.00 ftd/s Water Surface Slope DSWSS 0.000150 ft/ftNatural Surface Level NSL 619.67D/S Free Board DSFB 3.00Existing BL EDSBL 615.07

STRUCTURE"S DATANo of Bays (No of Gates) NB 7 NoBays Width (Gate Width) BW 11.25 ftNo of Bays (No of Gates) NB 7Bays Width (Gate Width) BW 11.25No of Piers NP 6 No 70.55Piers Width PW 2.50 ftWater way through the peirs 78.75 75.0 %age flumingJust d/s of Pier Total Water Way JDSWW 93.75 89.29 %age fluming

Width of the structure 93.75Structure's Water Width SWW 93.75 ftu/s Glacis Slope USGS 2 ft/ft 675.29d/s Glacis Slope DSGS 3 ft/ftCrest Level CL 620.00 620.54 619.78Height of Crest HC 1.09 673.29Cistern Level Cist.L 614.50 615.02 615.16

CROSS REGULATOR AT RD 78+000 (Burala Branch) Note:-

Page 6: Head Regulator Design

USNSL USNSL 619.67SSWL SSWLFall in Water 3.00Fall in Bed 2.89

Q 1873.00C 2.45B 78.75WEIR FORMULA =(Q/CB)^2/3 4.55Crest Level= 620.98

Page 7: Head Regulator Design

15500 4100 11400

Q 1873.00

Hw 3.00

He 5.64 1 2

1-Hw/He 0.47 1-H/Hw C'/C

C/C' 1.00 0.80 1.00C 3.09 0.83 1.00Le = Q/Cx H^3/2 45.28 0.90 0.98Lt = Le + 2(NxKp+Ka)He 0.93 0.94

No of Piers 6 0.95 0.84Kp 0.01 0.97 0.70Ka 0.2 0.98 0.67Lt 48.21 0.99 0.50Diff of C31 , I15 -30.54 1.00 0.40By changing crest level 1.00 0.10Crest EL 620.00 1.00 0.00

620.00

75% Q

Q 1404.75Hw 3.21He 3.271-Hw/H 0.02C/C' 1.00C 3.09Le = Q/Cx H^3/2 76.99Lt = Le + 2(NxKp+Ka)HNo of Piers 7Kp 0.01Ka 0.2Lt 78.75Diff of C31 , I35 0.00By changing crest levelAssumed CL 621.51Crest EL 621.51

Note:-

Q=C' b H3/2

Macro CL

Macro CL2

Page 8: Head Regulator Design

UPSTREAMDesigned By:- Muhammad Irshad Mian:

Deputy Director Design

Discharge =QDesigned Bed Width =BNomal depath of channel =DSide Slope =ZWater Surface slope =SArea =A =(B+ZD)DWetted Perimeter =P =B+2D(1+Z^2)^0.5Hydraulic radious =R =A/PCalculated Discharge =Qc =AxVVelocity =V =1.1547(fxR)^0.5

Lacy's Silt Factor =f = 193.10(R^0.5 x S)^2/3

mich6857:

S.NO %age Discharge DifferenceQ B D DB wl z S f A P R v Qc

1 130% 2516 105.00 7.90 618.91 626.81 0.50 0.00015 0.91 861.03 122.671 7.02 2.921 2516 02 120% 2322 105.00 7.49 618.91 626.40 0.50 0.00015 0.91 814.23 121.743 6.69 2.852 2322 03 110% 2129 105.00 7.06 618.91 625.97 0.50 0.00015 0.91 766.33 120.789 6.34 2.778 2129 04 100% 1935 105.00 6.62 618.91 625.53 0.50 0.00015 0.91 717.19 119.806 5.99 2.698 1935 05 90% 1742 105.00 6.17 618.91 625.08 0.50 0.00015 0.91 666.65 118.792 5.61 2.612 1742 06 75% 1451 105.00 5.46 618.91 624.37 0.50 0.00015 0.91 587.70 117.199 5.01 2.469 1451 07 50% 968 105.00 4.15 618.91 623.06 0.50 0.00015 0.91 444.76 114.288 3.89 2.175 968 08 50% 968 105.00 4.15 618.91 623.06 0.50 0.00015 0.91 444.76 114.288 3.89 2.175 968 09 50% 968 105.00 4.15 618.91 623.06 0.50 0.00015 0.91 444.76 114.288 3.89 2.175 968 0

DETERMINATION OF WATER LEVEL AT VARIOUS DISCHARGESBY LACY's THEORY FALL R.D ------ CANAL

Bed Width of Channel

Depth of channel

DesignedBed Level

WaterLevel

Side Slope

Water SurfaceSlope

Lacy's"f"

Area of flow

Wetted Perimeter

Hydraulic Radious

Velocity of approach

Calculated discharge

To Calculate Depth of Channel in column" E " in Red Click Calculte Button

Page 9: Head Regulator Design

USTEL Difference

626.95626.52626.09 11.47 -4.41625.64 10.82 -4.20625.18 10.15 -3.98624.46 9.08 -3.62623.14 7.10 -2.94623.14 4.66 -0.51623.14 2.68 1.47

Page 10: Head Regulator Design
Page 11: Head Regulator Design

DOWNSTREAM

Designed By:- Muhammad Irshad Mian:Deputy Director Design

Discharge =QBed Width =BNomal depath of channel =DSide Slope =ZWater Surface slope =SArea of Flow =A =(B+ZD)DWetted Perimeter =P =B+2D(1+Z^2)^0.5Hydraulic Radious =R =A/PCalculated Discharge =QC =AxVVelocity =V =1.1547(fxR)^0.5

Lacy's Silt Factor =f = 193.10(R^0.5 x S)^2/3

S.NO Discharge Velocity USTEL

%age Q B D DB wl z S f A P R v Qc

1 130% 2516 105.00 7.77 300.90 308.67 0.50 0.0001 0.96 845.79 122.369 6.91 2.974 2516 0 308.812 120% 2322 105.00 7.36 300.90 308.26 0.50 0.0001 0.96 799.84 121.457 6.59 2.903 2322 0 308.393 110% 2129 105.00 6.94 300.90 307.84 0.50 0.0001 0.96 752.82 120.519 6.25 2.828 2129 0 307.964 100% 1935 105.00 6.51 300.90 307.41 0.50 0.0001 0.96 704.58 119.554 5.89 2.747 1935 0 307.535 90% 1742 105.00 6.06 300.90 306.96 0.50 0.0001 0.96 654.96 118.556 5.52 2.659 1742 0 307.076 75% 1451 105.00 5.36 300.90 306.26 0.50 0.0001 0.96 577.43 116.991 4.94 2.513 1451 0 306.367 50% 968 105.00 4.08 300.90 304.98 0.50 0.0001 0.96 437.04 114.130 3.83 2.214 968 0 305.068 25% 484 105.00 2.56 300.90 303.46 0.50 0.0001 0.96 272.56 110.734 2.46 1.775 484 0 303.519 10% 194 105.00 1.39 300.90 302.29 0.50 0.0001 0.96 146.79 108.105 1.36 1.318 194 0 302.32

DETERMINATION OF WATER LEVEL AT VARIOUS DISCHARGESBY LACY's THEORY FALL R.D ------ CANAL

%age of

Discharge Bed Width of Channel

Depth of channel

DesignedBed Level

WaterLevel

Side Slope

Water SurfaceSlope

Lacy's"f"

Area of flow

Wetted Perimeter

Hydraulic Radious

Calculated discharge

Difference of

Discharge

To Calculate Depth of water in Channel, Clik Calculate Button.

Page 12: Head Regulator Design

S.No Area of flow

%age Qdes n S Z B Y B/D A P R T

1 130% 2516 0.02220 0.000150 0.50 105.00 7.77 13.5 845.70 122.37 6.91 112.77

2 120% 2322 0.02220 0.000150 0.50 105.00 6.61 15.9 716.39 119.79 5.98 111.61

3 110% 2129 0.02220 0.000150 0.50 105.00 7.01 15.0 760.80 120.68 6.30 112.01

4 100% 1935 0.02220 0.000150 0.50 105.00 6.61 15.9 716.39 119.79 5.98 111.61

5 90% 1742 0.02220 0.000150 0.50 105.00 6.20 16.9 670.43 118.87 5.64 111.20

6 75% 1451 0.02220 0.000150 0.50 105.00 5.55 18.9 597.99 117.41 5.09 110.55

7 50% 968 0.02220 0.000150 0.50 105.00 4.33 24.2 464.49 114.69 4.05 109.33

8 25% 484 0.02220 0.000150 0.50 105.00 2.85 36.9 302.86 111.36 2.72 107.85

9 10% 194 0.02220 0.000150 0.50 105.00 1.64 64.2 173.06 108.66 1.59 106.64

S.No Area of flow

%age Qdes n S Z B Y B/D A P R T1 130% 2435 0.02230 0.000150 0.50 105.00 7.63 13.8 830.77 122.07 6.81 112.63 2 120% 2248 0.02230 0.000150 0.50 105.00 6.50 16.1 703.83 119.54 5.89 111.50 3 110% 2060 0.02230 0.000150 0.50 105.00 6.89 15.2 747.43 120.41 6.21 111.89 4 100% 1873 0.02230 0.000150 0.50 105.00 6.50 16.1 703.83 119.54 5.89 111.50 5 90% 1686 0.02230 0.000150 0.50 105.00 6.10 17.2 658.71 118.63 5.55 111.10 6 75% 1405 0.02230 0.000150 0.50 105.00 5.45 19.3 587.58 117.20 5.01 110.45 7 50% 937 0.02230 0.000150 0.50 105.00 4.26 24.6 456.47 114.53 3.99 109.26 8 25% 468 0.02230 0.000150 0.50 105.00 2.80 37.5 297.69 111.26 2.68 107.80 9 10% 187 0.02230 0.000150 0.50 105.00 1.61 65.3 170.13 108.60 1.57 106.61

DETERMINATION OF U/S DEPTH OF WATER IN THE APPROACHING CHANNELBY MANNING FORMULA

Dischargein %age

Designed Discharge

Manning's Constant

Water Surface Slope

Side Slope ( H : V )

Bed Width of Channel

Depth of water

Bed width / Depth of water

Wetted Paremeter

Hydraulic Radius

Water Surface width

Dischargein %age

Designed Discharge

Manning's Constant

Water Surface Slope

Side Slope ( H : V )

Bed Width of Channel

Depth of water

Bed width / Depth of water

Wetted Paremeter

Hydraulic Radius

Water Surface width

Page 13: Head Regulator Design

USBL USFSL USTEL E1

D V U/S hv USBL USFSL USTEL Qc diff

7.50 2.97 0.14 302.01 309.78 309.91 7.90 2515.50 0.00

6.42 2.70 0.11 302.01 308.62 308.74 6.73 1935.00 0.00

6.79 2.80 0.12 302.01 309.02 309.14 7.13 2128.50 0.00

6.42 2.70 0.11 302.01 308.62 308.74 6.73 1935.00 0.00

6.03 2.60 0.10 302.01 308.21 308.32 6.31 1741.50 0.00

5.41 2.43 0.09 302.01 307.56 307.65 5.64 1451.25 0.00

4.25 2.08 0.07 302.01 306.34 306.41 4.40 967.50 0.00

2.81 1.60 0.04 302.01 304.86 304.90 2.89 483.75 0.00

1.62 1.12 0.02 302.01 303.65 303.66 1.65 193.50 0.00

USBL USFSL USTEL E1

D V U/S hv USBL USFSL USTEL Qc diff7.38 2.93 0.13 302.01 309.64 309.78 7.77 2434.90 0.00 6.31 2.66 0.11 302.01 308.51 308.62 6.61 1873.00 0.00 6.68 2.76 0.12 302.01 308.90 309.02 7.01 2060.30 0.00 6.31 2.66 0.11 302.01 308.51 308.62 6.61 1873.00 0.00 5.93 2.56 0.10 302.01 308.11 308.21 6.20 1685.70 0.00 5.32 2.39 0.09 302.01 307.46 307.55 5.54 1404.75 0.00 4.18 2.05 0.07 302.01 306.27 306.34 4.33 936.50 0.00 2.76 1.57 0.04 302.01 304.81 304.85 2.84 468.25 0.00 1.60 1.10 0.02 302.01 303.62 303.64 1.63 187.30 0.00

Hydraulic Depth (A/T)

Velocity of Approach

U/S Velocity head

U/S Discharge Calculated

Diff of discharge

Hydraulic Depth (A/T)

Velocity of Approach

U/S Velocity head

U/S Discharge Calculated

Diff of discharge

Page 14: Head Regulator Design

Width of Weir, W ft 78.75 78.75 78.75Bed Slope ft/ft 0.00015 0.00015 0.00015Cross sectional Area, A sq.ft 1625 393.95 393.95Hydraulic depth, D ft 7.5 2.52 2.58Velocity, V ft/sec 1.74 0.84 0.86Discharge Qcal cusecs 2832.90 331.93 337.18Max discharge Q cusecs 30000 5000 5000Intensity q cusecs/ft 380.95 63.49 63.49Critical depth, dc ft 16.52 5.00 5.00Critical Velocity,Vc ft/sec 23.06 12.69 12.69

Full Suply Level in Canal 1033 1033 1032Bed Level in Canal 1030.2 1030.2

Head of Water Over Crest 24.77 7.50 7.50Crest Level of Weir 1008.22912 1025.49805Crest Level of Weir Adopted 1024.78 1028.5

Depth of water over crest (adopted) 8.22 3.50Q 5736.82 1593.35

UpStream 130% 120% 110% 100% 90% 75% 50% 50% 50%Q Cusecs 2,516 2,322 2,129 1,935 1,742 1,451 968 968 968Bt ft 78.75 78.75 78.75 78.75 78.75 78.75 78.75 78.75 78.75

Bed Slope ft/ft 0.00015 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002dn ft 7.903 7.488 7.061 6.622 6.168 5.455 4.154 4.154 4.154dc ft 3.164 3.000 2.831 2.657 2.476 2.193 1.674 1.674 1.674

Velocity of appraoch ft/sec 2.921 2.852 2.778 2.698 2.612 2.469 2.175 2.175 2.175ha ft 0.133 0.126 0.120 0.113 0.106 0.095 0.073 0.073 0.073

Total energy E1 (u/s) ft 8.035 7.614 7.181 6.735 6.274 5.550 4.227 4.227 4.227TEL (u/s) ft 626.945 626.524 626.091 625.645 625.184 624.460 623.137 623.137 623.137

Actual Scour below bed R , ft 4.961 4.703 4.438 4.165 3.882 3.438 2.624 2.624 2.624He =H+ha ft 4.878 4.625 4.365 4.097 3.820 3.383 2.583 2.583 2.583

Crest Level ft 622.07 621.90 621.73 621.55 621.36 621.08 620.55 620.55 620.55Crest Level Adopted ft 626.57 626.57 626.57 626.57 626.57 626.57 626.57 626.57 626.57

He recalculated ft 0.38 -0.05 -0.48 -0.93 -1.39 -2.11 -3.43 -3.43 -3.43TEL(d/s) ft 311.82 311.25 310.66 310.05 309.43 308.45 306.65 304.51 304.51

BL ft 300.90 300.90 300.90 300.90 300.90 300.90 300.90 300.90 300.90 322.237q cusecs/ft 31.94 29.49 27.03 24.57 22.11 18.43 12.29 12.29 12.29

d1 ft 0.22 0.20 0.19 0.17 0.15 0.13 0.09 0.09 0.09d2 ft 16.85 16.19 15.49 14.77 14.01 12.79 10.43 10.45 10.45Hl ft 315.12 315.28 315.43 315.59 315.76 316.01 316.49 318.62 318.62

Hl=[(d2-d1)^3]/(4d1d2) ft 309.57 309.72 309.88 310.05 310.22 310.49 310.98 313.04 313.04-5.56 -5.55 -5.55 -5.54 -5.54 -5.53 -5.51 -5.58 -5.58

Velocity ft/sec 144.95 144.84 144.72 144.60 144.47 144.27 143.86 144.32 144.32Froud No (F1) 54.41 56.57 59.02 61.82 65.08 71.13 86.75 87.17 87.17

Basin Type USBR-II USBR-II USBR-II USBR-II USBR-II USBR-II USBR-II USBR-II USBR-II

Critical Depth ft 3.164 3.000 2.831 2.657 2.476 2.193 1.674 1.674 1.674Depth of flow after Weir Construction ft 10.921 10.349 9.760 9.155 8.529 7.546 5.748 3.613 3.613

Type of Flow in the Channel Sub-critical Sub-critical Sub-critical Sub-critical Sub-critical Sub-critical Sub-critical Sub-critical Sub-critical

Length of Jump

2.428 2.526 2.637 2.765 2.913 3.188 3.898 3.917 3.917Factor m=tanh K 0.985 0.987 0.990 0.992 0.994 0.997 0.999 0.999 0.999

ft 50.0 45.0 45.0 40.0 35.0 30.0 20.0 20.0 20.0

Location of the Jump 300.47 300.56 300.67 300.78 300.92 301.15 301.70 299.62 299.62Basin Level 300.25 300.36 300.48 300.61 300.76 301.03 301.61 299.54 299.54Basin Level with respect of d2 294.84 294.94 295.05 295.17 295.31 295.56 296.14 293.99 293.99Length of basin 99.77 95.89 91.84 87.61 83.15 75.95 62.10 62.20 62.20

SummaryQmax cusecs 30000Qmin cusecs 5000Width of proposed Weir ft 220u/s Floor Level ft 1020Crest Level ft 1028.5Crest Length ft 12u/s Glaces Slope 2.5:1d/s Glaces slope 3.0:1Type of Basin USBR-IVLength of Basin ft 80Stone apron on u/s ft 30.00Stone apron on d/s ft 45.00Top of Side Wall =HFL+FB ft 1040

Factor K=(F1-1)/22

Length of Jump L=d1*220*m (Ref: Hager 1991a) Open Channel Flow by M. Hanif Choudhry

Page 15: Head Regulator Design

REHABILITATING LOWER CHENAB CANAL SYSTEMCROSS REGULATOR AT RD 78+000 (Burala Branch)

Design Channel U/S 120% 100% 80% 80%

A Cs Qdes = 2322.00 1935.00 1548.00 1548.00Manning's Constant n = 0.0222 0.02220 0.0222 0.0222Water Surface Slope S = 0.00015 0.000150 0.000150 0.000150Side Slope ( H : V ) Z = 0.5 0.50 0.5 0.5Bed Width of Channel ft B = 105.00 105.00 105.00 105.00Depth of water ft Y = 7.40 6.61 5.77 5.77Bed width / Depth of water B/D = 14.2 15.9 18.2 18.2 Area of flow sq.ft A = 803.85 716.39 622.66 622.66Wetted Paremeter ft P = 121.54 119.79 117.91 117.91 Hydraulic Radius ft R = 6.61 5.98 5.28 5.28 Water Surface width ft T = 112.40 111.61 110.77 110.77 Hydraulic Depth (A/T) ft D = 7.15 6.42 5.62 5.62 Velocity of Approach ft/sec V 2.89 2.70 2.49 2.49

U/S Velocity head ft = 0.13 0.11 0.10 0.10USBL ft USBL = 618.91 618.91 618.91 618.91 USFSL ft USFSL = 626.31 625.52 624.68 624.68USTEL ft USTEL = 626.43 625.64 624.78 624.78 E1 7.52 6.73 5.87 5.87 U/S Discharge Calculated cs Qc = 2322.00 1935.00 1548.00 1548.00

diff 0.00 0.00 0.00 0.00 Crest level calculated CL 620.00

B U/S Critical Depth Yc = 2.47 2.19 1.88 1.88

Area , Ac sq.ft Ac = 262.05 231.85 199.62 199.62 Top width = T ft T = 107.47 107.19 106.88 106.88 Hydraulic Depth(D), D =A/T ft D = 2.44 2.16 1.87 1.87

ft/sec Vc = 8.86 8.35 7.75 7.75 Qcal cs Qc = 2322.00 1935.00 1548.00 1548.00

cs diff 0.00 0.00 0.00 0.00

C AT StructureNos of bays No NB = 7 7 7 7 No of Piers No NP = 6 6 6 6 Piers width ft PW = 2.50 2.50 3 3 Bay's width ft BW = 11.25 11.25 11.25 11.25 Clear Water way 78.75 78.75 78.75 78.75 q cs/ft q = 28.54 23.78 17.84 11.89 Critical depth in rectangular Section ft Yc = 2.94 2.60 2.15 1.64 Water Width d/s of piers ft TW = 93.75 93.75 93.75 93.75 Critical height of hump ft = 3.55 3.20 2.95 3.59 Fluming %age = 89.29 89.29 89.29 89.29 Critical Velocity ft/sec Vc = 9.72 9.15 8.31 7.26

ft hc = 1.47 1.30 1.07 0.82 Critical height of hump= E1-1.5yc ft = 3.12 2.83 2.65 3.41 Proposed crest level = 620.00

D Channel Design D/S %age 120% 100% 75% 50%Designed Discharge Cs Qdes = 2247.60 1873.00 1404.75 936.50 Manning Constant n = 0.0223 0.0223 0.0223 0.0223 Water surface Slope WSS WSS = 0.000150 0.000150 0.000150 0.000150 Side Slope Z = 0.50 0.50 0.50 0.50 Channel Bed Width ft B = 105.00 105.00 105.00 105.00 Water Depth ft y = 7.27 6.50 5.45 4.26 Bed width / Depth of water B/D = 14.44 16.15 19.25 24.64 Area sq.ft A = 789.69 703.83 587.58 456.47 Wetted Paremeter ft P = 121.25 119.54 117.20 114.53 Hydraulic Radius ft R = 6.51 5.89 5.01 3.99 d/s Velocity in the Channel ft/sec V(d/s) = 2.85 2.66 2.39 2.05

D/S Velocity head ft = 0.13 0.11 0.09 0.07

Designed Discharge (with 15% future development). 20% further is taken as concentration of flow.

U/S hv

Diff of discharge Qc-Qdes (Run Micro1) =

Critical Depth U/S w.r.t V2/2g=D/2

Critical Velocity, Vc = (gD)(1/2)

Qcal-Qdes ( Run MicroC )

Zchj

Critical Head Loss (Vc2/2g)

d/s hv

Page 16: Head Regulator Design

DSBL ft DSBL = 616.02 616.02 616.02 616.02 DSFSL ft DSFSL = 623.29 622.52 621.47 620.28 DSTEL ft DSTEL = 623.41 622.63 621.56 620.35 D/S Discharge Calculated cs Qc = 2247.60 1873.00 1404.75 936.50

cs diff = 0.00 0.00 0.00 0.00 OPEN FLOW H=(Q/BC)^.6667 4.40 3.90 3.22 2.46

E WEIR Crest Lev cal 619.01 618.73 618.35 617.89 Crest Level 620.00 620.00 620.00 620.00 Bed level u/s 618.91 618.91 618.91 618.91 Height of hump = z 1.09 1.09 1.09 1.09 Critical height of hump 3.12 2.83 2.65 3.41 Critical depth yc 2.94 2.60 2.15 1.64 U/S total energy = E1 5.0296007223 7.52 6.73 5.87 5.87 H 6.09 5.33 4.54 4.68 Water way 78.75 78.75 78.75 78.75 E2 = z + H + v2^2/2g Equate E1 = E2 7.52 6.73 5.87 5.87 E1 - E2 = 0 by changing H 0.00 0.00 0.00 0.00

velocity at crest 4.68 4.46 3.93 2.54 Velocity head v^2/2g 0.34 0.31 0.24 0.10 We have Crest Level 620.00 620.00 620.00 620.00

O.K. O.K. O.K. O.K.let u/s depth y1 7.29 6.52 5.72 5.80 E2 = z + 1.5 yc 7.52 6.73 5.87 5.87 E1= y1+V1^2/2g 7.52 6.73 5.87 5.87 difference 0.00 0.00 0.00 0.00 Water level u/s of the weir 626.31 625.52 624.68 624.68 D/S water level 623.29 622.52 621.47 620.28 Head loss 3.02 3.00 3.21 4.40 q 28.54 23.78 17.84 11.89

A = Height of Crest above d/s cistren 5.50 5.50 5.50 5.50 He = Depth of water over crest u/s 6.31 5.52 4.68 4.68 u/s velocity head 0.24 0.21 0.15 0.07 Ef = A + He 12.04 11.23 10.33 10.25 q 28.54 23.78 17.84 11.89 f 1.00 1.00 1.00 1.00

d1 1.07 0.92 0.72 0.47

28.54 23.78 17.84 11.89 differnce 0.00 0.00 0.00 0.00

d2 6.348 5.725 4.905 4.074

1.15 x d2 7.301 6.584 5.640 4.685

Depth available d/s 8.789 8.022 6.974 5.781d1 d2 (d2+d1) 50.595 35.136 19.764 8.7842 q^2/g 50.595 35.136 19.764 8.784v1=q/d1 26.579 25.765 24.885 25.087Froud No. F = v/(gd)^0.5 4.520 4.726 5.180 6.421Type of basin USBR_III USBR_III USBR_III USBR_IIICistren level Calculated by Conjugate depth 616.114 616.048 615.923 615.661Cistren level provided 614.500 614.500 614.500 614.500

Qc-Qdes ( Run Micro2 )

TYPE OF FLOW. If H > yc then sub critical flow other wisw critical flow

Sub critical flow

Sub critical flow

Sub critical flow

Sub critical flow

CHECK if H calculated is less than yc then hump is creating backwater effect.

CALCULATIONS FOR THE CISTERN LEVEL AND LENGTH GATES ARE NOT IN OPERATION

FIRST METHOD BY CONJUGATE DEPTH METHOD

CHECK FOR THE DISCHARGE.q = d1 ((2g ( E-d1))^0.5 f

Jump will not sweep

Jump will not sweep

Jump will not sweep

Jump will not sweep

Page 17: Head Regulator Design

USEL-(d1+hv1)614.39 614.41 614.44 614.53

LENGTH OF BASIN REQUIRED

Lbasin 15.0 13.0 12.0 11.0

Efficincy = &E = E1-E2 55% 53% 49% 41%

SECOND METHOD BY CRUMPS CURVES

Head Loss = USTEL-DSTEL Hl 3.02 3.00 3.21 4.40

Critical Depth, Yc Yc 2.94 2.60 2.15 1.64let d1 1.27 1.09 0.84 0.53but d2 = - d1/2 + ( 2/g q^2 /d1 + d1^2/4)^0.5 5.71 5.16 4.47 3.82CHECK FOR EQUATION 3.6

2.00 2.00 2.00 2.00Eq. 3.7

Hl / dc 1.03 1.16 1.49 2.69d2/dc - d1/dc)^3/ (4d1 d2 /dc^2) 1.03 1.15 1.49 2.69Eq 3.8 0.00 0.00 0.00 0.00(K + F) /dc = d1/dc +dc^2/2d1^2 = A 3.10 3.27 3.69 5.11K = depth over the crest 6.43 5.64 4.78 4.78F = A x dc - K 2.68 2.85 3.14 3.59Cistren level Calculated from Crump = crest level - F-d1 616.05 616.06 616.02 615.88required cistern level 615.83 615.83 615.83 615.83Available cistren level 614.50 614.50 614.50 614.50Depth of water in the stilling basin= d/s water level - cistern level 8.79 8.02 6.97 5.78

1.49 1.31 1.03 0.58

GL 4.48 3.94 3.08 1.73 Ef2=d/s TEL-Level of jump intersection 6.09 5.49 4.70 3.94

LENGTH OF BASIN REQUIRED Lb 27.41 24.68 21.17 17.71Lenth of Stillin pool = Lb-GL Lpool 22.927 20.738 18.085 15.980

THIRD METHOD BLENCH CURVESq = 28.54 23.78 17.84 11.89 d1 1.27 1.09 0.84 0.53but d2 = - d1/2 + ( 2/g q^2 /d1 + d1^2/4)^0.5 5.71 5.16 4.47 3.82

Hl 3.02 3.00 3.21 4.40

Hl = (d2 - d1)^3/4d1d2 3.02 3.00 3.21 4.40

0.00 0.00 0.00 0.00Ef2 = d2 + q^2 / (2gd2^2) 6.10 5.49 4.71 3.97 CHECK q = (d1d2(d1+d2) g / 2)^0.5 28.54 23.78 17.84 11.89Cistern level Calcualted from Blench = D/S TEL- 1.25 Ef2 615.79 615.77 615.67 615.39Lowest Cistren Level 615.31Available Cistren level 614.50 614.50 614.50 614.50

Depth of water in the stilling basin= d/s water level - cistern level 8.79 8.02 6.97 5.78v1 22.47 21.84 21.36 22.47

Length of cistren required = D2*L/D2 (USBR-fig12)

The value of d1/dc . d2/dc . (d1 +d2)/dc must equal to 2

Jump will not sweep

Jump will not sweep

Jump will not sweep

Jump will not sweep

Submergence of Jump= EL of intersection of Jump with glacis - cistern level=JS

Length of glacis d/s of intersection=JS*d/s lacis slope

Page 18: Head Regulator Design

Tail water depth = d/s WL - cistren level 8.79 8.02 6.97 5.78

Length of cistren required =4.5 x Ef2 27.436 24.709 21.208 17.858

COMPARISON OF BASIN LEVEL & LENGTH

Cojugate DepthCistern Level 615.57Length of Basin 13

Crump's MethodCistern Level 615.83Length of Basin 20.74

Blench Curve MethodCistern Level 615.31Length of Basin 24.71

Required CisternCistern Level 615.31Length of Basin 24.709Type Of Basin USBR_IIIProvided Cistern Level 614.50Cistern Length 25.000

q cs/ft q = 28.54 23.78 17.84 11.89

Depth in the approach channel ft Ya = 6.61 6.61 6.61 6.61

Discharge in the approach channel cs Qu/s = 2322.00 1935.00 1548.00 1548.00

Discharg in the canal d/s of the structure cs Qd/s = 2247.60 1873.00 1404.75 936.50

Crest level ft CL = 620.00 620.00 620.00 620.00

D/S FSL ft DSWL = 623.29 622.52 621.47 620.28U/S FSL ft USWL 626.31 625.52 625.52 625.52

u/s depth of water over crest ft d = 6.31 5.52 5.52 5.52

Head loss =U/S FSL - D/S FSL h = 3.02 3.00 4.05 5.24

u/s depth of water over crestY1 6.31 5.52 5.52 5.52

y3 = depth just d/s of gate ft y3 7.97 7.69 6.87 5.77

Let Opening of the Gate, y ft a 2.00 3.00 4.00 5.00

Ratio Gat opening/DOWOC a/y1 = 0.32 0.54 0.72 0.91 Assume d/s stilling basin level 614.50 614.50 614.50 614.50 y4 = depth in the channel d/s Y4 8.79 8.02 6.97 5.78

ft DSWW = 93.75 93.75 93.75 93.75 F4 = Froud No. in the d/s channel 0.16 0.15 0.14 0.13 y3/y4 0.91 0.96 0.98 1.00 (1+2 x (F4)^2 ( 1 - y4/y1))^0.5 0.91 0.96 0.98 1.00 Difference 0.00 0.00 0.00 0.00

TYPE OF FLOW= gated flow gated flow gated flow gated flow

page Cc = 0.60 0.60 0.59 0.59 page Cd (for orifice flow) = Cc /(1+Cc*a/H)^0.5 Cd = 0.56 0.53 0.52 0.52

Qcal = 1450.82 2072.80 3143.21 4470.58

differnce = -796.78 199.80 1738.46 3534.08Water level just d/s of the gate 622.47 622.19 621.37 620.27

HYDRAULIC JUMP CALCULATIONS AND LENGTH OF STILLING BASIN WHEN GATES ARE IN OPERATION

CHECK FOR THE WATER LEVEL JUST D/S OF THE GATE.

Width of Stilling Pool = Clear water way + piers width)

Cc=p/(p+2)

Discharge per foot width of opening, q = cd*y1*(2gH) 0.5

H

Page 19: Head Regulator Design

Bottom RL of the gate 622.00 623.00 624.00 625.00

Opening of gate GO = 2.000 3.000 4.000 5.000

Critical Depth in the rectangular section Dc = 2.936 2.600 2.146 1.638

A = Height of Crest above d/s cistren 5.50 5.50 5.50 5.50 He = Depth of water over crest u/s 6.31 5.52 5.52 5.52 u/s velocity head 0.13 0.11 0.10 0.10 Ef = A + He+ VELOCITY HEAD 11.93 11.14 11.12 11.12 q 28.54 23.78 17.84 11.89 f 0.86 0.86 0.86 0.86

d1 1.27 1.09 0.80 0.53

28.54 23.78 17.84 11.89 differnce 0.00 0.00 0.00 0.00

5.720 5.168 4.570 3.817

1.15 x d2 6.578 5.943 5.255 4.389

Depth available d/s 8.789 8.022 6.974 5.781d1 d2 (d2+d1) 50.595 35.136 19.764 8.7842 q^2/g 50.595 35.136 19.764 8.784v1=q/d1 22.542 21.879 22.166 22.460Froud No. F = v/(gd)^0.5 3.530 3.698 4.354 5.439Type of basin USBR_IV USBR_IV USBR_IV USBR_IIICistren level Calculated by Conjugate depth 616.837 616.689 616.308 615.957Cistren level provided 614.500 614.500 614.500 614.500

LENGTH OF BASIN REQUIRED32.000 29.500 27.000 10.000

Efficincy = &E = E1-E2 67% 65% 57% 47%

SECOND METHOD BY CRUMPS CURVES

Head Loss = USTEL-DSTEL Hl 3.01 3.01 4.07 5.29

Critical Depth, Yc Yc 2.94 2.60 2.15 1.64let d1 1.27 1.09 0.78 0.50but d2 = - d1/2 + ( 2/g q^2 /d1 + d1^2/4)^0.5 5.71 5.16 4.67 3.96CHECK FOR EQUATION 3.6

2.00 2.00 2.00 2.00Eq. 3.7Hl / dc 1.02 1.16 1.90 3.23d2/dc - d1/dc)^3/ (4d1 d2 /dc^2) 1.02 1.16 1.90 3.23Eq 3.8 0.00 0.00 0.00 0.00(K + F) /dc = d1/dc +dc^2/2d1^2 = A 3.10 3.27 4.18 5.74K = depth over the crest 6.31 5.52 5.52 5.52F = A x dc - K 2.79 2.97 3.45 3.87Cistren level Calculated from Crump = crest level - F-d1 615.93 615.94 615.78 615.63required cistern level 615.83 615.83 615.83 615.83Available cistren level 614.50 614.50 614.50 614.50Depth of water in the stilling basin= d/s water level - cistern level 8.79 8.02 6.97 5.78

Jump will form

No Jump will form according to gate position but due to d/s glacis jump may form

No Jump will form according to gate position but due to d/s glacis jump may form

No Jump will form according to gate position but due to d/s glacis jump may form

CALCULATIONS FOR THE CISTERN LEVEL AND LENGTHFIRST METHOD BY CONJUGATE DEPTH METHOD

CHECK FOR THE DISCHARGE.q = d1 ((2g ( E-d1))^0.5 f

d2=d1/2+*[2q2/(gd1)+d12/4]0.5

Jump will not sweep

Jump will not sweep

Jump will not sweep

Jump will not sweep

Length of cistren required = D2*L/D2 (USBR-fig12)

The value of d1/dc . d2/dc . (d1 +d2)/dc must equal to 2

Page 20: Head Regulator Design

1.37 1.20 0.72 0.30

GL 4.12 3.59 2.16 0.89 Ef2=d/s TEL-Level of jump intersection 6.21 5.60 5.01 4.22

LENGTH OF BASIN REQUIRED 27.94 25.22 22.55 18.97Lenth of Stillin pool = Lb-GL Lpool 23.818 21.633 20.389 18.080

THIRD METHOD BLENCH CURVESq = 28.54 23.78 17.84 11.89 d1 1.27 1.09 0.78 0.50but d2 = - d1/2 + ( 2/g q^2 /d1 + d1^2/4)^0.5 5.71 5.16 4.67 3.96Hl 3.01 3.01 4.07 5.29Hl = (d2 - d1)^3/4d1d2 3.01 3.01 4.07 5.29

0.00 0.00 0.00 0.00Ef2 = d2 + q^2 / (2gd2^2) 6.09 5.49 4.90 4.10 CHECK q = (d1d2(d1+d2) g / 2)^0.5 28.54 23.78 17.84 11.89Cistern level Calcualted from Blench = D/S TEL- 1.25 Ef2 615.80 615.77 615.44 615.22Lowest Cistren Level 615.16Available Cistren level 614.50 614.50 614.50 614.50Depth of water in the stilling basin= d/s water level - cistern level 8.79 8.02 6.97 5.78v1 22.45 21.84 22.97 23.94

Tail water depth = d/s WL - cistren level 8.79 8.02 6.97 5.78

Length of cistren required =4.5 x Ef2 27.42 24.71 22.04 18.47

COMPARISON OF BASIN LEVEL & LENGTH

Cojugate DepthCistern Level 615.83 615.67Length of Basin 27.00 27.00

Crump's MethodCistern Level 615.59 615.53Length of Basin 21.63 20.39

Blench Curve MethodCistern Level 615.16 615.14Length of Basin 24.71 22.04

Required CisternCistern Level 615.16 615.14Length of Basin 27.000 27.000

Jump will not sweep

Jump will not sweep

Jump will not sweep

Jump will not sweep

Submergence of Jump= EL of intersection of Jump with glacis - cistern level=JS

Length of glacis d/s of intersection=JS*d/s glacis slope

H

Page 21: Head Regulator Design

Type Of Basin USBR_IVProvided Cistern Level 614.50Cistern Length 35.00

U/S WING WALL/ TRANSITION degree 2.41 22.5 22.5 22.5

ft Rus 33.15 28.09 28.09

Angle of circular portionLength of straight portion (approach Length=2.0 to 2.5 H^1.5) 14.00 12.00 12.00

Length of U/S Transition 15 15 15D/S WING WALL/TRANSITION

degree 3.73 15 15 15(B - Bt) /2 5.63 5.63 5.63

Length of Transition Wall along the flow = 3(B-Bt)/2 25.0 25.0 25.0W 21.50 19.00 16.00

UPSTREAM APRONu/s Length of Apron Required 20.00 2.00 feet thickDOWN STREAM APRONd/s Length of Apron Required 25.00 3.00 feet thickINVERTED FILTER BLOCKS

ft 12.75 0.713Length required = Fi at d/s cut off

Type of Basin USBR_IV USBR_IV USBR_IIIEND SILL

ft F1 3.70 4.35 5.44ft d1 1.09 0.80 0.53ft d2 5.17 4.57 3.82ft h4 1.36 1.01 0.75

Top Width = ft TWES 0.50 0.50 0.25Dentated Width & Spacing ft NA NA NABAFFLE PEIR

ft h3 0.00 0 1.25ft TWBP 0.00 0.00 0.25ft WOBP 0.00 0.00 0.95

Distance from toe of CB to BP =0.8D2 ft Lbp&T NA NA 3.5ft 0.00 0.00 0.95ft 0.00 0.00 0.48

CHUTE BLOCKh1 2.25 1.75 0.67w1 1.00 0.75 0.55SBCB 2.75 2.00 0.55

Total Floor Length:U/S Pacca floor ft USFL 22.00U/s Glacis (with 1(H):1(V) or 3(H):1(V)) , USG =2 ft USHGL 3.25Crest width ft Lcrest 14.50D/S Glacis (with 2.5(H):1(V) or 4(H):1(V)), DSG=3 ft DSHGL 18.71 58.468Stilling Basin length as calculated ft Lsb 35.00Extra length provided (Floor Length extra=Flext) ft Flext 0Total Horz: Floor b = ft b 93.47

Exit Gradient:Total Pacca Floor b= ft b 93.47D/S depth of Sheet Pile at end Sill ft D 7.81 7.75Head Across H = ft H 9.61

ft/ft a 11.97

l 6.50

GE 0.151/GE Value lies in between 5 to 8) 1/GE 6.51

j

Radius of circular portion = (3.5 H1.5 -7H1.5)

90o 90o 90o

LTU

Angle of side with the axis of channel (30 for divergence and 22.5 for departure transition) or with a splay 3 to 5 j

LTD

Length of wing wall across the flow= (0.5D+berm width+1.5Free Board+1.25/2

2.5' x 2.5' x 2' concrete blocks over 1' filter material of 1/2" to 2" over 1' filter material of 1/2' to 1/8" over 1' coarse sand>

Froud No before Jump, F1Depth befor Jump, d1Depth After Jump, d2Height of Sill =h4 =d1(F1+4)/6 with u/s slope 2:1

Height of Baffle Pier=h3 =d1*(F1+4)/6Top width of baffle pier = 0.2 h3 with d/s slope 1:1Width of BAFFLE Block, w

Spacing between blocks, s1Spacing from abutment, s1/2

Height of Chute Blocks, h1 Width of Chute Blocks,w Spacing between Chute Blocks, s

Alpha a = b/d

Lambda l = ((1+(1+a2)1/2)/2

Exit Gradient "GE = H/d*1/pl1/2"

DESIGN

EXITGRAD-6

Page 22: Head Regulator Design

OKBottmo EL of d/s Sheet Pile 608.21

CREEP LENGTH:CREEP LENGTH:Lc (t) = Total Horiz:length/3+ Total depth of Cut-offs*2 60.78Extra cut-off required at u/s 7.00

6.5061.78 8.661 9.504

(Where H=Crest El( If FALL) or USFSL(Regulator)-DSBL,C= 2 o 8) for C=7 Revise FL or Sheet Pile

CONJUGATE DEPTH METHODE 11.93 11.14 10.28 10.28Va 0.13 0.11 0.10 0.10

qc= Q/Bc qdes 28.54 23.78 17.84 11.89d1 1.27 1.09 0.84 0.55qc 28.54 23.78 17.84 11.89

qdes-qc =0 diff 0.00 0.00 0.00 0.00

V1 22.54 21.88 21.20 21.52

0.86 0.86 0.86 0.86

a 1.00 1.00 1.00 1.00

qc 28.54 23.78 17.84 11.89

0.69 0.64 0.54 0.36Z 0.11 0.10 0.08 0.05

0.69 0.64 0.54 0.36

f(Z) 0.80 0.74 0.63 0.42

Zd2 = - d1/2 + (2q2/gd1 +d12/4)0.5 d2 5.72 5.17 4.44 3.72

50.60 35.14 19.76 8.7850.60 35.14 19.76 8.78

0.03 0.03 0.02 0.01

0.99 0.89 0.68 #NUM!To maintain a small submergence pool depth>d2 = cistern Level 616.02 616.02 616.02 616.02

F1 3.97 3.86 3.74 3.79

BASIC EQUATION OF H.JUMP 33.50 30.00 25.50 21.50Intensity of discharge /ft q q 28.54 23.78 17.84 11.89depth of flow before jump d1 d1 1.27 1.09 0.83 0.53

d2 5.71 5.16 4.47 3.82

Ef1 9.12 8.50 7.93 8.40

Ef2 6.10 5.49 4.71 3.97

Ef1-Ef2 3.02 3.01 3.21 4.43Hl 3.02 3.01 3.21 4.43

Hl =Ef1-Ef2 diff 0.00 0.00 0.00 0.00

50.60 35.14 19.76 8.78d1d2(d2+d1) 50.60 35.14 19.76 8.78V1=q/d1 V1 22.48 21.84 21.37 22.52V2=q/d2 V2 5.00 4.61 3.99 3.11K+F = Ef1=Ef2+Hl K+F 9.12 8.50 7.93 8.40Hl = (d2-d1)3/(4d1d2) Hl 3.02 3.01 3.21 4.43

F1 3.52 3.69 4.12 5.46

1.25Ef2 7.62 6.86 5.89 4.97Length of basin with out accessories = 5(1.05d2-d1) Lb 23.63 21.66 19.28 17.43

Lb 14.23 13.11 11.88 11.46Efficiency of Jump = E2/E1 0.669 0.646 0.595 0.473Energy desipation % = (1-E2/E1)100 33% 35% 41% 53%

Ccal= Lc / HRequired Lc = C (depends upon type of soil )*H

Total EnegyU/S E = F+H+Va2/2gVelocity of approach Va

depth befor jump d1Discharge Intensity /ft in Contracted sect: qc =V1 d1

Velocity before Jump V1 =(2g(E-d1)0.5*f/a

Velocity Coeficient including all losses on entrance and varies from 1.0 to 0.8 f

Co-efficient of non uniform velocity distribution (Varying from 1.0 for very smooth B.Condition to 1.10 for very rough,according to Careolis)

qc = d1(2g(E-d1).5 f , assume a = 1

qc/E3/2 = (d1(2g(E-d1).5 f)/(E3/2) qc/E3/2 Z = d1/E

qc/E3/2 =Zf (2g(1-Z)).5

1/f *qc/E3/2 = f (Z) =Z (2g(1-Z)).5

For Z = 0.001 to 0.67 can be calculated from table, the other value to be found is Z' corresponding to d2 , the d/s depth after jump

use table for d1

use table for d1

use table for d1

use table for d1

2qc2/g=d1d2(d2+d1)d1d2(d2+d1) =2qc2/g

d1/E*d2/E(d2+d1)/E =2qc2/g/E3

Z' = -Z/2+(2(fZ)2.f2/gZ+Z2/4))0.5

depth of flow after jump d2= -d1/2+(2q2/gd1+d12/4)0.5

Total energy before jump Ef1=d1+q2/(2gd12)

Total energy after jump Ef2 =d2+q2/(2gd22)

Hl = Ef1-Ef2 = (d1+V12/2g)-(d2+V22/2g) Hl = u/sTEL-d/sTEL

2q2/g=d1d2(d2+d1) 2q2/g

Froud No F1 = V1/(gd1).5

1.25Ef2 =1.25(d2+V22/2g)

Length of basin with accessories = Kd1F11.5,K=1.4 for vert/sloping end sill and 1 to 2 row ofBB,K=1.7 for Vert/sloping end sill,K=2 for sloping end sill & 1 to 2 Row of BB)

EXITGRAD-6

Page 23: Head Regulator Design

hj 4.440 4.073 3.632 3.295Length of Roller Lr=y1(-1.2+160tanhF1/20, if y1/B<0.1 Lr 33.824 30.467 26.143 21.882Length of Turbulence where it diminished L L 31.805 29.133 25.891 23.242

CRUMP APPROACHq q 28.54 23.78 17.84 11.89

dc 2.94 2.60 2.15 1.64d1 1.27 1.09 0.83 0.53d2 5.71 5.16 4.47 3.82

2.00 2.00 2.00 2.00

Hl 3.02 3.01 3.21 4.43Hl = u/s TEL- d/s TEL Hl 3.02 3.01 3.21 4.43 Hl = u/s TEL- d/s TEL =(d2-d1)3/(4d1d2) Hl-Hl=0 0.00 0.00 0.00 0.00 V1 =q/d1 V1 22.48 21.84 21.37 22.52 V2 =q/d2 V2 5.00 4.61 3.99 3.11

Ef1 9.12 8.50 7.93 8.40

Ef2 6.10 5.49 4.71 3.97

(K+F)/dc 3.11 3.27 3.69 5.13 U/S TEL USTEL 626.43 625.64 624.78 624.78 K = u/s TEL - crest level K 6.43 5.64 4.78 4.78 F =dc(d1/dc + dc2/2d12 )-K F 2.68 2.86 3.15 3.63 K+F K+F 9.12 8.50 7.93 8.40 Location of Jump = u/s TEL-(K+F) 617.32 617.14 616.85 616.37 Stilling Basin Level = d/s TEL-Ef2 or u/s TEL -(K+F+d1) 616.05 616.05 616.01 615.78 Stilling Basin Level Provided 615.00 615.00 615.00 615.00Length of Basin = 4.5 *Ef2 27.44 24.71 21.22 17.88

BLENCH CURVEq q 28.54 23.78 17.84 11.89

d1 d1 1.27 1.09 0.83 0.53

d2 5.71 5.16 4.47 3.82

Hl 3.02 3.01 3.21 4.43

q 28.54 23.78 17.84 11.89

Hl = u/s TEL- d/s TEL Hl 3.02 3.01 3.21 4.43Hl = u/s TEL- d/s TEL = (d2-d1)3/(4d1d2) Hl -Hl =0 0.00 0.00 0.00 0.00

Ef2 = d2+ q2/2gd22 Ef2 6.10 5.49 4.71 3.97

d/s Total Energy Line = u/s TEL 626.43 625.64 624.78 624.78

u/s Total Energy Line = d/s TEL 623.41 622.63 621.56 620.35

Location of Jump Loc_jump 617.32 617.14 616.85 616.37

1.25 Ef2 1.25 Ef2 7.62 6.86 5.89 4.97Stilling Basin Level = d/s TEL - 1.25 Ef2 615.79 615.77 615.67 615.38 Stilling Basin Level Provided 615.30 615.30 615.30 615.30

617.19 617.03 616.76 616.31Stilling Basin Level Provided 615.00 615.00 615.00 615.00Length of Basin Provided 27.44 27.44 27.44 27.44

COMPARISON OF BASIN LEVEL & LENGTH

Cistern Level 615.30Length of Basin 31.80

Jump Profile,Froud's No F1 3.530 3.698 4.354 5.439d1 0.92 0.72 0.47 0.38Factor m=(F1/20) 0.1765 0.18 0.2062 0.2731tanh m 0.1747 0.1828 0.2033 0.2665

ft 29.15 30.45 33.73 43.84

Roller Length Lr=d1(-1.2+160tanh m) 26.91 21.83 15.99 16.56

y=flow depth at distance x from start of Jump4.07 3.30

Height of Jump hj/E1 =(1+8F12)1/3 - 3/(f12 +2)

Critical depth of flow, dc= (q2/g)(1/3) Depth of flow before Jump, d1Depth of flow after Jump, d2=-d1/2+(2q2/gd1+d12/4)0.5d1/dc.d2/dc.(d1+d2)/dc = 2

Hl = (d2-d1)3/(4d1d2)

Ef1 = d1+V12/2g

Ef2 = d2+V22/2g

(K+F)/dc = d1/dc + dc2/2d12

d2= - d1/2+(2q2/gd1+d12/4)0.5

Hl =(d2-d1)3/(4d1d2)

q =(d1d2(d1+d2)g/2)0.5

Lr/d1=(-1.2+160*tanh m)

Y=tanh(1.5X) where X=x/Lr &Y=(d-d1)/(d2-d1)

(d2-d1)

Page 24: Head Regulator Design

Profile for Dominant DischargeN=1.5*x/Lr Y=tanhN d(ft) Difference Elevation Remarks

0 0 0.000 0.92 0.00 0.00 616.86 Point of Jump5 0.34 0.331 2.27 0.33 0.00 618.9610 0.69 0.596 3.35 0.60 0.00 620.0415 1.03 0.774 4.08 0.77 0.00 620.7720 1.37 0.880 4.51 0.88 0.00 621.20 at toe of Glacis25 1.72 0.938 4.74 0.94 0.00 621.4330 2.06 0.968 4.87 0.97 0.00 621.5635 2.41 0.984 4.93 0.98 0.00 621.6240 2.75 0.992 4.96 0.99 0.00 621.6545 3.09 0.996 4.98 1.00 0.00 621.6745 3.09 0.996 4.98 1.00 0.00 621.6750 3.44 0.998 4.99 1.00 0.00 621.6855 3.78 0.999 4.99 1.00 0.00 621.6860 4.12 0.999 4.99 1.00 0.00 621.6865 4.47 1.000 5.00 1.00 0.00 621.6870 4.81 1.000 5.00 1.00 0.00 621.6875 5.15 1.000 5.00 1.00 0.00 621.6980 5.50 1.000 5.00 1.00 0.00 621.6985 5.84 1.000 5.00 1.00 0.00 621.6990 6.18 1.000 5.00 1.00 0.00 621.6995 6.53 1.000 5.00 1.00 0.00 621.69100 6.87 1.000 5.00 1.00 0.00 621.69

Profile for Gated Flow (worst condition for 25% supply).d1 0.53 0.41d2 3.82 3.48Froud's NO 5.44 6.13Factor m=(F1/20) 0.2720 0.3064tanh m 0.2655 0.2972

ft 43.67 48.75

23.06 20.23

y=flow depth at distance x from start of Jump3.30 3.06

N=1.5*x/Lr Y=tanhN d(ft) Difference Elevation

0 0.00 0.000 0.41 0.00 0.00 615.953 0.22 0.219 1.09 0.22 0.00 616.62 at toe of glacis

5 0.37 0.355 1.50 0.35 0.00 617.038 0.59 0.532 2.05 0.53 0.00 617.5810 0.74 0.630 2.35 0.63 0.00 617.8812 0.89 0.711 2.59 0.71 0.00 618.1314 1.04 0.777 2.80 0.78 0.00 618.3316 1.19 0.829 2.96 0.83 0.00 618.4918 1.33 0.870 3.08 0.87 0.00 618.6120 1.48 0.902 3.18 0.90 0.00 618.7122 1.63 0.926 3.25 0.93 0.00 618.7924 1.78 0.945 3.31 0.94 0.00 618.8426 1.93 0.959 3.35 0.96 0.00 618.8828 2.08 0.969 3.38 0.97 0.00 618.9230 2.22 0.977 3.41 0.98 0.00 618.9432 2.37 0.983 3.43 0.98 0.00 618.9635 2.60 0.989 3.44 0.99 0.00 618.98

x1(ft) Y=(d-d1)/(d2-d1)

Lr/d1=(-1.2+160*tanh m)

Roller Length Lr=d1(-1.2+160tanh m)

Y=tanh(1.5X) where X=x/Lr &Y=(d-d1)/(d2-d1)

(d2-d1)

x2(ft)Y=(d-d1)/

(d2-d1)

0 20 40 60 80 100 120612

614

616

618

620

622

624

Water Surface Profile of the Jump

Dist:x from the Point of Jump

Wate

r S

urf

ace E

l:

Page 25: Head Regulator Design

100% 120% 75% 50% 25%Q = 1873.00 2247.60 1404.75 702.38 351.19B = 78.75 78.75 78.75 78.75 78.75q = 23.78 28.54 17.84 8.92 4.46

d1 = 1.09 1.25 0.76 0.39 0.19d2 = 5.16 5.77 4.75 3.36 2.43Hl = 3.01 3.21 4.43 4.98 5.92

Hl=[(d2-d1)^3]/(4d1d2) = 3.01 3.21 4.43 4.98 5.920.00 0.00 0.00 0.00 0.00

Velocity, V= 21.84 22.87 23.59 22.79 22.99Froud No, F= 3.69 3.61 4.78 6.42 9.20

Type of Basin = USBR_IV USBR_IV USBR_III USBR_III USBR_III

0 20 40 60 80 100 120612

614

616

618

620

622

624

Water Surface Profile of the Jump

Dist:x from the Point of Jump

Wate

r S

urf

ace E

l:

Page 26: Head Regulator Design

REHABILITATING LOWER CHENAB CANAL SYSTEMCROSS REGULATOR AT RD 78+000 (Burala Branch)

80% 80%

1548.00 1548.000.0222 0.0222

0.000150 0.0001500.5 0.5

105.00 105.005.77 5.7718.2 18.2

622.66 622.66117.91 117.91

5.28 5.28 110.77 110.77

5.62 5.62 2.49 2.49

0.10 0.10618.91 618.91 624.68 624.68624.78 624.78

5.87 5.87 1548.00 1548.00

0.00 0.00

1.88 1.88 199.62 199.62 106.88 106.88

1.87 1.87

7.75 7.75 1548.00 1548

0.00 0.00

7 7 6 6 3 3

11.25 11 78.75 78.75 9.51 5.95 1.41 1.03

93.75 93.75 3.88 4.38

89.29 89.29 6.74 5.76

0.71 0.52 3.75 4.32

40% 25%749.20 468.25 0.0223 0.0223

0.000150 0.000150 0.50 0.50

105.00 105.00 3.72 2.80

28.22 37.53 397.58 297.69 113.32 111.26

3.51 2.68 1.88 1.57

0.06 0.04

Page 27: Head Regulator Design

616.02 616.02 619.74 618.82 619.80 618.86 749.20 468.25

0.00 0.00 2.12 1.38

617.68 617.48 620.00 620.00 618.91 618.91

1.09 1.09 3.75 4.38 1.41 1.03 5.87 5.87 4.72 4.76

78.75 93.75 5.87 5.87 0.00 0.00

2.02 1.05 0.06 0.02

620.00 620.00

O.K. O.K.5.83 -0.42 5.87 2.64 5.87 2.64 0.00 0.00

624.68 618.49 619.74 618.82

4.94 -0.33 9.51 5.95

5.50 5.50 4.68 -1.51 0.04 3.06

10.22 7.05 9.51 5.95 1.00 1.00

0.38 0.28

9.51 5.95 0.00 0.00 3.673 2.6374.224 3.0335.241 4.3185.622 2.1965.622 2.196

25.180 20.8697.219 6.890

USBR_III USBR_III615.572 615.823 615.572614.500 614.500

Sub critical flow

Sub critical flow

LENGTH GATES ARE NOT IN OPERATION

Jump will not sweep

Page 28: Head Regulator Design

614.55 617.73

16.655

10.0 21.0

37%

16.09

4.94 -0.371.41 1.030.42 1.703.47 0.57

2.00 2.00

3.50 -0.363.50 -0.360.00 0.006.04 1.834.78 1.553.75 0.34

615.83 617.96 615.832615.83 615.83614.50 614.505.24 4.32

0.42 3.503

1.25 0.4743.55 -0.80

15.96 -3.6114.716 -4.088

9.51 5.95 0.42 1.703.47 0.57

4.94 -0.37

4.94 -0.37

0.00 0.003.59 2.269.51 5.95

615.31 616.03 615.31

614.50 614.50

5.24 4.3222.86 3.50

Jump will not sweep

Jump will not sweep

Page 29: Head Regulator Design

5.24 4.32

16.153 3.149

9.51 5.95 6.61 6.61

1548.00 1548.00 749.20 468.25 620.00 620.00 619.74 618.82625.52 625.52

5.52 5.52 5.78 6.71

5.52 5.5219.19 26.81 6.00 7.00 1.09 1.27

614.50 614.50 5.24 4.32

93.75 93.75 7.00 7.00 3.66 6.21 3.66 6.21 0.00 0.00

0.58 0.58 0.52 0.52

5634.33 7078.334885.13 6610.08633.69 641.31

Open gate flow

Open gate flow

Page 30: Head Regulator Design

626.00 627.00 6.000 7.0001.411 1.032

5.50 5.50 5.52 5.52 0.10 0.10

11.12 11.12 9.51 5.95 0.86 0.86

0.42 0.26

9.51 5.95 0.00 0.00

3.448 2.7703.965 3.1865.241 4.3185.622 2.1965.622 2.196

22.575 22.7426.128 7.838

USBR_III USBR_III615.831 615.670614.500 614.500

9.000 8.00043% 34%

5.84 6.781.41 1.030.39 0.243.60 2.91

2.00 2.00

4.14 6.574.14 6.570.00 0.006.77 9.455.52 5.524.02 4.23

615.59 615.53 615.59615.83 615.83614.50 614.505.24 4.32

No Jump will form according to gate position but due to d/s glacis jump may form

No Jump will form according to gate position but due to d/s glacis jump may form

Jump will not sweep

Jump will not sweep

Page 31: Head Regulator Design

0.15 -0.06

0.44 -0.183.82 3.08

17.18 13.8816.748 14.053

9.51 5.95 0.39 0.243.60 2.915.84 6.785.84 6.780.00 0.003.71 2.979.51 5.95

615.16 615.14 615.16

614.50 614.505.24 4.3224.28 24.75

5.24 4.32

16.68 13.37

Jump will not sweep

Jump will not sweep

Page 32: Head Regulator Design

22.5 22.5

28.09 -9.08

12.00 -3.50

15 15

15 155.63 5.63

25.0 25.014.50 12.50

10.399

USBR_III0.26

6.130.423.450.750.25NA

1.250.250.953.00.950.48

0.670.400.40

90o 60o

Page 33: Head Regulator Design

3.980

u/s TEL

10.280.10 d/s TEL9.51 d/s FSL0.449.51 d/s FSL0.00

21.65

0.86

1.00

9.51

0.290.04

0.29

0.34

3.365.625.62

0.01

#NUM!616.02

3.81

19.50 IF(F256="USBR_I",CEILING(1.5*F249*(F255+2.3),0.5),IF(F256="USBR_IV",CEILING((0.0733*F255^4-1.0733*F255^3+5.5817*F255^2-11.612*F255+12.86)*F249,0.5),IF(F256="USBR_III",ROUNDUP((0.0006*F255^3-0.0273*F255^2+0.3782*F255+1.0264)*F249,0.5),IF(F256="USBR_II",ROUNDUP((0.00001*F255^6+0.0006*F255^5-0.0143*F255^4+0.175*F255^3-1.2042*F255^2+4.5373*F255-3.4171)*F249,0.5),(INT((4*F255*F249)+0.6)/4)))))9.510.41

3.48

8.58

3.60

4.984.980.00

5.625.62

22.932.738.584.986.27

4.4916.19

11.080.41958%

Va2/2g

use table for d1

H

F

hl

FFFFd1 d2 dpoolF

Page 34: Head Regulator Design

3.06419.66621.467

9.51

1.410.413.482.00

4.984.98 0.00

22.93 2.73

8.58

3.60

6.08 624.78

4.78 3.80 8.58

616.20 615.66 615.0016.18

9.51

0.41

3.48

4.98

9.51

4.980.00

3.60

624.78

619.80

616.20

4.49615.30615.30616.15615.0027.44

6.128

0.280.31360.303749.79

14.19

3.06

Page 35: Head Regulator Design

Point of Jump

at toe of Glacis

at toe of glacis

Page 36: Head Regulator Design

IF(F256="USBR_I",CEILING(1.5*F249*(F255+2.3),0.5),IF(F256="USBR_IV",CEILING((0.0733*F255^4-1.0733*F255^3+5.5817*F255^2-11.612*F255+12.86)*F249,0.5),IF(F256="USBR_III",ROUNDUP((0.0006*F255^3-0.0273*F255^2+0.3782*F255+1.0264)*F249,0.5),IF(F256="USBR_II",ROUNDUP((0.00001*F255^6+0.0006*F255^5-0.0143*F255^4+0.175*F255^3-1.2042*F255^2+4.5373*F255-3.4171)*F249,0.5),(INT((4*F255*F249)+0.6)/4)))))

Page 37: Head Regulator Design

IF(F256="USBR_I",CEILING(1.5*F249*(F255+2.3),0.5),IF(F256="USBR_IV",CEILING((0.0733*F255^4-1.0733*F255^3+5.5817*F255^2-11.612*F255+12.86)*F249,0.5),IF(F256="USBR_III",ROUNDUP((0.0006*F255^3-0.0273*F255^2+0.3782*F255+1.0264)*F249,0.5),IF(F256="USBR_II",ROUNDUP((0.00001*F255^6+0.0006*F255^5-0.0143*F255^4+0.175*F255^3-1.2042*F255^2+4.5373*F255-3.4171)*F249,0.5),(INT((4*F255*F249)+0.6)/4)))))

Page 38: Head Regulator Design

IF(F256="USBR_I",CEILING(1.5*F249*(F255+2.3),0.5),IF(F256="USBR_IV",CEILING((0.0733*F255^4-1.0733*F255^3+5.5817*F255^2-11.612*F255+12.86)*F249,0.5),IF(F256="USBR_III",ROUNDUP((0.0006*F255^3-0.0273*F255^2+0.3782*F255+1.0264)*F249,0.5),IF(F256="USBR_II",ROUNDUP((0.00001*F255^6+0.0006*F255^5-0.0143*F255^4+0.175*F255^3-1.2042*F255^2+4.5373*F255-3.4171)*F249,0.5),(INT((4*F255*F249)+0.6)/4)))))

Page 39: Head Regulator Design

CROSS REGULATOR AT RD 78+000 (Burala Branch)

CHECK FOR EXIT GRAGIENTU/S water level 625.52 624.68D/S water level 622.52D/S bed level 616.02 615.07

8.66 9.613.98

Worst working head 9.61U/S CUT-OFFQ 1935.00f 0.91Bed width 105.00R = Scour depth 6.47F.O.S. 1.50R' = FOS x R 9.71u/s water level 625.52u/s bed level 618.91R.L. of worst scour 615.81

3.10

d =Depth of cut off provided 5.00 6.34 613.91D/S CUT-OFFQ 1873.00f 0.96Bed width 93.75R = Scour depth 6.72F.O.S. 2.00R' = FOS x R 13.43D/S water level 622.52D/S bed level 616.02 6.93R.L. of worst scour 609.09

6.933.11

d =Depth of cut off provided 7.75 4.17 7.74

b = Length of the structure 94.07 94.22

Where d = depth of down stream sheet pile.H = maximum head across

12.14 12.17

H1 = U/S pond EL. - D/S B.L.

H2= C.L. - D/S bed level.

Depth of u/s cut off required = u/s W.L. - R.L.of worst scour

Depth of d/s cut off required = d/s B.L.. - R.L.of worst scour

When Length of the structure is taken as constant

Thickness of inverted filter

GE = H/d x 1/(p x l1/2)

a = b/d =

MACRO for B

Page 40: Head Regulator Design

6.59 6.61 Exit gradient = 0.15 6.50 :1 0.15 6.50

Lenth of Floor "b" 94.22Assume exit radient "GE" 0.17Assumed depth of sheet pile"d" 7.75

0.154diff = 0 0.013

6.507

l =(1+ (1 + a2)1/2)/2 =

Check: Depth of Sheet Pile

H/d x 1/(p x l1/2)

Macro for "d"

Page 41: Head Regulator Design

0.007.74

94.22

When Length of the structure is taken as constant

Page 42: Head Regulator Design

:1

Page 43: Head Regulator Design

TABLE OF DIMENSIONS

CROSS REGULATOR AT RD 78+000 (Burala Branch)

DESCRIPTION N.S.L

(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)1 2 3 4 5 6 7 8 9 10 11

CROSS REGULATOR AT RD 78+000 (Burala Branch) 619.67 618.91 618.91 625.52 625.52 628.52 629.77 627.52 629.02 615.07

U/S APRON El U/S BED El. U/S FSL El. U/S TO BERM El. U/S BANK

El. U/S TO

DOWEL El. U/S PIER TOP

El.

U/S TOP OF TRANS:

WALL El.

SCOURED BED El.

Page 44: Head Regulator Design

TABLE OF DIMENSIONS

(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

620.00 614.50 615.90 616.02 616.02 616.02 622.53 622.53 625.53 626.78 626.03 624.53 626.20 613.91 613.91 608.21 608.21 625.53

FLOW

U/S PACCA FLOOR El.

CREST LEVEL El.

CISTERN LEVEL El.

END SILL El

D/S PCC BLOCK El

D/S APRON El

D/S BED El. D/S FSL El. D/S BERM

El.D/S BANK

El.D/S DOWEL

El.

D/S TOP OF TRANS:

WALL El.

D/S PIER TOP El.

TOP OF BRIDGE

El.

U/S CutOff/Pile at Trans: El.

CutOff/Pile at Start

Glacis El.

CutOff/Pile at Glacis Toe El.

CutOff/Pile at End Of CISTERN

El.

U/S BED WIDTH

EL AEL C

EL B

EL KEL L A

TS 1

EL D

EL E

TST

LTU L1

18"18"

TP

B

EL Q

EL Q

Page 45: Head Regulator Design

CHUTE BLOCK (CB) BAFFLE PIER (BP)

Height Width Spacing Height Top Width

(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

6.61 78.75 93.75 20.00 22.00 3.25 14.50 18.71 35.00 2.80 0.50 USBR_IV 2.25 1.00 2.75 NA NA NA NA NA

U/S FS DEPTH

CLEAR WATER WAY AT

STRUCTURE

Total Water Way

(Btween Abutments)

U/S APRON LENGTH

U/S PACCA FLOOR

LENGTH

Hori: U/S Glacis Length

CREST LENGTH

Hori: D/S Glacis Length

CISTERN LENGTH

Hori: Length OF SLOPPY

SILL LENGTH

TOP WIDTH OF END SILL

TYP OF CISTERN

Distance from C.B to Baffle peir

Spacing between BP

Spacing from

abutment

EL F EL J

EL G

EL N

EL M

EL I

EL P

EL O

TSTTS5

TS4

TS3TS2

EL H

L1 L2 LTD 18 -0 '

PCC BLOCKS 3' x 3' x 3'

1" Inverted Filter

18"

18"18"

18'

b

TW

S = 1.5

B1

EL R

TW1

Page 46: Head Regulator Design

END SILL

Height Top Width

(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

1.36 0.50 NA 12.75 15.00 25.00 25.00 7.00 11.25 93.75 2.50 1.50 2.00 2.00 3.00 4.25 4.00 2.75 2.50 8.00

length of inverted

filter

U/S LENGTH OF

TRANSITION "LTU"

D/S LENGTH

OF TRANSITION "LTD"

D/S APRON LENGTH

NO OF GATES

GATES WIDTH

Basin Width

b

PIER WIDTH

Abut: Wall Thickness(Top) TW

Abut: Wall Thickness

(Base) TW1

Floor Thickness

U/S of Gate TS1

Floor Thickness

U/S of Gate TS2

Floor Thickness at end of

Glacis TS3

Floor Thickness

d/s of Glacis

TS4

Floor Thickness at Basin

End TS5

Thickness at Pier

Top TP

Projection of Base

Slab TW2Dentated Width & Spacing

Page 47: Head Regulator Design

GATE DIMENSIONS

(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

2.00 3.00 1.09 7.00 11.25 0.98 6.50 6.50 6.50 3.00 16.00 2.00 1.00 3.00 16.00 6.98

U/S Apron

Thickness

D/S Apron

Thickness

CREST HEIGHT

(CH)

GATES NO

GATES WIDTH

(W)

FREE BOARD

TO GATE (Fg)

GATE HEIGHT D-CH+.5

(Hg)

TRAVEL TO GATE

(Tg)

TRAVEL TO

COUNT. WEIGHT

(Tcw)

HEIGHT OF RAIL ABOVE T/GATE

(Hr)

TOTAL HEIGHT OF RAIL

(THr)

DEPTH OF

COUNTER

WEIGHT (Dcw)

DISTAN. C/WEIGHT MINUS

T.OF GATE

(Dcw-Tg)

DISTANCE FROM TOP OF TRAVEL

OF GATE (DTg)

TOTAL HEIGHT

OF TOWER

F/CREST (Htower)

GATE HOIST

TOWER ABOVE

ABUTMENT (HGh)

Page 48: Head Regulator Design

CROSS REGULATOR AT RD 78+000 (Burala Branch)

LOCATION R.D 78+000

U.S total Energy Level 625.64 U.G.B

5.33 14.50 Head Loss= 3.01Crest level 620.00 D/s Total Energy level 622.63

6.73 21.09 3

u/s bed level= 618.91 1 1D2= 5.17

20.00 22.00 1.09 D1 Sill El= 615.90Exist:-BL= 615.07 616.02 Existing Bed EL= 615.07

614.50 Cistern level613.91 613.91

TYPE OF BASIN = USBR_IV STONE APRON35 2.80 Worst Scour EL= 611.85

3.25 14.50 18.71608.21 608.21

58.47 25.0012.75

94.22

Gates are in operation

Page 49: Head Regulator Design

C:\IRSHAD\ document.xls XRPrep'd by M.I.M

04/09/2023

Ds(head loss just d/s of gate)=d2*(1+2*v^2(1-d2/a)/2g)^.5

Free Fall condition Q=CdA{2g(d1-d2)+v1^2]^.5 Submerged condition Q=CdA{2gH]^.5 d2= depth of water after jump

HYDRAULIC DESIGN OF CROSS REGULATORS Cd= Coefficient of discharge USTEL-1.5*yc a= opening of gate

zu = 0.50 zd = 0.50 STRUCTURE WITH BREAST WALL AND VERTICAL GATECISTERN LEVEL BY BLENCH CURVE METHOD LENGTH AND CISTERN LEVEL BY CRUMPS CURVES

"INPUT DATA" nup = 0.022 nds 0.0223

DESIGN DISCHARGE WSS

BED WIDTH F.S.DEPTH Qact: - Qcal:Bed level Full supply Total Energy Level

FLOODGATE DIMENSIONS

Critical FREE Critical Depth of Type Of Flow The value FLOW UNDER GATE (ORIFICE FLOW)

R.D NSL % AREAS W.PERIMET HYD.RAD. NOR.VELOCITY BERM HEIGHT BANK FREE BOARD BANK EMBANKMENT SIDE U/S HEIGHT OF HEIGHT OF Depth of FLOW USTEL Height of USTEL Water over if "H" calculated is u/s depth E2 = E1= E2-E1 USWL Head loss Assumed Crest Level Disch Depth Depth Hl= Hl-Hl Ef2= Disch Intensity Cist Lev Length Critical Depth Depth d1/dc*d2/dc Hl / dc (d2/dc-d1/dc)^3/ Hl /dc= (K + F) /dc = K=E1-CH Cist Lev Length of

S.No. START U/S D/S ABOVE ABOVE TOP LEVEL WALL DESIGNED CRITICAL PIER PIER TRANS. TRANS. CREST GATES GATE FREE GATE TRAVEL TRAVEL HEIGHT TOTAL DEPTH DISTAN. DISTANCE TOTAL GATE HOIST Water HEAD E = Hump E = Crest Type Of Flow less than yc then y1 CH+1.5 yc y1+V1^2/2g of USWL-DSWL Crest El Calculated Intensity BJ AJ d2+ q = by Blench of Cistern Depth of before Jump after Jump * (d1 +d2)/dc (4d1d2 /dc^2) (d2/dc-d1/dc)^3/ d1/dc+ byCRUMP Cistern HEAD OPEN a/h1 Cc Cd Ds V1 D1 F1

OF U/S U/S D/S U/S D/S U/S D/S U/S D/S U/S D/S U/S D/S U/S D/S U/S D/S U/S D/S U/S D/S U/S TEL D/S TEL FSL BERM HEIGHT DISCH. HEAD= WIDTH HEIGHT &OUTER &OUTER HEIGHT NO. width BOARD HEIGHT OF OF OF RAIL HEIGHT OF C/WEIGHT FROM HEIGHT TOWER Yc = ABOVE USFSL+hv hc = z + H + v2^2/2g Over Crest hump is creating the weir q=Q/Bt d1 d2=-d1+ 4d1d2 = DSTEL- Lsb= Water must be (4d1d2 /dc^2) dc^2/2d1^3 =CL-F =4.5Ef2 ABOVE ING. ref:Hyd/ ref:Hyd:

TRANSIT. B B D D U/S D/S P P R R V V dQ dQ D/S DEPT OF UP TO WALLS WALLS TO GATE COUNT. ABOVE OF RAIL COUNTER MINUS TOP OF OF TOWER ABOVE (q2/g)^.333 CREST usTEL-1.5Yc backwater effect {2q2/(gd1) 1.25Ef2 4.5*Ef2' Yc = d1 d2 equal to 2 GATE a Ele:Mech: Hand book100 U/S D/S U/S D/S U/S D/S FLOW LINING U/S D/S GATE D-CH+0.5 WEIGHT T/GATE WEIGHT T.OF GATE TRAVEL F/CREST ABUTMENT Q=CBH (̂3/2) (BWE). +d1/4}^.5 SILL or of Fluid by by W.King

cusecs cusecs D+2 (Wp) (Hp) (H) (CH) (W) (Fg) (Hg) (Tg) (Tcw) (Hr) (THr) (Dcw) (Dcw-Tg) OF GATE (Htower) (HGh) H E1 hc E1 = H E1-E2=0 y1 E2 E1= Hl CL q d1 d2 Hl 615.69 615.76 h1 d1 Hunter Rouse page 4-13

ft ft cfs cfs ft ft ft ft ft2 ft2 ft ft ft ft ft/sec ft/sec Runmacro1 RunMacro ft ft ft ft ft ft ft ft ft ft ft ft ft ft cusecs ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft cft/ft ft ft ft ft ft ft ft ft ft ft ft ft ft/ft ft ft ft ft ft page 95 ft ft/sec.

78+000 619.67 100% 1935.00 1873.00 0.00015 0.00015 105.00 105.00 6.61 6.50 716.12 703.83 119.78 119.54 5.98 5.89 2.70 2.66 0.0 0.00 618.91 616.02 625.52 622.52 625.52 622.63 0.00 0 3.00 3.00 628.52 625.52 10.61 1873 6.61 2.50 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 2.60 3.90 6.73 2.83 6.72 5.32 0.00 Sub critical flow NO Back Water Effect. 6.52 6.73 6.73 0.00 625.52 3.00 620.00 620.20 23.78 1.09 5.16 3.00 0.00 5.49 23.78 615.77 30.89 2.60 1.10 5.12 2.00 1.11 1.11 0.00 3.21 5.64 2.70 616.20 28.95 6.50 2.52 0.39 0.61 0.55 6.00 17.87 1.39 1.98

619.67 130% 2515.50 2434.90 0.000150 0.00015 105.00 105.00 7.76 7.63 845.35 830.77 122.36 122.07 6.91 6.81 2.98 2.93 0.00 0.00 618.91 616.02 626.67 623.65 626.67 623.79 0.00 0 3.00 3.00 628.52 625.52 10.61 2434.9 7.76 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 3.10 4.64 7.90 3.26 7.90 6.45 0.00 Sub critical flow NO Back Water Effect. 7.65 7.90 7.90 0.00 626.67 3.02 620.00 620.22 30.92 1.36 5.97 3.02 0.00 6.39 30.92 615.81 35.92 3.10 1.38 5.92 2.00 0.93 0.93 0.00 2.98 6.81 2.40 616.22 34.06 7.65 3.65 0.48 0.60 0.53 6.00 18.75 1.93 1.73

619.67 120% 2322.00 2247.60 0.000150 0.00015 105.00 105.00 7.39 7.27 803.53 789.69 121.53 121.25 6.61 6.51 2.89 2.85 0.00 0.00 618.91 616.02 626.30 623.29 626.30 623.41 0.00 0 3.00 3.00 628.52 625.52 10.61 2247.6 7.39 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 2.94 4.40 7.52 3.12 7.52 6.09 0.00 Sub critical flow NO Back Water Effect. 7.28 7.52 7.52 0.00 626.30 3.01 620.00 620.22 28.54 1.27 5.71 3.02 0.00 6.10 28.54 615.79 34.30 2.94 1.29 5.66 2.00 0.98 0.98 0.00 3.04 6.43 2.50 616.21 32.40 7.28 3.29 0.45 0.60 0.53 6.00 18.49 1.75 1.80

619.67 110% 2128.50 2060.30 0.000150 0.00015 105.00 105.00 7.01 6.89 760.50 747.43 120.67 120.41 6.30 6.21 2.80 2.76 0.00 0.00 618.91 616.02 625.92 622.91 625.92 623.03 0.00 0 3.00 3.00 628.52 625.52 10.61 2060.3 7.01 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 2.77 4.15 7.13 2.98 7.13 5.71 0.00 Sub critical flow NO Back Water Effect. 6.91 7.13 7.13 0.00 625.92 3.01 620.00 620.21 26.16 1.18 5.44 3.01 0.00 5.80 26.16 615.78 32.62 2.77 1.19 5.40 2.00 1.04 1.04 0.00 3.12 6.04 2.60 616.21 30.71 6.90 2.91 0.42 0.60 0.54 6.00 18.21 1.56 1.88

619.67 100% 1935.00 1873.00 0.000150 0.00015 105.00 105.00 6.61 6.50 716.12 703.83 119.78 119.54 5.98 5.89 2.70 2.66 0.00 0.00 618.91 616.02 625.52 622.52 625.52 622.63 0.00 0 3.00 3.00 628.52 625.52 10.61 1873 6.61 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 2.60 3.90 6.73 2.83 6.72 5.32 0.00 Sub critical flow NO Back Water Effect. 6.52 6.73 6.73 0.00 625.52 3.00 620.00 620.20 23.78 1.09 5.16 3.00 0.00 5.49 23.78 615.77 30.89 2.60 1.10 5.12 2.00 1.11 1.11 0.00 3.21 5.64 2.70 616.20 28.95 6.50 2.52 0.39 0.60 0.54 6.00 17.91 1.37 1.99

619.67 90% 1741.50 1685.70 0.000150 0.00015 105.00 105.00 6.20 6.10 670.19 658.71 118.86 118.63 5.64 5.55 2.60 2.56 0.00 0.00 618.91 616.02 625.11 622.12 625.11 622.22 0.00 0 3.00 3.00 628.52 625.52 10.61 1685.7 6.20 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 2.42 3.63 6.30 2.67 6.30 4.92 0.00 Sub critical flow NO Back Water Effect. 6.11 6.30 6.31 0.00 625.11 2.99 620.00 620.19 21.41 1.00 4.87 3.00 0.00 5.17 21.41 615.76 29.08 2.42 1.01 4.84 2.00 1.19 1.19 0.00 3.31 5.22 2.81 616.19 27.14 6.50 2.12 0.33 0.60 0.55 6.00 18.34 1.17 2.22

619.67 80% 1548.00 1498.40 0.000150 0.00015 105.00 105.00 5.77 5.67 622.44 611.80 117.90 117.69 5.28 5.20 2.49 2.45 0.00 0.00 618.91 616.02 624.68 621.69 624.68 621.79 0.00 0 3.00 3.00 628.52 625.52 10.61 1498.4 5.77 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 2.24 3.36 5.87 2.51 5.86 4.49 0.00 Sub critical flow NO Back Water Effect. 5.69 5.87 5.87 0.00 624.68 2.99 620.00 620.19 19.03 0.90 4.57 2.99 0.00 4.83 19.03 615.74 27.20 2.24 0.91 4.54 2.00 1.29 1.29 0.00 3.43 4.78 2.91 616.17 25.25 6.50 1.69 0.26 0.60 0.56 6.00 18.78 0.95 2.54

619.67 70% 1354.50 1311.10 0.000150 0.00015 105.00 105.00 5.32 5.23 572.55 562.79 116.89 116.69 4.90 4.82 2.37 2.33 0.00 0.00 618.91 616.02 624.23 621.25 624.23 621.33 0.00 0 3.00 3.00 628.52 625.52 10.61 1311.1 5.32 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 2.05 3.07 5.41 2.33 5.40 4.05 0.00 Sub critical flow NO Back Water Effect. 5.25 5.41 5.41 0.00 624.23 2.98 620.00 620.18 16.65 0.80 4.24 2.98 0.00 4.48 16.65 615.73 25.21 2.05 0.81 4.22 2.00 1.41 1.41 0.00 3.58 4.32 3.03 616.16 23.28 6.50 1.45 0.22 0.61 0.57 5.10 19.03 0.82 2.79

619.67 60% 1161.00 1123.80 0.000150 0.00015 105.00 105.00 4.84 4.76 520.07 511.22 115.83 115.65 4.49 4.42 2.23 2.20 0.00 0.00 618.91 616.02 623.75 620.78 623.75 620.86 0.00 0 3.00 3.00 628.52 625.52 10.61 1123.8 4.84 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 1.85 2.77 4.92 2.14 4.91 3.58 0.00 Sub critical flow NO Back Water Effect. 4.78 4.92 4.92 0.00 623.75 2.97 620.00 620.17 14.27 0.70 3.90 2.97 0.00 4.11 14.27 615.72 23.11 1.85 0.71 3.88 2.00 1.57 1.57 0.00 3.77 3.83 3.15 616.14 21.21 6.50 1.23 0.19 0.61 0.57 4.81 19.25 0.70 3.06

619.67 50% 967.50 936.50 0.000150 0.00015 105.00 105.00 4.33 4.26 464.36 456.47 114.69 114.53 4.05 3.99 2.08 2.05 0.00 0.00 618.91 616.02 623.24 620.28 623.24 620.35 0.00 0 3.00 3.00 628.52 625.52 10.61 936.5 4.33 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 1.64 2.46 4.40 1.94 4.40 3.07 0.00 Sub critical flow NO Back Water Effect. 4.28 4.40 4.40 0.00 623.24 2.96 620.00 620.17 11.89 0.60 3.53 2.96 0.00 3.71 11.89 615.71 20.86 1.64 0.61 3.52 2.00 1.77 1.77 0.00 4.02 3.31 3.27 616.12 19.00 6.50 1.01 0.16 0.61 0.58 4.47 19.47 0.59 3.41

619.67 40% 774.00 749.20 0.000150 0.00015 105.00 105.00 3.78 3.72 404.43 397.58 113.46 113.32 3.56 3.51 1.91 1.88 0.00 0.00 618.91 616.02 622.69 619.74 622.69 619.80 0.00 0 3.00 3.00 628.52 625.52 10.61 749.2 3.78 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 1.41 2.12 3.84 1.72 3.84 2.52 0.00 Sub critical flow NO Back Water Effect. 3.74 3.84 3.84 0.00 622.69 2.95 620.00 620.17 9.51 0.50 3.13 2.96 0.00 3.27 9.51 615.70 18.42 1.41 0.50 3.12 2.00 2.05 2.05 0.00 4.36 2.75 3.40 616.10 16.63 6.50 0.80 0.12 0.61 0.59 4.08 19.68 0.47 3.87

619.67 25% 483.75 468.25 0.000150 0.00015 105.00 105.00 2.85 2.80 302.80 297.69 111.36 111.26 2.72 2.68 1.60 1.57 0.00 0.00 618.91 616.02 621.76 618.82 621.76 618.86 0.00 0 3.00 3.00 628.52 625.52 10.61 468.25 2.85 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 1.03 1.55 2.88 1.34 2.88 -0.49 0.01 Supercritical flow BW Effect as H<yc, Re-calc USD 2.55 2.64 2.64 0.00 621.46 2.65 620.00 622.25 5.95 0.34 2.39 2.69 0.00 2.49 5.95 615.75 13.99 1.03 0.33 2.43 2.00 2.81 2.81 0.00 5.29 1.55 3.91 615.76 13.92 6.50 0.49 0.08 0.61 0.60 3.31 19.98 0.29 5.01

619.67 20% 387.00 374.60 0.000150 0.00015 105.00 105.00 2.49 2.44 264.10 259.64 110.56 110.47 2.39 2.35 1.47 1.44 0.00 0.00 618.91 616.02 621.40 618.46 621.40 618.50 0.00 0 3.00 3.00 628.52 625.52 10.61 374.6 2.49 2.5 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 0.89 1.33 2.52 1.19 2.51 -0.43 0.01 Supercritical flow BW Effect as H<yc, Re-calc USD 2.36 2.42 2.42 0.00 621.27 2.81 620.00 621.83 4.76 0.27 2.15 2.84 0.00 2.22 4.76 615.72 12.50 0.89 0.27 2.16 2.00 3.26 3.26 0.00 5.78 1.33 3.81 615.92 11.58 6.50 0.39 0.06 0.61 0.60 2.99 20.08 0.24 5.64

619.67 10% 193.50 187.30 0.000150 0.00015 105.00 105.00 1.64 1.61 173.05 170.13 108.66 108.60 1.59 1.57 1.12 1.10 0.00 0.00 618.91 616.02 620.55 617.63 620.55 617.65 0.00 0.00 3.00 3.00 628.52 625.52 10.61 187.3 1.64 2.50 6.61 10.61 10.50 1.09 7 11.25 0.98 6.50 6.50 6.50 3 16.00 2.00 1 3.00 16.00 6.48 0.56 0.84 1.65 0.81 1.65 -0.32 0.01 Supercritical flow BW Effect as H<yc, Re-calc USD 1.91 1.93 1.93 0.00 620.82 3.19 620.00 620.86 2.38 0.14 1.53 3.19 0.00 1.57 2.38 615.69 8.81 0.56 0.14 1.49 2.00 5.18 5.18 0.00 7.81 0.84 3.53 616.32 5.96 6.50 0.20 0.03 0.61 0.60 1.73 20.27 0.12 8.05

615.29

CROSS REGULATORS ON CRBCTABLE OF DIMENSIONS

SUMMARY DATA CROSS REGULATOR

Structure No

RDs N.S.L

fT ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft

CROSS REGULATOR AT RD 78+000 (Bu 78+000 619.67 0.00 618.91 625.52 620.00 625.52 629.52 615.69 622.52 626.52 625.52 616.02 613.91 613.91 606.69 606.69 606.69 628.36 628.52 625.52 105.00 105.00 43.75 12.50 43.00 53.50 11.25 81.25 2.00 3.00 2.00 4.00 2.00 2.00 1.65 2.50 2.00 1.50

XR.2 474230 593.80 610.33 580.77 594.54 581.46 596.54 599.54 580.04 594.40 599.40 596.54 580.72 572.77 572.77 568.04 568.04 568.04 599.40 598.54 598.40 30.60 30.00 43.75 42.50 34.00 40.00 21.00 45.00 2.00 3.00 3.00 4.00 5.00 5.00 3.00 3.00 2.00 1.50

#REF! #REF!

FLOW

X-REGULATOR CONCRETE / REINFORCEMENT BREAK DOWN (QUANTITY)BRIDGE DECK GRAND TOTAL

R.D FLOOR SLAB BRICK TRANSITION WALLS SUPER STRUCT. RCC BRIDGE DECK 2ND STAGE CONCRETE 8222.42999

S.No. START CROSS LONGIT. CUTOFF WALLS GATED STILLING CONCRETE SLAB ON SOIL TRANSIT. LENGTHS CONC. BASE LENGTH FOOTINGS CUTOFFS OUTSIDE OUTSIDE OUTSIDE WALLS GATE PIER RAILING DECK SLAB DIAPHRAGM DECK GIRDER Total bridge deck IST STAGE CONCRETE2ND STAGE CONCRETE Excavation Backfill OF U/S CUTOFFS CUTOFFS RCC REINF. PART BASIN ON BED RCC REINF. U/S D/S TRANSIT. FOOTING RCC REINF. RCC REINF. WALLS WALLS RCC REINF. RCC REINF. RCC REINF. LENGTH RCC REINF RCC REINF RCC REINF RCC REINF. RCC REINF.

TRANSIT. WALLS WALL BASE PART OF TRANSIT. TRANSIT. GATED STILLING VOLUME

SLAB TRANSIT. LENGTH LENGTH SECTION SECTION PART PART RCC REINF. RCC REINF. Canal prism x.reg:sec; x.reg:sec; 9" PVC Precast Filter Brick Work PCC over 155.0906634 10.235983787 H=1.5 VERT. RCC RCC including excluding Waterstop PCC Blocks for Blocks tran: wall

* * * * * * * * * Canal prism Canal prism 3' x 3' x 3'ft cft cft cft Lbs cft cft cft cft Lbs ft ft ft ft cft Lbs cft Lbs cft cft cft Lbs cft Lbs cft Lbs Rft ft. cft Lbs cft Lbs cft Lbs cft Lbs cft Lbs cft Lbs cft Lbs cft cft cft Lft Nos cft cft cft

CROSS REGULATOR AT RD 78+000 (Burala Branch) 78+000 2908 2569 5477 21908 4594 798 8830 14222 56888 59 67 10 19 7112 35562 2826 11305 2212 663 2875 18689 669 4345 318 2228 104 84 1558 18692 288 2880 755 10196 2601 31768 266 1728 36101 182693 266 1728 12640 33036 20395 4089 353 205 2058 7050 335XR.2 474230 3494 3560 7054 28215 9558 9350 4978 23886 95544 35 41 10 19 4275 21375 2462 9848 3997 3989 7985 51904 2004 13027 690 4828 144 48 885 10618 48 480 429 5792 1362 16889 144 936 49718 241631 144 936 93871 177076 83204 41960 329 59 588 13220 201

#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 10 19 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!

#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 143 282 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!TOTAL RCCTOTAL REINF.

CHECK

F=

(K+

F)*

dc

/dc

-K

(d2-d1)3/

q2/(2gd22) (d1d2(d1+d2)g/2).5

CROSS REGULATOR AT RD 78+000 (Burala Branch)

Flood Embankment

U/S BED El.A

U/S FSL El.B

CREST LEVEL El.C

U/S PIER TOP El.D

U/S TRANS: WALL El.E

BASIN LEVEL El.F

D/S FSL El.G

D/S TRANS: WALL El.H

D/S PIER TOP El.I

D/S BED El.J

CUTOFF LEVEL

at U/S TRANS El.K

CUTOFF LEVEL

at U/S XR El.L

CUTOFF LEVEL

at Glacis TOE El.M

CUTOFF LEVEL

at Basin End El.N

CUTOFF LEVEL at

D/S Trans El.OTop of

Bridge El.PU/S Bank Level

El.Q

D/S Bank Level

El.R

U/S Bed Width B

D/S Bed Width

B1

Length of Gated Struc

L1

Length of Basin L2

U/S Trans Length

LTU

D/S Trans Length

LTD

Gate/ Bay Width

W

Basin Width

b

Abut: Wall Thickness(Top)

TW

Abut: Wall Thickness(Base)

TW1

Floor Thickness

U/S of Gate TS1

Floor Thickness under Gate TS2

Floor Thickness at end of Glacis

TS3

Floor Thickness

d/s of Glacis TS4

Floor Thickness at Basin End

TS5

Thickness at Pier Top

TP

Projection of Base Slab

TW2

U/S & D/S Trans: Floor Thickness

TST

EL A EL F

EL C

EL J

EL B EL G

EL N EL M

EL KEL L A

EL I

EL P

EL O

TSTTS5

TS4

TS3TS2TS 1

EL D

EL E EL H

TST

LTU L1 L2 LTD 18 -0 '

PCC BLOCKS 3' x 3' x 3'

1" Inverted Filter

18"18"

18" 18"18"

TP

18'

b B

TW

S = 1.5

EL Q

B1

EL REL Q

TW1

h=d1

b=y

wsElEGL

v^2/2g

Cc*b=d2

v1^2/2g

hD1

wsEl

EGLv^2/2g

D2

v2^2/2g

^2/2gH

Flow

Ds

d/s wsElp/g

Page 50: Head Regulator Design

C:\IRSHAD\ document.xls XRPrep'd by M.I.M

04/09/2023

"INPUT DATA"

R.D

S.No. START

OF U/S

TRANSIT.

ft

78+000

Structure No

RDs

fT

CROSS REGULATOR AT RD 78+000 (Bu 78+000

XR.2 474230

FLOW

R.D

S.No. START OF U/S

TRANSIT.

ftCROSS REGULATOR AT RD 78+000 (Burala Branch) 78+000

XR.2 474230#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!

CROSS REGULATOR AT RD 78+000 (Burala Branch)

EL A

EL B

EL K

TS 1

EL E

TST

LTU

18"

B

EL Q

EL Q

(CU9*EE9/100*62.5/150-H9*62.4/150)*4/3

TABLE OF DIMENSIONS OF X-REGULATORS ON CRBCUP LIFT PRESSURE ( by KHOSLA'S METHOD )

Type GATED PORTION BASIN OUT LET OUT LET TOTAL DEPTH EXIT WT.CREEP LENGTH D/S CUTOFF UP LIFT PRESSURE BY WEIGHTED CREEP FLOATATION CHECK CANAL DIMENSIONS F.S.DEPTH F.S.LEVEL TRANSITIONS GATES X-R LENGTHS

BASIN LEVEL

BASIN WIDTH

HEIGHTS

of STILLING BASIN END SILL DIFFEREN:. TOTAL INLET INLET UP TO GATE GROOVE D/S OF GATE GROOVE TOTAL LENGTH TRAN- TRAN- horizon. INLET U/S INTER D/S OUTLET of GRADIENT WEIGHT. WEIGHT. U/S CUTOFF INTERMEDIATE CUTOFF S.No. R.D BED WIDTH LENGTH HEIGHT

N0.

CREST HEIGHT

GATE WIDTH

GATE HEIGHT

LENGTH LENGTH

WALLSq Crit: Type Q dQ d2 V2 F2 Stilling L/D2 LENGTH LENGTH LENGTH BASIN Height Width OF HEAD TRANS. TRANS. STOP D/S OF GATE D/S BRIDGE PIER U/S GATED D/S SITION SITION floor TRANS. cutoff cutoff cutoff TRANS. scour F.O.S CREEP CREEP b1' b2' ASSUMED. CALCULATED CORRECTED FLOOR FLOOR FLOOR FLOOR ASSUMED. CUTOFF CALCULATED CORRECTED CALCULATED PROVIDED ASSUMED. d3 Lamda CALCULATED CORRECTED PRESS. CALC. PROVD. WEIGHTED RESID. calcul. WEIGHT. RESID. calcul. WEIGHT. RESID. THICKNESS.UP WARD DOWNWARD FOS START OF GATED BASIN

depth of calcul. Qactual Basin TYPE OF OF OF LEVEL W.LS ACROSS LENGTH LENGTH U/S STOP LOG STOP GROOVE OF WITH PRO- OF PART OF INTER:. >22.5 PROV. with CUTOFF OF X-R OF X-R provd CUTOFF below bed for GE LENGTH LENGTH THICK. d1 Lamda Lamda1 phi phi phi phi phi FLOOR FLOOR FLOOR FLOOR b1" b2" THICK. from Lamda Lamda1 phi phi phi phi phi PRESSURE IN FEET FLOOR FLOOR FLOOR FLOOR b1''' b2''' THICK. phi phi phi phi FT.OF FLOOR FLOOR CREEP UP LIFTTHICKNESS. CREEP UP LIFT THICKNESS. CREEP UP LIFT OF FORCE FORCE AGAINST OF U/S U/S D/S U/S D/S U/S D/S U/S D/S TRANS: PART D/S OF

Flow orf.free minus (F) BASIN JUMP BASIN BASIN TWL> "H" CALC. PROVID. LOG GROOVE LOG GATE KERBS JECTION EXPANS. EXP CALCU. Trans: from from from from = 0.9((q^2) / f )^(1/3) reqd.(Lc=8*H) PROV. t1 from phi phi phi phi phi THIC. THICK. THICK. THICK:. t2 top of E'2 D2 C'2 E2 C2 THICK. THICK. THICK. THICK. t1 E'3 D3 C'3 E3 WATER THICK:. THICK:. LENGTH PRESS. OF DIST.OF PRESS. OF DIST.OF PRESS. FLOOR FLOATATION TRANSIT. WALLS JOINT

Yc flow Qcalcul calcul. provided for GROOVE GROOVE GROOVE JOINT JOINT top top top top f = .9 1/GE=8 for sand top E'1 D1 C'1 E1 C1 TE1 TC1 TE1 TC1 floor % % % % % E2 C2 TE2 TC2 TE2 TC2 (Ts5) % % % % TE3 TE3 UP TO D/S GATE FLOOR GLACIS GLACIS FLOOR C/LINE C/LINE calcul.at

615.30 shutdown (LTU) (L1) (L2) (LTD) (Hcu) (Hcu) (Hci) (Hcd) (Hcd) U/S D/S C=8 Lc (Ts1) % % % % % PROVD. PROVD. (TS3) d2 (Ts3) (Ts4) (Ts5) GATE TOE CISTERN CISTERN Cl of cistern (B) (B) (D) (D) (LTU) (LTD) (H) (HC) (W) (HG) (L1) (L2) (b) (H)

cfs/ft ft cfs cusecs ft ft/sec ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft. ft. ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft Kips/ft Kips/ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft

24.76 2.67 Supercritical flow 2251.89 378.89 5.92 4.02 0.29 USBR-I 4.5 26.7 30.5 45.0 615.69 0.00 1.00 0.90 10.81 41.86 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 52.21 53.5 109 5.0 5.0 9.0 9.0 9.0 4.93 8.88 6.70 86.44 97.65 43 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.51 3.36 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.56 3.13 1.98 1.74 2.00 1.80 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.34 1.30 1.50 35.08 6.92 3.85 64.92 3.62 2.01 67 3.39 1.88 43.51 36.65 0.84 CROSS RE78+000 105 105 6.61 6.50 625.52 622.52 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.69 25 10.61

36.23 3.44 Supercritical flow 3407.87 973.0 7.29 4.24 0.28 USBR-I 4.5 32.8 35.5 45.0 615.64 0.00 1.00 0.72 12.01 45.18 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 56.32 53.5 109 5.0 5.0 9.0 9.0 10.0 6.53 10.36 6.03 96.11 99.25 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.90 3.74 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.96 3.48 2.20 1.94 2.25 2.00 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.60 1.45 1.50 35.08 7.77 4.31 64.92 4.16 2.31 67 3.90 2.17 43.51 36.65 0.84 CROSS RE424550 105 105 7.76 7.63 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.64 25 10.61

32.37 3.19 Supercritical flow 3012.54 764.94 6.87 4.15 0.28 USBR-I 4.5 30.9 34.0 45.0 615.66 0.00 1.00 0.76 11.62 44.11 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 54.99 53.5 109 5.0 5.0 9.0 9.0 10.0 6.16 9.79 6.23 92.99 99.45 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.77 3.62 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.83 3.37 2.13 1.87 2.15 1.90 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.52 1.40 1.50 35.08 7.52 4.18 64.92 4.04 2.24 67 3.79 2.11 43.51 36.65 0.84 CROSS RE424550 105 105 7.39 7.27 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.66 25 10.61

28.46 2.93 Supercritical flow 2616.89 556.59 6.42 4.07 0.28 USBR-I 4.5 28.9 32.5 45.0 615.68 0.00 1.00 0.81 11.22 43.01 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 53.63 53.5 109 5.0 5.0 9.0 9.0 9.0 5.78 9.21 6.45 89.77 97.45 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.64 3.49 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.70 3.26 2.06 1.81 2.1 1.90 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.43 1.35 1.50 35.08 7.18 3.99 64.92 3.75 2.08 67 3.51 1.95 43.51 36.65 0.84 CROSS RE424550 105 105 7.01 6.89 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.68 25 10.61

24.48 2.65 Supercritical flow 2220.82 347.82 5.94 4.00 0.29 USBR-I 4.5 26.7 31.0 45.0 615.69 0.00 1.00 0.89 10.81 41.86 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 52.21 53.5 109 5.0 5.0 9.0 9.0 9.0 5.39 8.61 6.70 86.44 97.65 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.51 3.36 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.56 3.13 1.98 1.74 2 1.80 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.34 1.30 1.50 35.08 6.92 3.85 64.92 3.62 2.01 67 3.39 1.88 43.51 36.65 0.84 CROSS RE424550 105 105 6.61 6.50 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.69 25 10.61

21.41 2.42 Supercritical flow 1895.90 210.20 5.68 3.77 0.28 USBR-I 5.0 28.4 31.0 45.0 615.72 0.00 1.00 0.73 10.37 40.68 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 50.75 53.5 109 5.0 5.0 9.0 9.0 8.0 4.99 7.99 6.98 82.98 95.85 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.37 3.23 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.42 3.01 1.90 1.67 1.95 1.70 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.25 1.25 1.50 35.08 6.58 3.65 64.92 3.35 1.86 67 3.12 1.73 43.51 36.65 0.84 CROSS RE424550 105 105 6.20 6.10 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.72 25 10.61

17.88 2.15 Supercritical flow 1545.17 46.77 5.30 3.59 0.27 USBR-I 5.0 26.5 31.0 45.0 615.74 0.00 1.00 0.66 9.92 39.44 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 49.21 53.5 109 5.0 5.0 9.0 9.0 7.0 4.57 7.35 7.30 79.37 94.05 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.22 3.09 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.27 2.88 1.82 1.60 1.85 1.60 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.15 1.19 1.50 35.08 6.22 3.46 64.92 3.07 1.71 67 2.85 1.59 43.51 36.65 0.84 CROSS RE424550 105 105 5.77 5.67 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.74 25 10.61

15.64 1.97 Supercritical flow 1332.95 21.85 5.03 3.31 0.26 USBR-I 5.5 27.6 31.0 45.0 615.76 0.00 1.00 0.47 9.45 38.14 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 47.61 53.5 109 5.0 5.0 9.0 9.0 7.0 4.15 6.69 7.67 75.58 94.05 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 3.07 2.94 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 3.12 2.74 1.73 1.52 1.75 1.60 108.75 0 3 9 6.56 25.53 17.80 0 21.66 2.05 1.14 1.50 35.08 5.92 3.29 64.92 2.93 1.63 67 2.72 1.51 43.51 36.65 0.84 CROSS RE424550 105 105 5.32 5.23 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.76 25 10.61

13.57 1.79 Supercritical flow 1142.24 18.44 4.74 3.01 0.24 USBR-I 5.5 26.0 30.5 45.0 615.78 0.00 1.00 0.26 8.95 36.76 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 45.91 53.5 109 5.0 5.0 9.0 9.0 6.0 3.70 5.99 8.10 71.58 92.25 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 2.91 2.78 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 2.95 2.60 1.64 1.44 1.65 1.50 108.75 0 3 9 6.56 25.53 17.80 0 21.66 1.94 1.08 1.50 35.08 5.54 3.08 64.92 2.65 1.47 67 2.45 1.36 43.51 36.65 0.84 CROSS RE424550 105 105 4.84 4.76 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.78 25 10.61

11.44 1.60 Supercritical flow 951.53 -15.03 4.40 2.70 0.23 USBR-I 6.0 26.4 30.5 45.0 615.38 0.00 1.00 0.50 8.84 35.30 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 44.10 53.5 109 5.0 5.0 9.0 9.0 9.0 2.81 5.26 8.19 70.73 98.25 43 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 2.87 2.75 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 2.92 2.56 1.62 1.42 1.65 1.50 108.75 0 3 9 6.56 25.53 17.80 0 21.66 1.92 1.06 1.50 35.08 5.68 3.16 64.92 3.00 1.67 67 2.81 1.56 43.51 36.65 0.84 CROSS RE78+000 105 105 4.33 4.26 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.38 25 10.61

9.25 1.39 Supercritical flow 761.02 -11.82 4.01 2.37 0.21 USBR-I 6.5 26.1 30.0 45.0 615.29 0.00 1.00 0.44 8.38 33.71 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 42.14 53.5 109 5.0 5.0 9.0 9.0 9.0 2.37 4.49 8.64 67.05 98.45 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 2.72 2.61 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 2.77 2.43 1.54 1.35 1.55 1.40 108.75 0 3 9 6.56 25.53 17.80 0 21.66 1.82 1.01 1.50 35.08 5.39 3.00 64.92 2.85 1.59 67 2.68 1.49 43.51 36.65 0.84 CROSS RE78+000 105 105 3.78 3.72 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.29 25 10.61

5.88 1.02 Supercritical flow 475.43 -7.18 3.26 1.82 0.18 USBR-III 3.0 9.8 8.0 45.0 615.56 0.00 1.00 0.00 7.18 31.01 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 38.80 53.5 109 5.0 5.0 9.0 9.0 9.0 1.66 3.20 10.09 57.41 98.85 43 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 2.33 2.23 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 2.37 2.08 1.32 1.16 1.35 1.20 108.75 0 3 9 6.56 25.53 17.80 0 21.66 1.55 0.86 1.50 35.08 4.63 2.57 64.92 2.46 1.37 67 2.31 1.28 43.51 36.65 0.84 CROSS RE424550 105 105 2.85 2.80 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.56 25 10.61

4.73 0.89 Supercritical flow 380.39 5.79 2.95 1.61 0.17 USBR-III 3.0 8.8 8.0 45.0 615.52 0.00 1.00 0.00 6.86 29.97 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 37.52 53.5 109 5.0 5.0 9.0 9.0 9.0 1.62 2.73 10.56 54.86 98.85 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 2.23 2.13 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 2.26 1.99 1.26 1.11 1.3 1.20 108.75 0 3 9 6.56 25.53 17.80 0 21.66 1.49 0.83 1.50 35.08 4.42 2.46 64.92 2.35 1.31 67 2.21 1.23 43.51 36.65 0.84 CROSS RE424550 105 105 2.49 2.44 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.52 25 10.61

2.42 0.57 Supercritical flow 190.23 2.93 2.15 1.11 0.13 USBR-III 3.0 6.4 6.0 45.0 615.48 0.00 1.00 0.00 6.04 27.52 43 3.75 0.75 3.5 3.25 3 22 3 4.5 43.75 12.5 34.49 53.5 109 5.0 5.0 9.0 9.0 9.0 0.95 1.65 11.99 48.33 99.25 43.00 65.75 2 5 10.92 -2.27 59.66 56.65 53.69 58.46 55.99 1.96 1.88 2 2.00 86.75 22.00 5 9 6.17 3.52 36.57 30.63 23.77 32.99 29.01 1.99 1.75 1.11 0.97 1.15 1.00 108.75 0 3 9 6.56 25.53 17.80 0 21.66 1.31 0.73 1.50 35.08 3.91 2.17 64.92 2.09 1.16 67 1.96 1.09 43.51 36.65 0.84 CROSS RE424550 105 105 1.64 1.61 43 53.5 10.61 7 1.09 11.25 6.50 43.75 12.50 615.48 25 10.61

Page 51: Head Regulator Design

C:\IRSHAD\ document.xls XRPrep'd by M.I.M

04/09/2023

"INPUT DATA"

R.D

S.No. START

OF U/S

TRANSIT.

ft

78+000

Structure No

RDs

fT

CROSS REGULATOR AT RD 78+000 (Bu 78+000

XR.2 474230

FLOW

R.D

S.No. START OF U/S

TRANSIT.

ftCROSS REGULATOR AT RD 78+000 (Burala Branch) 78+000

XR.2 474230#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!#REF! #REF!

CROSS REGULATOR AT RD 78+000 (Burala Branch)

EL A

EL B

EL K

TS 1

EL E

TST

LTU

18"

B

EL Q

EL Q

TABLE OF DIMENSIONS OF X-REGULATORS ON CRBC

HEIGHTS THICKNESSES DATA OF SERVICE BRIDGE

PIER

CUT-OFFS GATE WALL THICKNESS FLOOR THICKNESS CLEAR CLEAR WALL PIER GIRDER DIAPHRAM SLAB KERB

U/S U/S INTER D/S D/S HOIST TOP BASE PIER INLET AT D/S UNDER AT U/S AT D/S AT U/S SPAN ROAD TOP TOP DEPTH NO. SIZE THICK. SIZE

TRANS. OF X-R OF X-R OF X-R TRANS. TOWER ABUTM. ABUTM. THICK & OF U/S GATES OF INT. OF INT. OF D/S WAY WIDTH WIDTH 2-GIRD. 8"X (G.depth-6")

FROM FROM FROM FROM FROM ABOVE NESS OUT LET CUTOFF CUTOFF CUTOFF CUTOFF WIDTH 1.5w 2'x9"

TOP TOP TOP TOP TOP ABUTMENT TRANSIT. OF X-R OF X-R OF X-R OF X-R

(HP) (Hcu) (Hcu) (Hci) (Hcd) (Hcd) (HGh) (Tw) (Tw1) (TP) (Ts1) (Ts2) (Ts3) (Ts4) (Ts5) S Tw Tp dG (depth) Ts

ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 11 18 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 10 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 10 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 8 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 7 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 7 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 6 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 21 14 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 11 18 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 11 18 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 11 18 2 3 2 2 1.5 0.75 2

6.61 5 5 9 9 9 6.48 2 3 3 2 2.00 4.00 2.00 2.00 1.65 11 18 2 3 2 2 1.5 0.75 2

Page 52: Head Regulator Design

b-b1= 71.47

SP1t

SP2

b2= 36.47 SP3 SP4d3

b1 = 22.00

b1'= 58.47 b3= 35.00

b= 93.47

SUB SURFACE FLOW ANALYSIS PILE LINE AT POINT 1u/s Designed Floor level USFL 618.91

Floor thickness at (SP1) US t 1.5 2.00 Should be equal

Depth of u/s Sheet pile SP1(from top of floor) d 5.00Bottom RL of u/s Sheet Pile (SP1) BRL(SP1) 613.91

Bottom RL of Floor at SP1 BRLF(SP1) 617.41

Floor thickness at (SP2) (Assumed) 1.5 2.00 Should be equal

Bottom RL of Floor at SP2 BRLF(SP2) 617.41

Bottom RL Sheet Pile (SP2) BRL(SP2) 613.91

Stilling Level Sl 614.50

Thickness of Floor at SP3 (Assumed) t3 3.25 4.25 Should be equal

Bottom RL of Floor at SP3 611.25 make change if d/s pile from Design bed

Bottom RL of Sheet Pile (SP3) 608.21 608.21

d/s Designed BL DSBL 616.02

Bottom RL of Floor at SP4 612.50

Bottom RL of d/s end sheet pile(SP4) DSRL(SP4) 608.21 608.21 Make change if d/s pile from Design bed

Depth of d/s end sheet pile d(d/s) 7.81

Floor thickness at (SP4) (assumed) 2.00 2.75 Should be equal

d/s Scoured BL DSSBL 615.07

b = Total horizontal length of the Pacca Floor b 93.47 ft

b1 = Horizontal length between pile1 & Pile2 b1 22.00 ft

b2 = Horizontal length between pile2 & Pile3 b2 36.47 ft

CROSS REGULATOR AT RD 78+000 (Burala Branch)

Note:- Depth of sheet pile taken from d/s floor as rcommended by DRC on 13.08.04

A B

C Dd d1 t2 t3

Page 53: Head Regulator Design

b3 = Horizontal length between pile3 & Pile4 b3 35.00 ft Slope Correction factor

3.50 ft 1 11.2

3.50 ft 2 6.522.00 ft 3 4.5

18.694 4 3.3

9.860 5 2.8

0.206 6 2.5

0.145 (1/2)*(1+(1+C16^2)^0.5) 7 2.3

85.54 % 8 2

79.37 %

CORRECTION DUE TO INTERFERENCE OF PILES

+ve 0.568 %

+v1.85 %

CORRECTION DUE TO SLOPE AT POINT 1

0.00 %

85.54 %81.79 %

PILE LINE AT POINT 2

D2 = The depth of pile 2 measured from the bottom of the floor at the location of pile 1 to the bottom of the pile 2.

D1 = The depth of pile 1 measured from the bottom of the floor to bottom of the pile 1.

SP = The horizontal distance between two pilesa = b/dl = (1+ (1+a2)1/2 )/ 2

fE = 1/p x cos-1((l-2)/l) %fD = 1/p x cos-1((l-1)/l)

fD1 = 1 - fD

fc1 = 1 - fE

CORRECTIONS FOR FC1

Correction = 19 (D2/SP)^(1/2) ((D1 + D2)/b), if pile 2 is u/s of pile 1,the correction C is subtracted from fE. On the other hand if pile 2 is d/s of pile 1, the correction C is added to fc.

CORRECTION DUE TO THICKNESS OF THE FLOOR

Pressure calculated from above is at the top of the floor but we want to calculate at the bottom of the floor. It will be substracted from fE and added in fC.

Thickness of the floor x (fD1 - fC1)/d

Correction due to slope at point 1 is nil as this point is neither situated at the start nor at the end of a slope.

CORRECTED VALUES OF PRESSURE AT POINT 1

fD1 CORRECTED

fc1 corrected

Page 54: Head Regulator Design

5.00 ft22.00 ft71.47 ft

Thickness of the floor 1.5 ft93.47 ft

1.5 ft SP1 SP2 36.47 SP3

22.00

3.50 ft b= 93.47

4.25 ft

22.00 ft

1.50 ft

9.20 ft

3.50 ft

36.47 ft4.40 Ft.

14.29

9.42

-4.91

71.58 %

67.44 %

63.62 %

CORRECTION DUE TO INTERFERENCE OF PILES

-ive -0.63 %

CORRECTION DUE TO THICKNESS OF THE FLOOR

d = depth of the intermidiate pile (from top of the floor)

b1 = Floor length u/s of the intermidiate pileb2 = Floor length d/s of the intermidiate pile

b = Total horizontal length of the floort = Thickness of the floor

For fED2 = The depth of pile 2 measured from the bottom of the floor at the location of pile 1 to the bottom of the pile 2.

D1 = The depth of pile 1 measured from the bottom of the floor to bottom of the pile 1.

SP = The horizontal distance between two Sheet piles SP1-SP2

For fCt = Thickness of the floorD2 = The depth of pile 3 measured from the bottom of the floor at the location of pile 2 to the bottom of the pile 3.

D1 = The depth of pile 2 measured from the bottom of the floor to bottom of the pile 2.

SP = The horizontal distance between two piles SP2-SP3

a1 = b1 / da2 = b2 / dWhere l2 = ((1+a1

2)1/2 + (1+a22)1/2)/ 2

Where l1 = ((1+a12)1/2 - (1+a2

2)1/2)/ 2FE2 = fE = 1/p x cos-1((l1-1)/l2)FD2 = fD = 1/p x cos-1(l1/l2)Fc2 = fc = 1/p x cos-1((l1+1)/l2)

CORRECTIONS FOR FE2

Correction = 19 (D2/SP)^(1/2) ((D1 + D2)/b), if pile B is upstream of pile A,the correction C is subtracted from fE. On the other hand if pile B is down stream of pile A, the correction C is added to fc.

Page 55: Head Regulator Design

-ive -1.24 %CORRECTION DUE TO SLOPE

0.00 %

69.71 %

CORRECTION DUE TO INTERFERENCE OF PILES

+ive 1.30 %

CORRECTION DUE TO THICKNESS OF THE FLOOR

+ive 1.15 %CORRECTION DUE TO SLOPE

CS = C.F. x (L /SP)

Slope S = 2 :1

6.31 6.31

L = Horizontal length of the slope 3.25 Ft.

36.47 Ft.

Actual correction = C.F. x (L /SP) + ive 0.56 %

Pressure calculated from above is at the top of the floor but we want to calculate at the bottom of the floor.

Thickness of the floor x (fE2 - fD2)/d

Correction due to slope at point 1 is nil as this point is neither situated at the start nor at the end of a slope.

CORRECTED VALUES OF PRESSURE AT POINT 2

fE2 CORRECTED

CORRECTIONS FOR FC2

Correction = 19 (D2/SP)^(1/2) ((D1 + D2)/b), if pile B is upstream of pile A,the correction C is subtracted from fE. On the other hand if pile B is down stream of pile A, the correction C is added to fc.

Pressure calculated from above is at the top of the floor but we want to calculate at the bottom of the floor.

Thickness of the floor x (fD2 - fC2)/d

CS = Slope Correction. It is added to fE, if the floor upstream of the pile slopes upwards and substracted from fE when the floor slopes downward. Similarly CS is added to fC, if the floor downstream of the pile slopes downwards and substracted from fC wh

C.F.= a factor which depends on the slope of the floor. For slope S upto 3.1 (3.1 horizontal to 1 vertical) CF = 4.65 + 1.66 (3.1 - S)^2 for slopes S > 3.1 CF = 16.5 / S^1.12 these equations hav

SP = The distance between the pile under consideration and the next pile on the side of the sloping floor.

Page 56: Head Regulator Design

65.33 %

PILE LINE AT POINT 3 Please Check next

d = depth of the intermidiate pile (from top of the floor)6.29 Ft.

b1 = Floor length u/s of the intermidiate pile 58.47 Ft.

b2 = Floor length d/s of the intermidiate pile 35.00 Ft.

Thickness of the floor 3.25 Ft.

b = Total horizontal length of the floor 93.47 Ft.

t = Thickness of the floor 3.25 Ft.

2.66 Ft. 2.66

3.04 Ft. 3.04

SP = The horizontal distance between two piles 36.47 Ft.

t = Thickness of the floor 3.25

3.04 3.04

3.04 3.04

SP = The horizontal distance between two piles 35.009.29 Ft.5.56

7.50

1.85

46.40 %

42.08 %

37.60 %

CORRECTION DUE TO INTERFERENCE OF PILES

CORRECTED VALUES OF PRESSURE AT POINT 2

fC2 CORRECTED

For fED2 = The depth of pile B measured from the bottom of the floor at the location of pile A to the bottom of the pile B.

D1 = The depth of pile A measured from the bottom of the floor to bottom of the pile A.

For fC

D2 = The depth of pile B measured from the bottom of the floor at the location of pile A to the bottom of the pile B.

D1 = The depth of pile A measured from the bottom of the floor to bottom of the pile A.

a1 = b1 / da2 = b2 / dWhere l2 = ((1+a1

2)1/2 + (1+a22)1/2)/ 2

Where l1 = ((1+a12)1/2 - (1+a2

2)1/2)/ 2FE2 = fE = 1/p x cos-1((l1-1)/l2)FD2 = fD = 1/p x cos-1(l1/l2)Fc2 = fc = 1/p x cos-1((l1+1)/l2)

CORRECTIONS FOR FE2

Page 57: Head Regulator Design

-ive -0.31 %

CORRECTION DUE TO THICKNESS OF THE FLOOR

-ive -2.23 %CORRECTION DUE TO SLOPE

Slope S = 3.00 :1

+ive

0.00 % 2.31

43.85

CORRECTION DUE TO INTERFERENCE OF PILES

+ive 0.36 %

CORRECTION DUE TO THICKNESS OF THE FLOOR

+ive 2.31 %

39.92 %

PILE LINE AT POINT 4 (END)

b = Total length of the floor 93.47 ft.

d = Depth of pile No.2 7.81 ft.

t = Thickness of the floor 2.00 ft.

4.29 ft.

Correction = 19 (D2/SP)^(1/2) ((D1 + D2)/b), if pile B is upstream of pile A,the correction C is subtracted from fE. On the other hand if pile B is down stream of pile A, the correction C is added to fc.

Pressure calculated from above is at the top of the floor but we want to calculate at the bottom of the floor.

Thickness of the floor x (fE2 - fD2)/d

Correction due to slope at point 1 is nil as this point is neither situated at the start nor at the end of a slope.

CORRECTED VALUES OF PRESSURE AT POINT 3

CORRECTIONS FOR FC2

Correction = 19 (D2/SP)^(1/2) ((D1 + D2)/b), if pile B is upstream of pile A,the correction C is subtracted from fE. On the other hand if pile B is down stream of pile A, the correction C is added to fc.

Pressure calculated from above is at the top of the floor but we want to calculate at the bottom of the floor.

Thickness of the floor x (fD2 - fC2)/d

CORRECTED VALUES OF PRESSURE AT POINT 3

fC2 CORRECTED

For fC

D2 = The depth of pile B measured from the bottom of the floor at the location of pile A to the bottom of the pile B.

Page 58: Head Regulator Design

4.29 ft.

SP = The horizontal distance between two piles 35.0011.97 ft.

6.50

25.65 %

17.88 %

CORRECTION DUE TO INTERFERENCE OF PILES

-ive -0.61 %

t5=4.25CORRECTION DUE TO THICKNESS OF THE FLOOR

-ive -1.99 %CORRECTION DUE TO SLOPE AT POINT

23.05 %

17.88 %

CROSS REGULATOR AT RD 78+000 (Burala Branch)

Top of Tower=636

u/s wl= 625.52 18.71623.88 622.72

622.30 CL=620 620.23 d/s WL= 622.52

22 3.25 t3=3ft 619.86 S.S HGL 618.24

t1=1.5ft USBL=618.91 t2=1.5ft 14.5 t4=4.25ft Stilling El=614.5 t5=2.75ft Designed bed El=616.02

81.79% 69.71% 65.33% USBR_IV 23.05%

20.00 uplift Pressures 43.85% 39.92%

85.54% 67.44% W Scour:EL=

613.91 613.91 608.21

D1 = The depth of pile A measured from the bottom of the floor to bottom of the pile A.

a = b/dl = (1+ (1+a2)1/2 )/ 2

fE3 = 1/p x cos-1((l-2)/l) %fD3 = 1/p x cos-1((l-1)/l)

CORRECTIONS FOR FE1

Correction = 19 (D2/SP)^(1/2) ((D1 + D2)/b), if pile B is upstream of pile A,the correction C is subtracted from fE. On the other hand if pile B is down stream of pile A, the correction C is added to fc.

Pressure calculated from above is at the top of the floor but we want to calculate at the bottom of the floor.

Thickness of the floor x (fE1 - fD1)/d

CORRECTED VALUES OF PRESSURE AT POINT 4

fE3 corrected

fD3 corrected

Page 59: Head Regulator Design

608.21 42.08% 17.88%

58.47Total Floor Length= 94.22 35 25.00

Point Fi H Cistren RL

Pile 1 C 81.79% 9.61 614.50 620.00 616.02 3.55 3.75 623.88 4.97 3.55

Pile 2 E 69.71% 9.61 614.50 620.00 616.02 3.55 3.75 622.72 2.72 1.94

Pile 2 C 65.33% 9.61 614.50 620.00 616.02 1.64 2.00 622.30 2.30 1.64

Pile 3 E 43.85% 9.61 614.50 620.00 616.02 4.10 4.25 620.23 5.73 4.10Pile 3 C 39.92% 9.61 614.50 620.00 616.02 3.83 4.00 619.86 5.36 3.83Pile 4 23.05% 9.61 614.50 620.00 616.02 2.67 2.75 618.24 3.74 2.67

0 678.88 623.88 222.00 678.88 622.72 1.9425.25 620.00 622.30 1.6458.47 614.50 620.2358.47 614.50 0.00 4.1093.47 614.50 S.S HGL 3.83

2.67

Crest level

D/S bed level

Thickness

Calculated

Thickness of Floor

Provided

Level of HGL

Residual Head

Thickness of Floor

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chart Title

Length of Floor

Pre

ss

ure

Page 60: Head Regulator Design

Designed bed El=616.02 Exis:BL=615.07

609.09

Page 61: Head Regulator Design

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chart Title

Length of Floor

Pre

ss

ure

Page 62: Head Regulator Design
Page 63: Head Regulator Design

assume Initial thickness 2.46 2.5 Change for round off

of cistren 4.18 4.25

Length of different part of the structures Thickness of u/s floor. = 1.5

Depth of cutoff at Pile3 from bottom of Floor 3.04

Crest level Bottom RL of Pile1 D2 for pile1 D1 for pile 1

618.91 620.54 614.50 613.91 617.41 3.50 3.50

1 22.0 Bottom RL of Pile2

2 U/S glacis 3.25 613.91 617.41 3.50 9.20 4.25

3 Crest width 14.50 Bottom RL of Pile3

4 D/S glacis 18.71 608.21 611.25 2.66 3.04 3.04

5 Sub total 36.47 D2 for pile4 D1 for pile4

6 Length of cistren 35.00 608.21 612.50 4.29 4.29

7 94.22 94.07

Point Fi H Cistren RL Crest levelD/S bed level Thickness

Pile 1 C 81.79% 9.61 614.50 620.54 616.02 1.17 2.00 623.88 1.64 1.17

Pile 2 E 69.71% 9.61 614.50 620.54 616.02 -1.15 2.00 622.72 2.18 1.56

Pile 2 C 65.33% 9.61 614.50 620.54 616.02 1.26 2.00 622.30 1.76 1.26

Pile 3 E 43.85% 9.61 614.50 620.54 616.02 4.10 4.25 620.23 5.73 4.10

Pile 3 C 39.92% 9.61 614.50 620.54 616.02 3.83 4.00 619.86 5.36 3.83

Pile 4 23.05% 9.61 614.50 620.54 616.02 2.67 2.75 618.24 3.74 2.67

CROSS REGULATOR AT RD 78+000 (Burala Branch) Final data for Section Final data for Plan

Length of u/s stone apron 20.00 Radius of u/s wing wall 33.15

Length of u/s floor 22.00 Thickness at crest 3.00

U/S B.L. 618.91 No. of bays 7

U/S FSL 625.52 Bay width 11.25

RL of u/s cut off 613.91 Distanance between abutments 93.75

Crest RL 620.00 Length of W.Wall Across the Flow 21.50

Length of crest 14.50 Length of d/s Transition wall "LTD" 25.00

RL of pile 3 608.21 Length of u/s Transition wall "LTU" 15.00

Thickness of foor at 3 4.25 Type Of Basin USBR_IV

Thickness of foor at 4 2.75 Head Across "H" 9.61

Height of chut blocks 2.25 Top Width of Pier 2.50

1.00 US Design discharge (as per L-Sec) 1935.00

2.75 DS Design discharge (as per L-Sec) 1873.00

u/s bed level

d/s cistren level

Bottom RL of floor at Pile1

Length of u/s floor = 2.5 x H (head over crest)

Bottom RL of floor at Pile2

D2 for pile2 for "E"

D2 for pile2 for "C"

D1 for pile2

Bottom RL of floor at Pile3

D2 for pile3 for "E"

D2 for pile3 for "C"

D1 for pile3

should be more than 37

Bottom RL of cutoff 4.

Bottom RL of floor at 4

Total length of the structure

Should be more than b in exit gradient

Thickness Provided

Level of HGL

Residual Head

Floor Thickness

Width of Chute Blocks,w

Spacing between Chute Blocks, s

Page 64: Head Regulator Design

NA USBW 105.00

Height of baffle peir 0.00 DSBW 105.00

Top width of baffle peir 0.00

Cistren RL 614.50

Cistren length 35.0

Sill RL 615.90

RL of pile 4 608.21

D/S B.L. 616.02

D/S FSL 622.53

Length of inverted filter 12.75

Length of d/s stone apron 25.00

NSL 619.67

Existing Bed Level (EBL) 615.07

Sub Surface B.L (SSBL) 0.00

USFSL 625.53

DSFSL 622.53

Thickness of u/s stone apron 2.00

Thickness of d/s stone apron 3.00

DESIGNED DATA

Sr.No Description Structural Data

1 U/S DISCHARGE 1935.00 1935.00

2U/S FSL

625.53 625.52

3 U/S BL 618.91 618.91

4 U/S BW 105.00 105.00

5 D/S DISCHARGE 1873.00 1873.00

6 D/S FSL 622.53 622.52

7 D/S BL 616.02 616.02

8 D/S BW 105.00 105.00

9 Max H. across - 9.61

10 Crest Level - 620.00

11 Cistern Level - 614.50

12 - 94.22

Distance from C.B to Baffle peir, 0.8D2

Canal Data

Length of Pacca Floor

Page 65: Head Regulator Design

Stilling basin level 614.50 RLE1 625.64 RLB 93.75 FtQ 1873.00 Csq 20.0 Cs/ftCrest RL 620.00Cistren RL 614.50D/S slope 3 :1Cc 0.75Gate opening 3.00depth before jump , d1 = 1.09 D2= 4.8146309

E1 q x RL at slope y ordinate y1 v1 v1^2 V1^2/2g0 620.00 0 2.25

11.14 20.0 2 619.33 0.67 0.99 20.14 405.82 6.3011.14 20.0 4 618.67 1.33 0.90 22.17 491.59 7.6311.14 20.0 6 618.00 2.00 0.83 23.97 574.73 8.9211.14 20.0 8 617.33 2.67 0.78 25.62 656.23 10.1911.14 20.0 10 616.67 3.33 0.74 27.14 736.67 11.4411.14 20.0 12 616.00 4.00 0.70 28.57 816.28 12.6811.14 20.0 14 615.33 4.67 0.67 29.92 895.30 13.9011.14 20.0 16 614.67 5.33 0.64 31.21 973.86 15.1211.14 20.0 18 614.00 6.00 0.62 32.44 1052.04 16.3411.14 20.0 20 613.33 6.67 0.59 33.61 1129.93 17.5511.14 20.0 22 612.67 7.33 0.57 34.75 1207.57 18.7511.14 20.0 24 612.00 0.00 0.56 35.85 1285.00 19.9511.14 20.0 25 188.84 0.00 324.15 0.06 0.00 0.0011.14 20.0 26 188.84 0.00 11.78 1.70 2.88 0.0411.14 20.0 30 188.84 0.00 11.78 1.70 2.88 0.0411.14 20.0 25 188.84 0.00 0.62 32.18 1035.30 16.0811.14 20.0 29 188.84 0.00 1.12 17.82 317.68 4.93

d2=-d1/2+*[2q2/(gd1)+d12/4]0.5

Page 66: Head Regulator Design

E1 cal diff Water El0.00 622.25

12.13 0.99 620.3312.70 1.56 619.5713.26 2.12 618.8313.80 2.67 618.1114.34 3.20 617.4014.87 3.74 616.7015.40 4.27 616.0015.93 4.79 615.3116.45 5.31 614.6216.97 5.84 613.9317.49 6.35 613.2418.01 6.87 612.56

-101.51 -112.65 512.99-413.84 -424.97 200.62-413.84 -424.97 200.62

16.08 4.94 189.46d/s wl 196.05

0 5 10 15 20 25 30

670.00

680.00

690.00

700.00

Water-Profile

Column DWater El

Distance from CrestE

l

0 5 10 15 20 25

606

608

610

612

614

616

618

620

622

624

WATER SURFACE PROFILE

RL at slope

Water El

Distance from Crest (ft)

EL

(ft

)

Page 67: Head Regulator Design

0 5 10 15 20 25 30

670.00

680.00

690.00

700.00

Water-Profile

Column DWater El

Distance from Crest

El

0 5 10 15 20 25

606

608

610

612

614

616

618

620

622

624

WATER SURFACE PROFILE

RL at slope

Water El

Distance from Crest (ft)

EL

(ft

)