healthofpolaroceansobservingsystem’ - us clivar...arctic ocean observations in 2015! npeo bgep...

22
Health of Polar Oceans Observing System by Jamie Morison for CLIVAR Summit POSPSMI Breakout Session 14:10 PM, Wed , August 9, 2017 at Royal Sonesta Harbor Court Hotel BalMmore, MD Acknowledgements: Ron Kwok, IgnaMus Rigor, MaQ Alkire, Cecilia PeraltaFerriz, Roger Andersen, Sarah Dewey, Suzanne Dickinson, David Morison, and many more

Upload: others

Post on 11-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Health  of  Polar  Oceans  Observing  System  

by  Jamie  Morison  

for  CLIVAR  Summit  

 POS-­‐PSMI  Breakout  Session  14:10  PM,  Wed  ,  August  9,  2017  

at  Royal  Sonesta  Harbor  Court  Hotel  

BalMmore,  MD  Acknowledgements:  Ron  Kwok,  IgnaMus  Rigor,  MaQ  Alkire,  Cecilia  

Peralta-­‐Ferriz,  Roger  Andersen,  Sarah  Dewey,  Suzanne  Dickinson,  David  Morison,  and  many  more  

 

Page 2: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

ArcMc  Ocean    Observing  System  -­‐  Largely  moMvated  by  changes  that  started  in  the  early  1990s  -­‐  In  situ  observaMons  benefiQed  greatly  from  AON  2000-­‐2015  -­‐  AON  consisted  of  driWing  buoys,  moorings,  and  repeated  

secMons  with  ships  and  aircraW,  and  it  greatly  improved  our  understanding  of  the  marine  ArcMc  

-­‐  A  weakness  has  been  that  nature,  geopoliMcs,  and  pracMcality  biased    in  situ  measurements  to  Beaufort-­‐Gyre-­‐Transpolar-­‐  DriW  view  that  does  not  capture  connecMon  to  global  climate  indices  

-­‐  Since  2015,  AON  ocean  observing  system  has  been  degraded  -­‐  Remote  sensing  of  the  ocean  will  be  criMcal  to  understanding  

the  relaMon  of  the  ArcMc  Ocean  change  to  climate.  

Overview  ArcMc  

Page 3: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Arctic Ocean Observations in 2015  

NPEO

BGEP

Switchyard

NABOS

DavisSt. Moorings

BeringSt. Moorings

Ice Mass Balance buoy (5)Ice Tethered Profiler (12)Ocean Flux buoy (4)

UpTempO (10)

ONR DRIsSIZRS

AWI,  NPI,  UNIS  

Page 4: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

ArcMc  Ocean  in  Situ  Observing:  Strengths  and  Weaknesses  

•  The  combinaMon  of  AON,  IABP,  ONR  DRIs  and  SIZRS,  and  the  German  and  Norwegian  ASOF  monitoring  of  Fram  Strait  improved  observaMons  of  the  marine  ArcMc  by  an  order  of  magnitude.  

•  It  included  everything  from  standard  T&S  profiles,  SLP,  and  SAT,  to  boQom  pressure,  ice  draW,  ice-­‐ocean  fluxes,  and  ice  surface  imagery.  

•  The  only  problem  with  these  in  situ  measurements  has  been  limited  spaMal  extent;  they  are  predominantly  in  the  Canada  Basin  and  driWing  measurements  tend  to  sample  the  same  water  repeatedly.  

•  Why  is  that?  Because  the  ice  moves  with  the  water.  

Page 5: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Sea  Ice  Moves  With  the  Upper  Ocean  Because it responds to sea surface tilt identically to the upper ocean,

sea ice moves with the geostrophic surface water velocity,More or Less

Wind  >  Internal  Ice  Stress  Vice  >    Vwater  

Ekman  pumping  increases  Mlt,    geos  Vwater,    and  geos  Vice  

 

Wind  <  Internal  Ice  Stress  Vice  <      Vwater  

Ekman  pumping  decreases  Mlt,  geos  Vwater  and  geos  Vice  

Page 6: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Sea  Ice  Moves  With  the  Upper  Ocean  With the result that ice velocity patterns (c and d) are similar to surface geostrophicwater velocity (e and f).

Consequently, buoys and ships that drift with the ice tend to stay in the Beaufort Gyre or follow the Transpolar Drift, paralleling ocean fronts, and repeatedly sampling the same water masses.

Figure  S13  from:  Morison,  J.  H.,  R.  Kwok,  C.  Peralta-­‐Ferriz,  M.  Alkire,  I.  Rigor,  R.  Andersen,  and  M.  Steele,  2012:  Changing  ArcHc  Ocean  freshwater  pathways.  Nature,  481,  66-­‐70.  

Ship cruise tracks often parallel the Transpolar Drift with the same result.

Page 7: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Steric Pressure (-Steric Height) ~ Freshwater Trend 2005-08 ~ -36 x ( GRACE Bottom Pressure - ICESat DOT)

This  limitaMon  is  overcome  with  remote  sensing  of  SSH  (e.g.,  ICESat,  CryoSat),  ocean  boQom  pressure  (GRACE),  ice  velocity,  etc.    

Example  is  the  trend  2005-­‐08  in  steric  pressure    (GRACE  OBP-­‐ICESat  DOT)  ~  -­‐FWC  that  tracks  shiW  in  FWC    from  Eurasian  Basin  to  the  Canada  Basin  using  remote  sensing.  

Steric  Pressure  and  FWC Trend 2005-2008

[Morison,  J.,  R.  Kwok,  C.  Peralta-­‐Ferriz,  M.  Alkire,  I.  Rigor,  R.  Andersen,  and  M.  Steele  (2012),  Changing  ArcHc  Ocean  freshwater  pathways,  Nature,  481(7379),  66-­‐70.]  

Page 8: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

What’s happened to the Arctic Ocean observing system?  

NPEO

BGEP

Switchyard

NABOS

DavisSt. Moorings

BeringSt. Moorings

Ice Mass Balance buoy (5)Ice Tethered Profiler (12)Ocean Flux buoy (4)

UpTempO (10)

ONR DRIsSIZRS

AWI,  NPI,  UNIS  

Page 9: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

BGEP

NABOS

BeringSt. Moorings

Ice Tethered Profiler (12)Ocean Flux buoy (4)

UpTempO (10)

ONR DRIsSIZRS

Most of the AON ocean observatories ended in 2015.  

AWI,  NPI,  UNIS  

Page 10: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

BGEP

NABOS

BeringSt. Moorings

Ice Tethered Profiler (12)Ocean Flux buoy (4)

UpTempO (10)

NABOS 2017 Cancelled by Russian Government  

AWI,  NPI,  UNIS  

ONR DRIsSIZRS

Page 11: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

We need to reverse this degradation of in situ Arctic Ocean observations and facilitate their

better coordination with remote sensing  

Page 12: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

AntarcMc  Ocean    Observing  System  -­‐    Southern  Ocean  Argo  floats  cover  the  ice-­‐free  areas  -­‐    For  ice  covered  region,  systemaMc  programs  of  ocean  

observaMons  seem  moribund  (e.g.,  InternaMonal  Program  for  AntarcMc  Buoys)  or  undeveloped  (Southern  Ocean  Observing  System)    

-­‐    As  in  the  ArcMc  and  remote  sensing  is  criMcal  for  understanding  the  relaMon  of  AntarcMc    ocean  change  to  climate  change  

Overview  AntarcMc  

Page 13: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

New  AntarcMc  Ocean  ImperaMve  •  Recent comment in Nature by Turner and Comiso [2017] cites the

recent and sudden record minimum in Antarctic sea-ice extent and calls for a new emphasis on understanding the Southern Ocean seasonal ice zone.

greater in the 1940s to 1960s6.

Collecting more ice cores and historical records, and synthesizing the information they contain, could reveal localtrends. These would help to identify which climatic factors drive Antarctic sea-ice changes6. For instance, in 2017,the area most depleted of sea ice was south of the Eastern Pacific Ocean. This region has strong links to theclimate of the tropics, including the El Niño–Southern Oscillation, suggesting that sea ice is sensitive to conditionsfar from the poles.

Another issue is how the balance between dynamics and thermodynamics drives the advance and retreat of ice.The thickness and volume of ice depend on many factors, including the flow of heat from the ocean to theatmosphere and to the ice. Sea ice influences the saltiness of the ocean. As the ocean freezes, salt enters the

Source: US National Snow and Ice Data CenterTurner,  J.,  and  J.  Comiso  (2017),  Solve  AntarcHca’s  sea-­‐ice  puzzle,  Comment  in  Nature,  547,  19–21.  

Page 14: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Floats  and  Buoys  in  the  AntarcMc  

•  Argo  float  coverage  in  the  Southern  Ocean  appears  to  be    good.      

•  However,  although  some  Argo  floats  are  equipped  to  avoid  surfacing  under  ice,  coverage  in  seasonally  ice-­‐covered  areas  seems  sparse.  

•  The  lack  of  a  coherent  buoy  program  measuring  ocean,  ice,  and  atmospheric  variables  is  surprising.    

Page 15: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Remote  Sensing  for  AntarcMc  Oceanography  

•  As  in  the  ArcMc,  remote  sensing  e.g.,  passive  microwave,  alMmetry,  and  gravity,  are  keys    to  the  future  of  AntarcMc  oceanographic  observing.  

Armitage  and  Kwok,  2017  

•  We  should  have  repeat  in  situ  observaMons  in  seasonally  ice  covered  regions  to  enable  us  to  validate  and  interpret  the    remote  sensing  the  observaMons.  

Page 16: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

The  needs  are  the  same  for  ArcMc  and  AntarcMc  marine  observaMons.  

U.S.  CLIVAR  should  take  a  strong  posiMon  that:  -­‐  In  situ  observaMons  should  be  enhanced  in  the  ice-­‐covered  

seas  to  provide  for    measurement  of  air-­‐ice-­‐ocean  interacMon,  basic  hydrography,  ocean  mixing,  and  for  comparisons  to  remote  sensing,  boQom  pressure  and  precision  GPS  determinaMon  of  SSH.  

-­‐  In  situ  observaMon  should  be  coordinated  with  remote  sensing.  Through  coordinaMon,  the  whole  of  remote  sensing  and  surface  observaMons  will  be  very  much  greater  than  the  sum  of  its  parts  

-­‐  To  improve  sampling  in  the  sea-­‐ice  environment,  we  should  increase  the  use  of  aircraW  for  both  remote  sensing  (e.g.,  IceBridge)  and  deployment  of  in  situ  instruments  (e.g.,  SIZRS,  OMG).    

Page 17: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Repeat  Long-­‐range  aircraW  secMons  using  expendable  ocean  and  atmospheric  probes  and  deploying  driWing  buoys  could  give  the  repeat  in  situ  measurements  we  need.    

AircraW  Oceanography  for  Polar  Oceans  

Page 18: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Ocean  Profiles  From    AXCTD,  AXCP    Launch  AXCP  and  AXCTD  from  ramp  in  open  water  leads  between  ice  floes  

Receive  and  record  data  onboard  circling  C-­‐130  

−2 −1 0 1

0

100

200

300

400

500

600

700

800

900

1000

1100

Temperature ( °C)

Pres

sure

(db

ar)

24 26 28 30 32 34

0

100

200

300

400

500

600

700

800

900

1000

1100

Salinity (psu)

SIZRS Flight One 2012−5−30 AXCTD 1 Drop 1 75° 58’ North 149° 52’ West

19 21 23 25 27 29

0

100

200

300

400

500

600

700

800

900

1000

1100

Sigma−theta

Example  AXCTD  Profile  May  30,  2012  at  76°N,  150°W  

Before  region  accessible  to  ships!  

Temperature   Salinity   Density  

Page 19: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

SIZRS  and  InternaMonal  ArcMc  Buoy  Program  (IABP)  team  to  deploy  self-­‐erecMng  AircraW  eXpendable  Ice  Buoys  (AXIB)  during  SIZRS  missions.    

IABP  AXIB  Buoys  

AXIB  Deployment    

Page 20: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Thank  You  

Page 21: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

Spring 2008 dynamic height and surface geostrophic current relative to 500 dbar from available hydrographic profiles show the Beaufort Gyre and

Transpolar Drift

Kwok,  R.,  and  J.  Morison  (2011),  Dynamic  topography  of  the  ice-­‐covered  ArcHc  Ocean  from  ICESat,  Geophysical  Research  Le<ers,  38(L02501),  L02501.  

ICESat dynamic ocean topography (DOT) and surface geostrophic current

reveal DOT trough and cyclonic circulation on the Russian side of the

Arctic Ocean

•  Agreement  between  dynamic  height  and  DOT  (r  =  0.92)  =>  mostly  baroclinic  

Cyclonic  CirculaMon  

Beaufort  Gyre  Core  

Transpolar  DriW  

AnMcyclonic  view  is  a    natural  outcome  of  measurements  concentrated  in  west  longitudes  

Page 22: HealthofPolarOceansObservingSystem’ - US CLIVAR...Arctic Ocean Observations in 2015! NPEO BGEP Switchyard NABOS Davis St. Moorings Bering St. Moorings Ice Mass Balance buoy (5) Ice

DOT Trend 2005-08 From ICESat Altimetry And From GRACE Bottom Pressure + CTD Steric Height (triangles)

[Morison,  J.,  R.  Kwok,  C.  Peralta-­‐Ferriz,  M.  Alkire,  I.  Rigor,  R.  Andersen,  and  M.  Steele  (2012),  Changing  ArcHc  Ocean  freshwater  pathways,  Nature,  481(7379),  66-­‐70.  ]  

DOT Trend 2005-2008  DOT  change  2005-­‐2008  =>  shiW  to  cyclonic  mode.    

More  important  for  this  presentaMon,  the  agreement  between  DOT  and  GRACE  OBP  plus  Steric  Height  from  repeat  hydrography  illustrates  how  the  remote  sensing  (GRACE  and  ICESat)  and  in  situ  measurements  combine  to  increase  the  scope  of  polar  ocean  observaMons.  

ICESat  &  GRACE                      In  Situ  Hydro