hearrestore - nano-tera, 2016

Upload: nanoterach

Post on 06-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    1/35

    Hear Restore: Robotic Cochlear Implantation

    Stefan Weber 

    University of Bern

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    2/35

    •  Cochlea implants

    • Robotic cochlear implantation

    •  From research to product

    2

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    3/35

    3

    45’000 im

    plants p.a.

    Deaf patients

    Cochlear Implants

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    4/35

    But: Inconsistent preservation of residual hearing

    •  No treatment for patients with partly impaired hearing

    •  Re-implantation in children causes further deterioration

    Solution: Robotic cochlear implantation

    •  Consistent hearing preservation

    •  More patients to benefit from CI technology

    •  Better individual implant performance

    •  Enable future treatments (i.e. drug delivery)

    4

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    5/35

    Robotic cochlear implantation

    1.  Software based planning

    2.  Robotic Drilling

    3.  Insertion of array

    4. 

    Completion of surgery

    5

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    6/35

     Advantages

    • 

    Minimally invasive

    •  Potentially atraumatic

    •  Consistent array insertion

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    7/35

    Stage 1

    Plan a safe route, optimal for insertion

    7

    Gerber N., Bell B., Gavaghan K., Weisstanner C., Caversaccio M., Weber S. (2013): Surgical planning tool for robotically assisted hearing aid implantation, InternationalJournal of Computer Assisted Radiology and Surgery, June 2013, Int J Comput Assist Radiol Surg. 2014 Jan;9(1):11-20

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    8/35

    Fiducial placement

    8

    •  Standard screws

    1.5!3 mm

    Medartis

    •  Percutaneous

    •  Placed before CT

    •  Local anaesthesia

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    9/35

    Preoperative imaging

    •  Resolution: 150 micron

    •   Available in current scanners

    We use

    •  Siemens SOMATOM

    •  Temporal Bone protocol

    •  0.156 ! 0.156 ! 0.2 mm3

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    10/35

    Identify facial nerve

    1

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    11/35

    1

    Plan trajectory

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    12/35

    Defining cochlea access

    1

    Basal turn deviation

    Wimmer et al. Semiautomatic Cochleostomy Target and Insertion Trajectory Planning for Minimally Invasive Cochlear Implantation. Biomed Res Int 2014

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    13/35

    Safety measures for drilling process

    1

    6 – 10 mm

    S

    Pecking depth: 1 mm

    S2

    0.5 mmS3

    1 mm

    CT EMGTPE

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    14/35

    Stage 2

    Drill along the safe route

     

    14

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    15/35

    Setup & Drilling

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    16/35

    Intraoperative Imaging (for clinical trial)

    Facialis Monitoring during drilling

    Redundant tracking via analysis of bone density

    Safety layers for facial nerve protection

    1

    Heat minimization of drill process

    High Precision Image Guidance

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    17/35

    High precision robotic guidance

    Process accuracy (n=37 heads): 0.14 ± 0.07 mm

    Recess: 2.5 ± 0.5 mm

    Tunnel: 1.8 mm

    Distance FN: 0.5 mm

    Facial Nerve

    Trajectory

    External Auditory CanalOssicles

    ChordaTympani

    B Bell, T Williamson, N Gerber, K Gavaghan, W Wimmer, M Caversaccio, S Weber (2013) In Vitro Accuracy Evaluation of Image-Guided Robot System forDirect Cochlear Access Otology & Neurotology, Otol Neurotol. 2013 Sep;34(7):1284-90.

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    18/35

    Heat optimization of drill process

    • 

    Optimized drill geometry

    •  RPM 1000 s-1 

    •  Pecking (1mm, 0.5mms-1)

    •  Integrated Irrigation

    •  Consistent chip removal

    •  Indirect Heat sensing

    11

    Conventional surgical drill, no chip removal

    Heat optimized drill, chip removal

     A. Feldmann, J. Anso, B. Bell, T. Williamson, K. Gavaghan, N. Gerber, H. Rohrbach, S. Weber, P. Zysset: Temperature Prediction Model for Bone DrillingBased on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation, Annals of Biomedical Engineering

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    19/35

     Accuracy 0.29±0.14 mm

    1

    Correlate bone density with drilling force

    Williamson T, Bell B, Gerber N, Salas L, Zysset P, Caversaccio M, Weber S. (2013) Estimation of tool pose based on force-density correlation during robotic drilling.IEEE Trans Biomed Eng 2013 Apr;60(4):969-76.

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    20/35

    • 

    Neuromonitoring integrated in drill system•  Specific multi-electrode probe

    •  Detect minimum current responses via various electrodes

    • 

    Determine safe / unsafe proximity

    Facialis Monitoring (EMG) during drilling

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    21/35

    Drilling to access next measurement point

    2

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    22/35

    Data analysis work flow

    2

    Mastoid

    MicroCT scan

    FN

    FN distance measurement Histopathology

    -1 0 1

    0 .10 .30 .5

    1

    1 .5

        S    t    i   m

       u    l   u   s

        t    h   r   e   s    h   o    l    d

        (   m

        A    )

     Ax ia l d is ta nc e (m m)

     

    Sheep 2

    Trajectory 7

    LD = 0

    d = 2

    d = 4

    d = 7

    Mono

    Stimulus threshold mapping Safe vs. unsafe?

    D

    FN  Drill 

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    23/35

    2

    •  Safe (>0.6mm, >95%)

    • 

    Uncertain

    •  Not safe (

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    24/35

    24

    Intraoperative imaging (clinical trial)

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    25/35

    Stage 3

    INSERTION

    2

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    26/35

     Wimmer et al. Cochlear Duct Length Estimation: Adaptation of Escude’s Equation. CI2014 Munich, Germany

    Selection of optimal electrode array 

    1.  Define insertion depth

    2.  Estimate CDL

    3.  Select appropriate array  Array length mm 

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    27/35

     

     Array insertion using a guide tube 

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    28/35

     

     Visualization 

    Endoscopic (future)Microscopic (clinical trial)

    Wimmer et al. Cone beam and micro-computed tomography validation of manual array insertion for minimally invasive cochlear implantation. Audiol Neurotol 2014; 19:22-30

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    29/35

     

    •  Full scala tympani insertion

    •  25/26 cases

    •  Scala vestibuli insertion

    •  1/26

    •  Unrelated to planning

    Postoperative Assessment 

     Venail et al. Manual Electrode Array Insertion Through a Robot-assisted Minimal Invasive Cochleostomy: Feasibility and Comparison of Two Different Electrode Array Subtypes. OtolNeurotol 2015; 36:1015-22

    Special flex28 

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    30/35

    From Research to product

    3

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    31/35

    Clinical trial (KEK and Swissmedic approved)

    3

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    32/35

    3

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    33/35

    Translation aspects

    • 

    First in man trial (KEK and Swissmedic approved)

    •  Build evidence base for clinical benefit

    •  International multi-center trials in preparation

    • 

    Health technology assessment (i.e. GB, GER, US)

    •  Create awareness among surgeons

    •  Development of sustainable business models

    3

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    34/35

    Summary

    • 

    Concept: Robotic cochlea implantation

    •   Accurate: : 0.14 ± 0.07 mm

    •  Safe: EMG, Heat, Bone density

    • 

    Consistent: atraumatic insertion

    •   Approved: 13 patients for clinical trial

    •  Commercial development ongoing

    34

  • 8/17/2019 HearRestore - Nano-Tera, 2016

    35/35

    Thank You

    3

    • 

    Prof. Marco Caversaccio, Inselspital Bern

    •  Teams at ARTORG, ISTB, CSEM...

    •  Clinical partners (CH, UK, GER)

    • 

    Industrial partners

    ... and of course the Nano-Tera Initiative