heat皿ow in the iz聰一〇gasawara(bonin)一mariana a肥 · 2013-05-14 · fig.1 structural...

29
Bulletin of the Geological Survey of Japan,voL43(4),p・207-235,1992 Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mar Toshitsugu YAMAzAKI YAMAzAKI Toshitsugu (1992) Heat flow in GθoJS%γ妙.∫α伽,vo1.43(4),P.207-235, the Izu-Ogasawara(Bonin)一Mαriana Arc.B棚 11fig.,1tab. Abstract:This report presents218new heat flow(iata obtai Izu-Ogasawara(Bonin〉一Mariana Arc.The purpose of the measureme potential of hydrothermal activity an〔l to understand better the tec target areas are (1)the Sumisu Rift,one of active backarc rifts in Arc,(2)the Nishinoshima Trough,a paleorift of Ohgocene(?)age in Arc,which lies oblique to the strike of the present arc,an(i(3)the from20。N to24。N. The Sumisu Rift has high and variable heat now values,which sug hy(irothermal circulation.Anomalously low temperature gradients Iy observed in the upper several tens of centimeters of the surface high activity of benthic organisms may be responsible for the low Trough is boun(led on the west by a steep(max.1500m)fault scarp.He higher in the trough than to the west of the scarp.This contrast wou crustal thickness cause(i by o1(1rifting.Local high heat flow associated observed in the trough.The Mariana Trough north of22。N,which is no shows thermal asymmetry。High heat flow occurs only along the easte In the Mariana Trough south of22。N,which has developed to a spr temperature profiles suggesting hydrothermal circulation are obse ters. 1. 亙恥troduction Extensive heat flow measurements were carried out in the Izu-Ogasawara(Bonin)一Mariana Arc as a part of the research program “Submarine Hydrothermal Activity in the Izu-Ogasawara Arc” from1984to1989using R/V Hakurei-maru.The purpose of the measurements is to know the ther- mal structure of these area an(l to obtain basic 〔lata to evaluate the potential of hy(1rothermal activity.This report presents218new heat flow (1ata obtaine(l through this research program,and briefly (iiscuss their geological significance.Only a minor part of these data has been reporte(1be・ fore(Yamazaki,1988;Nishimura8‘α’.,1988). The main target areas are(1)the Sumisu Rift, one of backarc rifts in the northern Izu-Ogasa・ *Marine Geology Department wara Arc,(2)aroun(1the Nishino an〔l the Sofugan Tectonic Line,which gical structure obli〔luely crossin Izu-Ogasawara Arc, an(i (3) the Mariana Trough(Figure1).Geolog an〔l previous works of these areas are troduce(l in the following. In the northem Izu-Ogasawara A ographic (iepressions, first note(i (1968),existjustbehindthev・lcan Shichito Ridge) from Hachilolima noshima Is.These segmented dep been considered to be young(Karig 1975)or Quaternary (Honza an(i Ta extensional basins.These grabens ar Hachijo, Aogashima, Sumisu, Tor Nishinoshima Rifts after nearby vol Keywords:heat flow,Izu-Ogasawara(Bo Trough,Sumisu Rift,backarc,rifting,hy(1roth 一207一

Upload: others

Post on 21-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

Bulletin of the Geological Survey of Japan,voL43(4),p・207-235,1992

Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥

                     *

Toshitsugu YAMAzAKI

YAMAzAKI Toshitsugu (1992) Heat flow in

     GθoJS%γ妙.∫α伽,vo1.43(4),P.207-235,

the Izu-Ogasawara(Bonin)一Mαriana Arc.B棚。

11fig.,1tab.

Abstract:This report presents218new heat flow(iata obtained from1984to1989in theIzu-Ogasawara(Bonin〉一Mariana Arc.The purpose of the measurements is to evaluate the

potential of hydrothermal activity an〔l to understand better the tectonics of this region.Main

target areas are (1)the Sumisu Rift,one of active backarc rifts in the northem Ogasawara

Arc,(2)the Nishinoshima Trough,a paleorift of Ohgocene(?)age in the mi(1dle Ogasawara

Arc,which lies oblique to the strike of the present arc,an(i(3)the northem Mariana Trough

from20。N to24。N.

     The Sumisu Rift has high and variable heat now values,which suggests the existence of

hy(irothermal circulation.Anomalously low temperature gradients(close to zero)are common-

Iy observed in the upper several tens of centimeters of the surface sediments.Bioturbation by

high activity of benthic organisms may be responsible for the low gradient.The Nishinoshima

Trough is boun(led on the west by a steep(max.1500m)fault scarp.Heat flow is generally

higher in the trough than to the west of the scarp.This contrast would reflect difference in

crustal thickness cause(i by o1(1rifting.Local high heat flow associated with a intrusive bo(iy is

observed in the trough.The Mariana Trough north of22。N,which is now in a rifting stage,

shows thermal asymmetry。High heat flow occurs only along the eastem margin of the trough.

In the Mariana Trough south of22。N,which has developed to a spreading stage,anomalous

temperature profiles suggesting hydrothermal circulation are observed near the spreading cen-

ters.

1. 亙恥troduction

  Extensive heat flow measurements were carried

out in the Izu-Ogasawara(Bonin)一Mariana Arc

as a part of the research program “Submarine

Hydrothermal Activity in the Izu-Ogasawara Arc”

from1984to1989using R/V Hakurei-maru.The

purpose of the measurements is to know the ther-

mal structure of these area an(l to obtain basic

〔lata to evaluate the potential of hy(1rothermal

activity.This report presents218new heat flow

(1ata obtaine(l through this research program,and

briefly (iiscuss their geological significance.Only

a minor part of these data has been reporte(1be・

fore(Yamazaki,1988;Nishimura8‘α’.,1988).

  The main target areas are(1)the Sumisu Rift,

one of backarc rifts in the northern Izu-Ogasa・

*Marine Geology Department

wara Arc,(2)aroun(1the Nishinoshima Trough

an〔l the Sofugan Tectonic Line,which is a geolo-

gical structure obli〔luely crossing the mi(ldle

Izu-Ogasawara Arc, an(i (3) the northern

Mariana Trough(Figure1).Geological settings

an〔l previous works of these areas are briefly in-

troduce(l in the following.

  In the northem Izu-Ogasawara Arc, top-

ographic  (iepressions,  first  note(i  by  Mogi

(1968),existjustbehindthev・lcanicfr・nt(the

Shichito Ridge) from Hachilolima Is.to Nishi-

noshima Is.These segmented depressions havebeen considered to be young(Karig and Moore,

1975)or Quaternary (Honza an(i Tamaki,1985〉

extensional basins.These grabens are calle〔i the

Hachijo, Aogashima, Sumisu, Torishima an(i

Nishinoshima Rifts after nearby volcanic islands。

Keywords:heat flow,Izu-Ogasawara(Bonin)Arc,Mariana

Trough,Sumisu Rift,backarc,rifting,hy(1rothermal circulation

一207一

Page 2: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

B棚6勧げ地εGεoJo8づoαJS%膨ッげ加伽,γo‘.43,ノ〉o.4

35。

300

25。

20。

             ’1ヌ㌧げ

         ”㌔   A一、          い   べ、   !” マ、m1■ ▲.》 、!尋./’・毒工..β””紙口.、

        ・’一”一臼・へり  Φ

          く呂      二

          職.    2

         ’ヤ竺         ト

Paciflc Ocean

Shik・kul圃『・吻〆 ~

一趨ミ菱、

〒…騰謙譲,・             1400             145d

Fig.1 Structural framework of the Izu-Ogasawara

       -Mariana arc.Dotted lines represent1000m

       and3000m iso-depths.S.T.L.:Sofugan Tecto-

       nic Line(mo(1ifie(1from Yuasa(1985)).

Brown and Taylor(1988)and Murakami(1988)

reveale〔i(ietaile(l geological structure of the Sumi-

su Rift.Dives of submersible Alvin in1987(iiscov-

ered silica barite chimneys near the summits of

dacite.volcanoes in the Sumisu Rift (Taylor切

α」.,1990;Urabe and Kusakabe,1990).Recent

ODP (Ocean Drilling Program)Drilling reveale(l

that the floor o{the Sumisu Rift is filled with vol-

caniclastic sediments not older than l.1Ma(Leg

126Scientific Drilling Party,1989).

  In the backarc of the Izu-Ogasawara Arc,θ%

66配伽arrangement of topographic highs an〔l lows

oblique to the tren(l of the arc is remarkable

(Karig and Moore,1975;Honza and Tamaki,

1985).The most prominent among them is a steep

cliff linearly trending SSW from south of Sofugan

Islan(i,which woukl probably be a normal fault.

Yuasa(1985)considered that the Izu-Ogasawara

Arc can be structurally divi(ie(i into the southern

and northern part by this fault,and calle(i it the

Sofugan Tectonic Line.The Nishinoshima Trough

lies on the east of the Sofugan Tectonic Line.The

Nishinoshima Trough is bor(iere〔l on the east by

the Shichito Ri(1ge.(The“Mshinoshima Trough少’

of Honza an(i Tamaki(1985)and Yuasa (1985)

includes other topographic lows lying between the

Shichito Ri(lge and the Izu Ri(lge, but in this re-

port does not).Yuasa(1991,1992〉propose(1that

the Nishinoshima Trough was formed as a north-

ern tip of the incipient opening of the Parece Vela

Basin in Oligocene time(Mrozowski and Hayes,

1979).The sediment thickness on the acoustic

basement of the Nishinoshima Trough excee(is2

km in the southwestem part,and it decreases to-

war(is northeast.

  Afewworkersreporte(lheatflowdataintheIzu-Ogasawara Arc (Vacquier θ歩α」., 1966 1

Watanabeθ孟α1.,1970;Matsubara,1981).But,

the amount of the data was still too small to(1is-

cuss thermal structure an(l hydrothermal activity

of the arc.

  The Mariana Trough is known as one of active

backarc basins on the globe (Karig,1971).The

rifting of the Mariana Trough is considered to

have begun in the latest Miocene(Hussong an(1

Uyed&8‘α∫.,1982).Recentresearches・fthe

Mariana Trough including the DSDP dr皿ing havebeen focuse(l at the area of18QN latitu(ie(Ander-

son,1975;Bibee8‘αZ.,1980;Sager,1980;Hus.song an(l Uye(la6‘α」.,1982;Lon8dale an(i Haw-

kins,1985〉.Extremely high heat flow values

were observe(i there(Hobart6‘α」.,1983),an(l

active hydrothermal vents were discovered bysubmersible Alvin(Craig6‘αZ.,1987;Moore and

Stakes,1990).Ontheotherhand,studiesinother areas of the Mariana Trough have yet been

scarce,and heat flow(1ata were reported sparsely

(Watanabe,1970;Sclater8渉α1.,1972;Ander-

son,1980;Yamano,1985).Most of my measure-

ments in the Mariana Trough are concentrated in

the northem part from20。to24。N,an(167new

(lata in the area are presente(1in this report.

一208一

Page 3: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

∫をα‘刀oω伽飾619%一〇8αsαωα観一Mα短α%α/1鴬‘T.rα㎜α之α彦9

H179

2.D飢&島c偲is亘tiona麟re磁uct亘磯

  2.l T恥e灘抗且gr麟e髄t

  I used four sets (three types)of temperature

recor(1ers.They are two GH80-1type,a NTS10

type,and a NTSll type recor(iers manufacture(i

by Nichiyu-Giken Co。The GH80-1type recor〔1er

has three channels for thermistors an(12mK re-

solution(Matsubayashi,1982).The NTS10type

has three channels,and the NTSll has six.The

resolution of both NTS10an(l NTSll type is l

mK.The NTSll type has a tilt sensor.Tempera-

ture data were〔ligitize(l every150r30secon(1s

except for sites from H111to H138at which they

wereevery60seconds.

  Several types of thermistor probe systems

penetrating sediments were provided,and they

were properly use〔l depen(ling on the stiffness of

bottom se〔liments an(l on the purpose ofmeasurements.They are (1)a2m long gravity

corer or a piston corer of40r8m long with three

to six thermistor probes mounted in outrigger

fashion (Ewing type),(2)a1.50r2.5m long

lance without coring which was equippe(1with

three to six thermistor probes in outrigger fashion

(Ewing type),(3)a thin (20mm in(iiameter)

probe of O.70r O.9m in length to which three to

five thermistors were attache(1(Bullard type).A

weight of about500kg were used for the systems

・ftypes(1)and(2),andちhat・fab・ut50kgf・r

the type(3).The systems of types(2)and(3)

allow multiple penetration(iuring a single lower-

ing.The type (3)system was use〔l only in the

Sumisu Rift.

  Each thermistor was sealed in a tef夏on tube,

and capped by a brass tube of5mm in(iiameter.

The thermistor in each probe of the type(1)and

(2)systems was at2to3cm from the outrigger

fins.This distance might not be long enough to

completely avoid effects of axial heat conduction,

but I believe it di(i not cause serious error.Ther-

mistor probes were angularly offset from each

other so that no probes passes through the same

sediments.

  Decay of frictional heating of the thermistors

during Penetration into sediments was monitore(i

for10to15minutes.Equilibrium temperature of

each thermistor was obtaine(l by the extrapolation

0.7

0.6

0,5

^  0.400》ト

「   0.3

O,2

0.1

0

  ♂

諺避

轡6&e

謬ら’。竃’

Upperセherml8量or

0 0.01       0.02

  F(A昼pha,’『au》

0.03

Fig.2

co 600  400   Timeくsec.》

200

Plot of thermistor temperatures versusF(α,τ)ofBullard(1954)forfrictionalheat-

ing(iecay at site H179.Best-fit lines are calcu-

late(1 for each thermistor using the leastsquares metho(1.The intercept at F(α,τ)ニO

gives the equilibrium temperature。

usingcylin(irical(iecayfunctionF(α,τ)of

Bullard(1954).AtypicalexampleisshowninFigure2.I used a simple linear fit to the F(α,

τ)vs.temperature plot.The(iecy origin time

was adluste(i by trial and error to get linear F(α,

τ)decay(Villinger and Davis,1987).Thermal

(listurbances(iue to the movement of the probe

(iuring the frictiona蔓decay monitoring cause non-

linear,anomalous F (α,τ)〔1ecay plots,an(i

these measurements were(iiscarded.

  2。2騒e懸我亘co翻鵬tiv直苞y

  Thermal con(iuctivity was measure(l on se(ii-

ment cores by a QTM(Quick Thermal Conductiv-

ity Meter,Showa Denko Co.).This instrument

adopts a transient line-heat-source method(lto8‘

αZ.,1975)。The QTM was calibrated using stan-

dar(1s of fused quartz and acrylic resin(manufac-

ture’s recommende(i values are1.39an(i O.241

W/mK,respectively).The accuracy,is within±

一209一

Page 4: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

B%πθ孟伽(ゾ地εG60’09歪oα1S%ηノθツ(ゾ∫αρα%,γo’。43.ノ〉o。4

5%(Sassε‘αZ.,1984;Galson6云α」.,1987).

  The se(1圭ment cores were split in halves and co-

vered with thin plastic film(commercial transpa-

rent foo(1-wrapping film)to prevent evaporation

of pore water before measurement。The effect of

this film’on the con(iuctivity is negligible(Sass認

αZ.,1984).Measurements were done on board as

soon as the thermal steady state was attaine(i at

room temperature(20to25℃)a few hours after

the core was retrieved.The values measure(l in

the laboratory were correcte(i to伽3琵%con(1itions

of temperature and pressure following Ratcliffe

(1960).For the sites where no sediments were

obtaine(1 due to multiple-penetration measure-

ments or failure of coring,the conductivity at the

nearest site was adopte(L

  2.3 Positioning and shipboar“operation

  Real-time navigation of the ship was done by

Loran-C,which was calibrate(i by satelhte fixes

(NNSS).Absolute accuracy of the ship’s position

is about100m after post processing.A position of

a heat flow probe relative to the ship could not be

known accurately because we (ii〔l not use an

acoustic positioning system. But it would be

almost just un(ier the ship because(luring the

measurements the ship was not let(irifting but

was controlle(i strictly to keep wire angle as ver-

tical as possible.The amount of slack wire while

the instrument was in the bottom was only3to

5m in usual.

  Our procedure of the multi-penetration

measurement was as follows. After one

meaSurement,we raiSed the inStrument up tO

100m(sometimes1000m)above the seafloor.We

moved slowly(about2knots)to the next station

which was several hun(ire(i meters apart,and

then letting the wire angle as vertical as possible

befo聡the next penetration.We could make more

than one measurement per hour.

  The positions of the measurement sites listed in

Table A-1are based on the Tokyo geo(1etic datum

except for the sites at the Mariana Trough l8。N

(H334,H335,H336and H338)which are base(i

on the WGS-72.Note that the difference between

the two system is as much as several hun(ired

meters.

3. Results

  The results of 218 successful heat flow

measurements are summarized in Table A-1.

  Temperature profiles in se(iiments are pre-

sente〔1in Figure A-1.The accurate depths to

which probes penetrate(l coul(l not be known

while rough estimation of them are inclu(ie(1in

Table A-1.Thus,the lengths of the probes are

adopted as vertical axes in the figures.When bot-

tom sediments were soft enough to be penetrate(1,

lower part of core head in which the pressure ves-

sel of the temperature recor(ier was placed was

burie(1in the se(liments.In this case the tip of the

probe would have reached to the(iepth of l to2m

more than the length of the probe。

  An error of a temperature of each thermistor is

assigned as

△T=±(0.005十〇.001・G〉 (oK〉

where G is a gradient of the line being fitted on

the F(α,τ)vs.temperature plot of frictional

heat decay [4T/4F(α,τ)].The latter term is

intro(luced because a larger error in the (leter-

mination of equilibrium temperature may be ex-

pected for larger frictional heating on penetration

into hard se〔liments.The estimated uncertainty of

the extrapolate(i temperature at or(linary sites

with moderate frictional heating is about±10

mK.At some sites of har(1bottom sediments such

as in the Sumisu Rift an(l a part of the Mariana

Trough,it excee(1s±20mK.Temperature(lata

of some sites are consi(iered to be less re正iable,

an(l such sites are note(i in Table A-1.The

reasons are that small thermal(listurbance was

recognized on the frictional(lecay plots or the cor-

er fell down before the completion of the frictional

(leCay mOnitOring.

  Thermal gra(iient was obtaine(i in principle by

fitting a straight line using the least-squares

metho(i when temperatures at three or more(liffe-

rent depths were available.The gra(lients of some

sites were calculate(i from only two temperature

points.These(iata should be treated as low-grade

ones,an(l are notice(i in Table A-1.

  Temperature profiles are significantly non-

linear at some sites.Several naturally occurring

一210一

Page 5: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

地αげZ伽伽地ε伽一〇8αsα脚名α一愉γ伽伽肋ピTrα働α2α岡

phenomena can be responsible for a non-linear

temperature profile(Noel,1984).That is,verti-

cal pore water a(lvection,changes in bottom wa-

te「 temPe「atu「e’ se(1imentation effects such as

slumping an(i erosion,local topographic effect,

θホo.It is difficult,however,to specify the cause

of these non-linearities unless closely space(i de-

nse heat flow measurements an〔1(1etaile(i〔lata of

local topography,sedimentation an(l bottom water

temperature variation are available. For this

reason,a straight line was fitted even in the case

of the non-linear temperature profile,an(i these

sites are noted in Table A-1.The sites.in the

Sumisu Rift are exceptions。Thermal gradients

obtained from the two lowermost thermistors in

the sediments were adopted,which will be(1iscus-

sed la.ter.

  No correction for sedimentation,surface and

basement topography鉦ave been applied because

this report puts emphasis on presenting data。

However,effects of these factors are of course not

negligible.They wil豆amount up to30%because

many of the measurement stations woul(l have

fairlyF high sedimentation rate and rough topog-

raphy。

  Unfortunately,most of the penetrations in the

Sumisu Rift reache(l to the(iepth of only lm or

less,and many heat flow values were calculate〔l

from the temperatures of only two thermistors.A

we翌1-sorte(l volcanic ash layer is encountere(i

within lm below the seafloor in the whole Soutぬ

Basin of the Sumisu Rift(Nishimura and Muraka、

mi,1988).This ash layer causes large friction

against the penetration of the probes。The Ewing

probe using a gravity corer of2m long often fell

down on the hit to the bottom.Even in the case of

successful penetration,extremely large frictional

heat cause(i a large error in extrapolating equilib-

rium temperature。If we aban〔lon to penetrate the

ash layer,measurements in soft hemipelagic mu(l

of less than lm thick on the ash layer can be(ione

easily using the thin Bullar〔1 probe of }ight

weight.

4.Discussion

  4.1 The Sumisu Rift

  Heat flow values of40 measurements in the

Sumisu Rift range from O to700mW/㎡.These

values have large uncertainty because the quality

of the(1ata there is low as mentioned above.

However,we can safely say that both high an(1

10w values exist in a narrow area (the detaile(i

survey area) (Figure3).The existence of high

values an(l local variability can be explaine(i by

hydrothermal circulation。 Conductive effects

(e.9.theeffectsofsurfacetopographyandbase-

ment topography) cannot explain such local

variability.

  At the ODP drilling sites in the Sumisu Rift,

chemical composition of pore water in the se(ii-

ments is not〔lifferent from that of sea water(Leg

30。50」

48『

O 2km

o

    Oo○

o

o

o

2呼○

Heat fbw   O

   50  0100

獣    00

    00    mW1め

○o

 139。50’        52『          54」          56’

Fig.3 Distribution of heat f互ow values in the(ietailed study area ill the

       South Basin of the Sumisu Rift.

一211一

Page 6: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

β沼6伽のん6G60Zo8づ6αZS%榴ッの砂伽,γoJ.43,ノ〉o。4

126Scientific Drilling Party,1989).This is prob-

ably because the ODP sites would be located in a

recharge zone of hy(lrothermal circulation.Low

heat flow values(less than60mW/m2,H370-1,

2)are observed in the immediate vicinity of one

of the two ODP sites (Site 791) (no data at

anothersite).

  Anomalously  low  temperature  gra(iients

(sometimes close to zero)are commonly observed

in the surface se(liments of several tens of centi-

meters in the(ietaile(l survey area of the Sumisu

Rift (H322,H327,H331,H370,H371,H374,H379) (Figure A-1).The thin Bullar(i probe of

light weight was use(i at ail these sites.The gra-

dient determine(i using the lowermost two (but

less than lm in depth)thermistors is consi(ierably

higher than that of the near-surface thermistor

pair。 Submersible Alvin made temperaturemeasurements within the〔iepth of50cm in the de-

taile(i survey area an(i found similar low gradient

(K.Becker,personal communication,1989).

  It is difficult to specify the cause of the low gra-

dient,but a possible explanation is well-mixing

of col〔l bottom water with the surface se(iiments

by intensive bioturbation.Observation by Alvin

revealed that the activity of benthic organisms are

very high on the floor of the Sumisu Rift (A。

Nishimura, personal communication, 1989).

Generally,non-linear,downwar(i convex temper-

ature profiles can be cause(i by variations of bot-

tom water temperature or sudden(ieposition of

sufface se(iiments by turbi(iite。The latter seems

unlikely in the Sum圭su Rift ju(iging from the hthol-

ogy o{the surface se(1iments,hemipelagic mu(i.

The former mechanism cannot be exclu(ie(1,but

the possibility of the temperature variation of

short perio(is such as the annual variation can be

rejected because the clata taken・in (iifferent sea-

sons an〔l years have similar ten(iency. The

temperature gra(lients of the(ieepest pair of ther-

mistors are use(l here for the calculation of heat

flow values because they are considered to be

least disturbe(1no matter what is the cause of the

low gra(iient.

  It is rather confusing that the measurements us-

ing the heavy gravity corer show a ten(iency of

having a higher thermal gradient than those by

the small Bullard probe,an(i the former dose not

show the surface low gradient.The example is

H206an(1H379-2(Figure A-1).They are located

at almost the same point,and the penetrated

depths seem to be nearly equal to each other.The

gravity corer was use(l for the former site and the

Bullard probe for the latter.At H379-2,all five

thermistors of20 cm intervals penetrated the

sediments,an(l only the deepest pair showe〔l

large gradient.At H206,0n the other han(i,two

thermistors of45cm interval in the sediments

showed

H379-2.

nO Slgnpossible

larger gradient than the deepest part of

The uppermost thermistor of H206has

of having penetrated the se(liments.A

explanation for this discrepancy is (1is一

turbance of the se(1iments by the gravity corer as

illustrated in Figure4.The surface hemipelagic

mu(1may be scattered by the hit of the thick,

heavy gravity corer of high penetrating spee(1,

which will cause the apparent loss of the surface

low gradient.Furthermore,the depth of the gra一

(lient measurement may be larger in actual at

H206using the gravity corer than at H379-2using

the Bullar(i probe.Downwarping of the har(l ash

layer by the large friction (iuring the penetration

of the gravity corer woul(i cause the increase in

temperature gra(iient.On the other hand,the

sediments would be less deformed by slowly low-

ere(1thin Bullar(l probe of light weight.In the

Sumisu Rift thus the measurements by the gravity

corer may have overestimated the temperature

gra(iient.

  4.2  z魎!o腿醜d t恥le N量s恥亘醜os恥面誼亘我Tro1颯9恥

  The(iistribution of heat flow values in the mid・

dle Ogasawara Arc from Sofugan Is。to Nishi・

noshima Is.is shown in Figure5.The area east

of the Sofugan Tectonic Line has generally higher

heat flow than the area west of it.The Nishi-

noshima Trough has relatively uniform heat flow

of about100mW/m2except for some sites which

will be mentione〔i later.Co-existence of high and

low heat flow values is observe〔1in small grabens

along the Shichito Ri〔1ge,which suggests the ex-

istence of hy(1rothermal circulation. These

grabens are considere(1 to be incipient rifts like

the Sumisu Rift although their size is much smal-

ler.The area west of the Sofugan Tectonic Line,

on the other han(i,has generally low heat now。

The Sofugan Tectonic Line is consi(iere(i to be a

large normal fault system which bounds the west一

一212一

Page 7: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

地α‘伽〃伽地o伽一〇8α3側α名α一Mαγ伽αハ研丁γα彫α~α岡

Fig.4

』りαΦ

o

△丁

『胴一幽一一一一嘗罰一一一一

   一 一 一 日 胃 一 一 一 ロ 厨F 一 田 一

__一一一一層   一曹一一一一一冒

           一 一 一薗 一 一 一 一  一 一 層 F  一 胃

一 一 一 一 一 一 一 一 一 F 胃 雪 一 一 一

幽oヱoの

σ)

xooり

       l

i講鑛議,、、、

ll…illiiiiil灘1霧灘

灘難iii灘1灘難灘難灘ll.

Small Bullard-type

 probe

7dQ

HemipelagiG mud(biotu rbated)

撒難撚灘ll騰.,隅V。lcaniCaSh

難灘灘鑛i難叢

Ewing type probeUSing a gravity COrer

Aschematic(liagramofthemeasurementintheSumisuRift。Temperaturegradientofthesur-face sediments of several tens of centimeters(highly bioturbate(1hemipelagic mud)is very low.

Wel1-sorted volcanic ash layer underlying the hemipelagic mud is hard to be penetrated.The

penetration using a gravity corer may seriously disturb the sediments,which can cause overes-

timation of the gra(lient.

ern en(i of the rift graben of possib互y Oligocene

age.The contrast in heat flow would reflect the

difference in crustal thickness caused by the past

rifting.

  Extremely high heat flow values over 400

mW/m2(H168and H200-3)are observed in the

southwestem part of the Nishinoshima Trough(26052.0’N,139。46.0’E) (Figure5).An intru-

sive bo(ly exists in the thick sediments just blow

the high heat flow sites,which is clearly shown

on a seismic reflection profile (Figure6).Dis・

turbance of the very surface se(liments probably

caused by the intrusion can be recognize(1 0n a

3.5kHz echogram(Figure6).The high heat flow

and the recent deformation of the sediments in(1i-

cate that the intrusive activity is quite youn9・

Multi-penetration measurements revealed the ex-

istence of a low heat flow site(45mW/m2,

H200-4)close to the high heat flow sites(Figure

7),suggestingtheoccurrenceoflocalhydrother-

mal circulation.Several similar intrusive bo(iies

are found on seismic reflection records in the

trough.

  Two sites on or close to the Sofugan Tectonic

Line(H171and H173)show high an(i low values,

217and65mW/m2,respectively.Pore water cir-

culation through this fault system woul(i be re-

sponsible for the variation of heat flow values。

  To the northwest of the Nishinoshima↑rough,

another SSW trending depression lies parallel

with it(from29。N,139059’E to280N,139。20’E)

(Figure5).The strike of the depression suggests

that its origin is relate(i to the past rifting which

formed the Nishinoshima Trough although the re-

lief of the basement of this depression (max.

several hun(ire〔1meters) is much smaller than

一213一

Page 8: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

B%’Z6渉f物qプ渉んoG召oZo8づ6αJS%㌍u61y(~ズノ41)απ,レ「o‘.43,ノ〉o.4

  030

  029

28。

27

o V )

o 〃 . 麟b

Hea量f

0(■75●

魅 o 鱒15(

菱鎗詳・

黛砂

30(麟

o

国観

強.

 ●

も●も ♂

塁匡

ユ ●

o Q輪。饒●

o

じ●

ぴ   1一◎・毛  三● 魅 o

o q◎

o〃∂ o

(]

 9略D

o

●o㌔孕

◎●

網◎D

、Ω o直』〉 、

o

⑨⑨.

◎oεo

β鰍  o

shlnoshima

のoε  鯨◎

 黛孫q巡肯。

O● 4

~ど  O

o 諭

o  麟

0 50km1 慶 o

一一   0140 141。

0(mW/m2》

Fig.5 Distribution of heat flow values in the Nishinoshima Trough and its environs.Solid circles are

the data of this study,and open circles are from Vacquierαα」.(1966),Anderson(1980)and

Yasui(unpublishe(i).Topographic contours are at500m intervals.Bold contours are.2500m

iso一(iepths.LineAisthelocationoftheseismicprofilesshowninFigure6.

一214一

Page 9: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

π6α‘刀oωf%地θ12%一〇9αsα”α名α一Mα再α冗αみ%ピT.γα獅α~α彦の

o恩麗

o⑪

ω

5

W闘IS㎞1聡◎S臨1鵬凝丁『oug㎞

E.._』:i

←の∫

’僻㊧翻慮留◎駆‘摺騨/鵬2ノ・

         呼讐①◎、⑩1蒙篭、潔專簿醤

◎軸》

ハ9》躍一盤⑪

o

38ゆ◎

Fig.6 Asingle-channelairgunseismicprofile(top)an(la3.5kHzechogram(bottom)runningthrough a high heat flow point in the Nishinoshima Trough.The location of this line is shown

in Figure5.High heat flow values occur lust above a intrusive bo(ly。The heat flow value in

the parentheses was measured not on this line but at about2miles south・S・T・L・l the Sofugan

Tectonic Line of Yuasa(1985).

一215一

  

Page 10: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

B彿π6あ%ρプ孟んεGεo‘08・づoαZ S彿γ砂θッのF∫α1)α究,γo’.43,ハ汚o.4

53’

52’

2げ5ず

馳噛68

404購

  45

7傑》 一5

蜘a酬o駆侮騨/伽り

   プ04  開200儘1

胃3 92

   -3

  43⑨

一4

0

 踊一75

醸脅0

1km

一一13go45」 46♂ 4プ

Fig.7 Detailed heat flow measurements around the high heat flow point

in the Nishinoshima Trough.

that of the Nishinoshima Trough.Eleven measure-

ments in this(iepression showed uniformly very

low heat flow,less than30mW/m2(from m39to

H145,H291),which is in contrast with the mod.一

erate or high heat flow in the Nishinoshima

Trough.This value is too low for the con(iuctive

component of the heat flow from the oceanic

islan(i-arc of not older than Eocene age.It is thus

considered that some Leat should be transported

by convection。Although the(iepression is well

sedimente(i(about300minthickness)an〔ino

outcrops of basement occur within5km of the

measuring sites,long wave-1ength (10 km or

more?)pore-water advection may have occurred

here.

  4.3丁恥e聡戚恥emM麟&盤Tro腿9恥  The Mariana Trough north of220N is consid-

ere(l to be now in a rifting stage based on geolo-

gical structure and magnetic anomalies(Yamazaki

ε孟α♂.,1988,1991;Murakami8‘α」.,1989).The

rifting north of220N is characterized by thermal

and stmctural asymmetry.High and variable heat

flow are observed only in or close to a row of

small grabens along the eastern margin of the

trough (Figure8).The floor of the rift is com-

prised of tilte(l blocks boun(ie(i by normal faults,

and steps(lown to the east(Figure9).Except for

the eastern margin,the trough has uniformly low

heat flow.In the trough north of22。N,therefore,

the existence of hydrothermal activity can be ex-

pected only along the eastern margin.

  Pattems of heat flow across rifts can give signi.

ficant constraint on the mode of lithospheric ex-

tension during rifting(Buck6診α∫.,1988;Mar、

tinez an(i Cochran,1989).The discovery of the

thermal asymmetry of the northem MarianaTrough is hence important to understand better

the rifting processes here。This subject is beyond

the scope of this report,an(l will be discusse(i

elsewhere(Yamazaki,1992).

  The Mariana Trough south of22QN,on the

other hand, has (ieveloped to a sprea(ling stage

(Yamazaki6診α‘.,1988,1991;Murakami8‘α∫.,

1989).Spreadingcenterstherecanbeidentified

from geological structure an(l magnetic lineations.

Anomalous temperature profiles in sediments sug-

gesting intense hy(irothermal circulation are

observe(l at several sites close to a sprea(iing

center.

  Extraordinary large temperature(iifference be-

tween the uppermost thermistor in the se(liments

and bottom water is observe(1at H341although

the thermal gradient among three thermistors is

low (Figure A-1).The(1epth of the penetration

of the probe coul(i not be known accurately,but

一216一

Page 11: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

Hoα’刀oωづπ孟んθ王~%一〇8αsαωα侶α一ハ4α再α%α/1猶6‘T・γα解α9α観ノ

249

23。

D魎・・

      ◎

        1

鵠縞騰唇国恩溺◎葦琶鵬翻 量s塾

禽   ◎

の◎

◎   q▽

9

慣4調Q

22。

o恥δ

/G・.

D髪

◎      §◎駄朧

一一

Q愈

閣曹題電 育国◎騨

    0(繭Wノ齢2》

   ㊥7暴

   ⑱      5◎

      00

   麗重1《駄◎ s朧量。

翰0      0

  ⑳

    ●②倉

、 ●

    o

o

。膜

  あ

斜     ◎

  ㊧

も⑲

郷 一黙

oo

     略

。’織

s 解腿k脳。量晶 Sm匙凹

唱42。

輪q  q

ハ幅

唱43。

◎ 叉

144Q

Fig. 8 Distribution of heat flow values in the northem Mariana Trough.High heat flow occurs only in

   or close to a row of small grabens along the eastern margin of the trough。Topographic con.

   tours are at500m intervals.Bold contours are2500m iso-depths.Line A is the location of the

   seismic profile shown in Figure9.

the temperature profile of subsurface l or2m at

this site must be extremely non-linear.Further・

more,temperature gra(iients among sites around

H341 are highly・ variable. H377-1 through

H377-51ie on a line starting from H341at about

300m intervals(westwar(1),and H342-1,一2and

-4at300to800m intervals(southward) (Figure

10).H377-1,which is locate(1nearest to H341,

and H377-5show slightly upwar(1convex subsur・

face temperature profiles。The rest are,on the

other hand,linear an(i relatively low temperature

gradients.The gradient of H342-4 is close to

zero.These anoma正ous temperature profiles and

local variations in the gradient can be explaine(i

by hy〔irothermal circulation.Pore water woul(l be

moving upwar(i at H341,and nearby low-gradient

sites woul(1be in a recharge zone(Figure10).

  Another type of a shallow hy(irocirculation

effect can be seen at H344an〔l H367,showing

temperature profiles with ben(is in the mi(i(ile.

The measurements were (ione independently(separate cruises〉,but the two sites are only ab一

一217一

Page 12: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

團a調a醜a T『◎蟹9恥

1曽OQ

   20㊤

℃霊

oo①

霊 3①

3》 4霊一

》03占3 5ト

6一

闇ea量鯛OW《朧W/m2》’

謄鞭

oじ

蒙i,欝,

一籏

議繍

雛 購

.諜二., 綴_

婁選燕

  叢  心慮譲

10km 一、ド

馨・・

臼←一

《39》.4◎2.

-   拙  鶴..

  甦、

76

59

?難灘・

唱36 260

騒難覆仁

 凝

  鵠  鷺 .弛   瞭

《34◎》

(230》

一憩

巽=.

灘署’レ蓋》潔

冨爵.

’議・臼

詠難

灘菱灘

霧鞭莚騒謙讐

 覗灘 黎

叢難

灘難黎翻蚕

難霧

難難鞭

ドロ   も・§ ..多

・= .  ;o

  驚

   甲  ,  ロ  じロペ   ル

  じ  黛   ロ  岬,4  。  ■、

 ■

,塞

bロ

ミ融融.

§

黛さ駄

oも匙馨.

防駅

§遷

ξ§

5轟

ξ叙

Fig.9 A single-channel airgun seismic profile crossing the northem Mariana Trough at23。N and heat

flow values on this line.The location of the line is shown in Figure8.The rifting at the north-

em Mariana Trough shows thermal and structural asymmetry.Heat flow values in the parenth-

eses are locate(i not on this line but in the northern continuity of the basin.

Page 13: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

飽αげ’伽伽飾ε伽一〇8αsαωα箔α一Mαγ伽α肋ピT.y㈱α~剃

06ρ

  ロ     ず

2105

春  †

毯 ε咀      9

O

牽口 寺  心

㌣ ロ 7講    ぬ        ト

    9おH34轟轡        =

          H342-1叫

1km

一2叫

一範↓

Fig.10

      ’143。’17 18ρ

Pore water circulation deduced from tempera-

ture profiles in sediments。This area is located

close to the spreading center of the Mariana

Trough at21。N.The direction of the arrows

(up or down)shows the direction of the pore

water movement.The width of the arrows rep.

resent the relative intensity of the pore water

movement.Soli(i squares are the sites at which

non-1illear temperature profiles (upwar(i con-

vex)areobserved.Opensquaresarethesitesof linear profiles。

out300m apart.The two anomalous profiles are

goo(l evidence for lateral flow of pore water near

the crest of an active sprea(ling center.

Ac㎞owledgements:The heat flow measure-

ments were performe(l with cooperation of all

on-boar(i scientists,officers and crew of the

Izu-Ogasawara-Mariana  cruises  of  R/V

Hakureimaru.I wish to thank A.Nishimura,F.

Murakami,E.Saito,M.YuasaandA.Usuiforhelp and(1iscussion through this work.I also

thank K.Becker an(l B.Taylor for giving me un・

published data,M。Yamano for allowing me to

use his compilation of heat flow (lata aroun(1

Japan,and O.Matsubayashi for useful comments

on the manuscript。This work was supported by

the special research program,“Submarine Hy(lro-

thermal Activity in the Izu-Ogasawara Arc”,

fun(le(i by the Agency of Industrial Science an(i

Technology from1984to1989.

References

Anderson, R.N. (1975) Heat flow in the

       Mariana Trough,∫.G60畝夕s.1~ε3.,vo1.

       80, p.4043-4048.

        (1980) 1980up(late of heat flow in the

       east an〔i southeast Asian sea.1%Hayes,

       D.E. (e(1.),Tん6‘06直σ痂oα”4860’08‘6

       ωoJ%‘伽げs伽伽αs‘∠4s‘伽s召αs伽4¢s-

       」伽43,Geophysical Monograph,vo1.23,

       American Geophysical Union,Washing-

       ton,D.C.,p.317-326.

Bibee,L.D。,Shor Jr.,G.G.and Lu,R.S.

       (1980)Inter-arc spreading in the

       Mariana Trough.ル毎乳G60’.,vol.35,p.

       183-197.

Brown,G.an(i Taylor,B. (1988) Sea-floor

       mapping of the Sumisu Rift,Izu-Ogasa-

       wara (Bonin) Island Arc.B%μ.G60Z.

       S麗γ”.ノiαραπ,vol.39,P.23-38.

Buck,W.R.,Martinez,F.,Steckler,M.S.and       Cochran, J.R, (1988〉 Thermal con.

       sequences  of lithospheric  extension

       pure and simple。T60孟伽乞6s,vo1.7,p.

       213-234.

Bullard,E。C.(1954) The flow of heat through

       the floor of the Atlantic Ocean。P名o‘.1~oッ。

       Soo.Loη4.Sε7./1,vo1.222,P.408-429.

Craig,H.,Horibe,Y。,Farley,K.A。,Welhan,

       J、A.,Kim,K.一P.an(l Hey,R.N.(1987)

       Hydrothermal vents in the Mariana

       Trough:results of the first Alvin dives.

       EOS T名α%s.,vol.68,p.1531.

Galson,D.A.,Wilson,N.P.,Scharli,U.and

       Rybach,L.(1987)Acomparisonofthe

       divided-bar an(l QTM metho(1s of

       measuring thermal conductivity.G80地θ7一

       勉づos,vol.16,p.215-226.

Hobart,M。A.,Anderson,R.N.,Fujii,N.and       Uyeda,S.(1983)Heat flow from hydro-

       thermal mounds in two million year old

       crust of the Mariana Trough which ex-

       ceeds2W/m2.EOS T質α究s.,vo1.64,p.

       315.

Honza,E.and Tamaki,K.(1985) The Bonin

       Arc.In T勉oo6朋わαs伽ε伽4解α78f%3,

       ”ol.Z4,editedbyA.E.M.Naim認α1.,

       Plenum Press,New York,p.459-502.

Hussong,D.M.,Uye(ia,S.θ‘α」.(1982) 1%髭.

       R吻3.1)S1)P,voL60,Washington D.C.

        (U.S.Govt.Printing Office),929p.

Ito,Y。,Saito,T.,Nagumo,M.and Baba,K.

一219一

Page 14: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

B%〃8孟伽(ゾ地6G60Zo9づoαJ S麗γuのン(ゾ/αρα鴛,1乙oJ.43,No.4

       (1975) Box probe metho(1for rapi(l de-

       termination of thermal con(1uctivity of

       rocks.C勉惚s%,vo1.12,P,35-44(in

       Japanese with English abstract).

Karig,D.E. (1971) Structural history of the

       Mariana Islan(l Arc system.G601.Soo.

       ノ1解6乳B%μ.,vo1。82,P.323-344.

         and Moore,G.F. (1975) Tectonic

       complexities in the Bonin Arc system.

       Tθoψoηoゆん』ysづos,vo1.27,P。97-118。

Leg 126 Scientific Drilling Party (1989) ODP

       Leg 126 (lrills the Izu-Bonin arc。

       G60瓦獅6s,vo1.34,P.36-38.

Lons(lale,P.an(l Hawkins,J.(1985) Silicic

       volcanism at an off-axis geothermal fiel(l

       in the Mariana Trough back-arc basin.

       G:θoZ. Soo. /1常8帆  B%μ., vol. 96, P.

       940-951.

Martinez, F. and Cochran, 」.R.(1989)

       Geothermal measurements in the north-

       ern Red Sea;implications for lithospher-

       ic thermal structure and mode of exten-

       sion during continental rifting.ノlo%7。G60-

       1)ん夕s.1~εs.,vol.94,P。12,239-12,265。

Matsubara,Y.(1981) Heat flow measurements

       in the Bonin Arc area.Gθo∫。S%粉.∫砂伽

       C加s6R吻.,no.14,P。130-136,

Matsubayashi,O.(1982)Reconnaissance measure.

       ments of heat flow in the Central Pacific.

       GεoJ.S麗γ”.∫αρα% 0γ%づε6 1~θ力孟., vol. 18,

       P。90-94.

Mogi,A..(1968) The Izu Ridge.In FossαMαg一

       πα,edited by M.Hoshino,GeoL Soc.

       Japan,Tokyo,P.217-221(in Japanese).

Moore,W.S.and Stakes,D.(1990)Ages of

        barite-sulfi(le chimney from the Mariana

        Trough.Eα7地 PZα%直.So乞.Lo‘‘., vol.

        100,p.265-274.

Mrozowski,C.L.and Hayes,D.E.(1979) The

        evolution of the Parece Vela Basin,east-

        ern PhilipPine Sea。 Eαγ孟ん PZα%o孟. S面.

       L雄.,voL46,P.49-67.

Murakami,F.(1988) Structural framework of

        the Sumisu Rift,Izu-Ogasawara Arc.

       B%μ. GεoJ. S%7T. /α1)α%, vo1. 39, p.

        1-21.

        ,Yamazaki,T.,Saito,E.and Yuasa,

        M.(1989) Rifting and spreading pro-

        cesses at the northem Mariana Trough,

        EOS T名α物s.,vo1.70,p.1313,

Nishimura, A. and Murakami, F.(1988)

        Sedimentation of the Sumisu Rift,

        Izu-Ogasawara Arc。B%μ.G80」.S%7”.

Noel,M

Ratcliffe,

Sager,W.W

Sass,J.H

Sclater

Taylor

Urabe

Vacquier,

Villinger

/αρα%,vo1.39,P。39-61.

,Yamazaki,T.,Yuasa,M.,Mita,N.

an(i Nakao,S.(1988) Bottom sample

and heat flow (iata of Sumisu and

Torishima Rifts,Izu-Ogasawara Arc.In

G60’08記α」解αρσ’S%%¢s%απ4 To再ε配解α

Rゲ渉s, 1~%一〇8αsα”α名α /1π. 1 3 200,000,

Marine Geology Map Series31,Geologic-

al Survey of Japan。

(1984)Originsandsignificanceofnon-

linear temperature profiles in(1eep-sea

sediments.G60φ勿s.∫.R.αs畝Soo.,voL

76,p.673-690.

 E.H.(1960) The thermal con(luctiv-

ities of ocean sediments。∫.G60ρ勿3。1~εs.,

vo1.65,p.1535-1541.

     (1980) Mariana Arc structure in-

ferred from gravity an(1seismic data.∫.

G60吻s.1~63.,vo1.85,P.5382-5388。

  ,Stone,C.and Munroe,R.J.(1984)

Thermal con(iuctivity determinations on

solid rock - a comparison between a

steady-state divi(iecl-bar apparatus an(i

a COmmerCial tranSient hne-SOUrCe de-

vice.∫.yoJo㈱oJ、G60地6陥.R6s.,vo1。

20,p.145-153.

 J.G., Ritter, U.G. and Dixon,

F.S.(1972) Heat flow in the south-

western Pacific./.G60畝夕s。1~6s.,voL

77,p.5697-5704.

B.,Brown,G.,Fryer,P.,Gi11,J.B.,

Hochstae(1ter,A.G.,Hotta,H。,Lang-

muir,C.H.,Leinen,M.,Nishimura,

A. and Urabe, T.(1990) ALVIN-

SeaBeam studies of the Sumisu Rift,

Izu-Bonin arc.Eαγ飾PJα%6孟.S6∫.L誘孟.,

vol.100,P.127-147.

T.and Kusakabe,M.(1990) Barite

silica chimneys from the Sumisu Rift,

Izu-Bonin Arc  possible analog to

hematitic chert associated with Kuroko

deposits. Eαπん P♂α%8‘ S∫o. Lθ‘‘., voL

 100,p.283-290.

  V.,Uyeda,S,,Yasui,M.,Sclater,

J.,Corry,C.and Watanabe,T.(1966)

 Studies of the thermal state of the

earth,19th paper,heat-flow measure-

ments in the Northwestern Pacific.B%π.

Eα7吻.Ros.1襯.,voL44,P。1519-1535.

,H.andDavis,E.E.(1987)Anewreduction algorithm for marine heat flow

measurements.∫.Gεoρ勿ε.1~os.,voL92,

一220一

Page 15: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

飽αげ」伽伽伽伽一〇9αsα翻名α一Mαγ伽α・肋‘Tγ佛α2α岡

       p.12846-12856.

Watanabe,T.,Epp.,D。,Uyeda,S.,Langseth,

       M.andYasui,M.(1970) Heatflowin

       the PhilipPine Sea. Tεc‘(瓶oρ勉ys乞cs, vo1.

       10,p.205-224.

Yamano,M.(1985) Heatflowmeasurement.加       Kobayashi,K.(ed.),P痂惚伽拶脚・π

       (ゾ  地6 石臨肋苑o ハ4αγ%  C7%¢sθ κ石「84-1,

       Ocean Research Institute,University of

       Tokyo,p.265-271.

Yamazaki,T.(1988) Heat flow in the Sumisu

       Rift,Izu-Ogasawara(Bonin)Arc.B%〃.

       GooJ.S%猶”.∫αρα物,vo1.39,P.63-70.

        (1992) Northem Mariana Trough。伽

       Maruyama,S.召‘αZ.(e(i.),0猶08伽夕げ

       ∫砂α%(submitted).

       ,Ishihara,T.an(i Murakami,F.(1991)

       Magnetic anomalies over the Izu-Ogasa-

       wara (Bonin)Arc,Mariana Arc and

       Mariana Trough.B%π.GooZ.S%η.∫妙伽,

       vo1.42,P.655-686.

        ,Murakami,F.,Saito,E,an(i Yuasa,

Yuasa,

M.(1988) Opening of the northem

Mariana Trough.In Tεo‘伽fosげEαs陀解

、4s毎㈱d耽s渉徽Pα6耽C襯伽螂α’妬αγ一

9‘% ‘Aわs加αds (ゾ地ε ραρεγs (ゾ‘んε 』Z988

1)ELPITo彦ツ01πホ召7%αオづo%α’S卿ρosづ%惚ノ,P.

25-26.

M.(1985) Sofugan Tectonic Line,a

new tectonic boundary separating north-

ern and southern parts of the Ogasawara

(Bonin) Arc, Northwest Pacific. In

Fo㈱αψ伽げαo勘600召伽糀αzg伽s,edited

by N.Nasu6‘αZ,TERRAPUB,Tokyo,p.483-496.

 (1991) The reason for the differences

in geologic phenomena between northem

an(l southem parts of the Izu-Ogasawara

Arc./G608名砂勿,vo1.100, p.458-463

(in Japanese with English abstract〉.

(1992)Origin・fthealongarcvaria-

tions of geologic phenomena on the volca-

nic front, Izu-Ogasawara Arc. B%μ.

G60」.S%γッ.ノ1αρα物,vol.43,in press。

一221一

Page 16: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

B%JZ8勘げ地召G60Zo8づ6αZS%7丁召ッげ紳伽,yo’.43,ノ〉o,4

Ap耳》endix

Temperature difference(oC)

0

E て

αΦ

0 20》

虫Φ  3匡

4

0,0 O.2    0.4    0,6

O.00

0

1

2

o,噂o

コ= :1:  工  工

σ1 『◎   轟   ω

0

2

O,0  0.2  0.4  0.6  0,8

0

1

0,0   0,1   0.2  0,3   0,4

σ》

2工

… …

お 曽

0

1

臼0,0   0.毛   O,2  0.3   0,4

2

0

1

o.o

… ≡

陪 製

…蕊

2

O,1 0,2

0

1

2

o.o

≡≡鵬霧

0,{ O,2

0

0.0

o

≡鵠

ωo

2

0,1 O.2

    …≡    器器

¢

0

1

2

O,0 0,1

00.0

≡   ≡

撃   3

o.1 O.2 O,3

1

2

3

4工

ωo

o

1

2

0・9 o,1

oo,o

ω}

ωCD

o,1

1

2

3

4

=  工

ω  斜o   o

oO,0 O,1

1

2

3

4

o

1

o、o

= 工 =  =:

ホ爵畠 云

2

o。1 O.2

“N

oo,o

o

0.2 o.4 0.6

1

2

3

4

o

1

0.O

9

…i≡

轟o

2

0.1 O.2 O,3

q≡

8

Fig.A-1 Se(liment temperature profiles for all successful penetrations.Vertical axis represents the

lengths of a probe.Horizontal axis represents(iifference from the temperature of bottom wa-

ter just above the seafloor of each site.The uncertainty range is given for each temperature

point according to the amount of frictional heating(see text).Thermal gradient is calculate(l

by fitting a straight line using the least squares metho(i if three or more temperature points

are available.The points connected with dashe(i lines were not used for the calculation of the

gradient(explainedinthetext).

一222一

Page 17: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

飽αげZ伽伽地61~%一〇9αsα㈱名α一M副伽一瞬丁.γα蹴α~襯ノ

Temperature difference(oC)

E

o

審層D1……

甲慧

可匡

2

0。0, 0.1 O,2  0,0

㎝ω

0

1

=  20沁

O,1 0.2

0

1

2

O.0

oo

…≡

O.1     0,0    0.2    0.4    0.6

0

1

2

3

  エ= 赫 4-   oσ》

o

≡…

里  工=:   _』

一    〇①    u1ω

0

2

3

4

0.0    0。2    0.4    0.6     0.0

エエσ》σ》

刈①

0

2

3

4

1,0 2.0

o

1

2

3

4

0,0    0.2    0.4    0,6     0,0  0.2  0,4  0。6  0.8

i≡

==工

σ》 刈

o o

o

1

2工

刈ω

o

1

2

3

4

O,O   O,2   0,4   0.6

コ:エエ:1:

お蓉瞬刺

o

1

2

O。O    O.て    O.2    0,3     0.O

、工一   工刈    一〇D   刈

  o

o

1

2

0,1 0.2     0.O    O。1    0.2    0.3

oo

o

0

1

2工

ooω

CP

o

2

O。0    0,1    0。2    0,3     0,00

QOり

コ:  コ=

鶏 8

0O.05 O,10  0,0

1

2

3

 工  4エ のお器①

o

o0.1 0,2     0,0    0,1    0,2    0,3

2

0

1

o悼

2ii…

  =:【   り一    σ》

o㎝

Fig.A-1 Continued

一223一

Page 18: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

Bπμα伽(ゾ孟h召G60‘08歪oα’S%γ”の7(ゾ∫αραπ,γoム43,No.4

TemperatUredifference(。C)

o

E)1£

α①

Φ2.≧

誌旬

α=3

4

0.O   O,1   0.2  0,3   0.4

0

1

2

=  300

0.O    O,1    0.2    0、3

o刈

o

1

2

      工      おエエエ ≡甲おおお o㎝ 3鯛器窒

0,0    0,5    1,0    1.5

o

2

4

6工沁

o“ω  8

O,0   0.2   0.4   0,6   0.8

コ:工工=:

NINNgNレooooo《P~》?ムq一沁

=悼

o

O。O    O.2    04     0,6 O。0 O、2  0.4 O,0    0.1    0.2    0,3 0.0    0.1    0,2    0、3

0

1

2

3 =工工コ:

8888h⊃鴨》甲甲

ムσ1障一

0

1

8 2ドω

=卜⊃

o刈 焉

8

o

1

2

ヱ障

oco

=卜⊃

oo

0

1

2

焉 蔚一   〇

0.0 0。1 O,2  0.O o,1 0。2  0.O o,1 O,2 0.O    O。1    0,2    0.3

O

1

2曲

工沁

ω

=悼

o

1

2

工悼

工h⊃

0

1

2

工悼

o

0

1

   2工卜⊃

OD

陪o

0

1

2

0,0 O.1

00,0 O,5 1,0  0.0

2

4

6

  8工

B轟

輔o刈

o

0

1

2

3

B 4①

0.1

o

1

工  2BOD

0.O 0,1  0.2

蹄o

Fig.A-1 Continued

一224一

Page 19: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

飽αげ」伽伽地61~%一〇8αsα磁名α一Mαγ伽α。肋ピT.y㈱α宕α切

Temperature difference(oC)

O0.O    O,1    0.2 0.3

αΦで  1①>

o可匡

2

0

1

0.O   O.2   0.4   0,6

80 工h⊃

ω

o

8刈

2 ヱ陣轟悼

0

1

2

.0。2   0,0    0.2   0,4

工陪“ω

0り0,1

憲 雨

倉 a 工

撃①

0.O o。1 O,2

1

2 工卜⊃

轟co

O,0   0,1   0.2   0,3

0

1

2

oO,O   O,1   0,2   0.3   0.4

1

2

oO.0

工  工へ》  『9σ1  σ》

OD  一

H

工ω

oo

1

2

O,2   0.4

0

1

0.0

志零

8障

工障

霧 2

0.1 O。2 O.3

彊憂エ

鵬刈

0.0     0、2     0.4 0,0 0,1    0.2    0.3     0.0 0.1  0.2 O、3 o、o o.1 O、2

0

1

2

工悼刈障

工   工N)   悼㍉』   刈轟    ω

o

1

工   2ゆ刈

q

工旧刈刈

o

1

焉お  2

器お

工障OD

o

工沁刈OD

O

1

2  工  邸工  o◎Nレ N〕OD

0

1

2

O,0 0.2 O,4   0,0

 雨語器

O

1

NGQ   20

0,2 O,4   0,00

o0.05 0.10

1

2

    3co

瀦焉焉㊤o o orbあ本ム

o

1

O,OO

2

0,05 o,10

器“

工悼

oN

Fig.Aヨ Continue〔1

一225一

Page 20: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

B%〃6あ%のr地召G:60Jo8f6α∫S彿吻θツ(ゾ∫αρα%身yoJ.43,No.4

Temperature di歪ference (。C)

E

O,000,0’

0,05  0.0

8Φ0・5

.≧

筍可匡

{.o

工工望望一令

0

1

0,2  0,4 0,00O,0

0。02 O.04    0。OO

O.5

1,0

工  =の   ゆ

繋 B

0.O

0.05

O.5

1.O

議、

器霧

0.00O。0

O.5

1.0

0,05

o0,0    0,1    0,2    0.3     0,00

トP輔  H酬

工ω悼N

工ω障刈

1

2工ω障Co

O.0

0.02 0.04    -O.02   0.00   0,02    0.04

0.5

1,0

8”

0。0

O,5

1.o

=ωω

基基望望山南

O.OOo,o

0.05

O.5

1.o

oo.o

  轟

H甲串

8甲悼

1

2

O.2  0。40

0.0

1

2

0,2  0。4o

1

0.O

工ωω①

…ii

0,1 0.2

工ωの甲

8堕

N

0。00     0.05     0,10

o

1

2

o

1

2

0,0

工ωωo

O,5 1。0  -0,1

工ω轟

0

1

2

O.0   0,10.0

1,0

0。O

工ω“悼ム

エコニ撃象甲甲障 一

O,1 0.2

コ:コ=

撃袈甲甲悼 一占

Fig.A-1 Continue(1

一226一

Page 21: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

飽αげ’α〃伽地61z%一〇8αs伽億一Mα吻%翻瞬丁γ伽α~α切

Temperature difference(oC)

E

o

£αoη

Φ)

邸一 1Φ

0.0 O,1 0.2    0。OO     O,05     0,噛0

=:工

撃撃の くゆ

ム山

0

1

2

0。OO

  嘲

曲エ

0

1

O,05 O.OO

蚕鼓甲甲甲N》 ω」』

0

1

0.05

聾饗

9q

o

1

2

O,O     O,{    0.2    0.3     0。0

工ω①①

0

1

2

O,1

o0,0

晒喝・、、

幽工ω①圃

1

2

0.1  0.2 一〇,02   0.00   0,02   0.04

工ω①

o

0,0

0,5

1。0

き 塁刈   刈o  早障

O、OOo.o

Q,02 0,Q4     Q,OQ

O.5

1,0

一  器

    Σ    山

o,o

O,02 O、04    0.OO 一

        O.5

1

1,0

一『t畔←一仁トー{

工ω刈ω

o,o

0.5

工ω刈ω

沁 て,o

O。05

o

コ: エエ  エの  のの   のリ  リリ   リ

&詠童宝 2

O、O    O.2    0.4    0,6

=ω図α

工ω刈o

0.0 O,1 0.2 0.OO 0.05 0,10

0

1

2

器基吉マママ山ム南

工ω刈刈

工ω刈刈

o

o,o

O.5

1.o

紳、、

焦、工ω刈

o

=ω刈

工ω刈

oトの

Fig.A-1 Continued

一227一

Page 22: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

NNOQ

site No,

H111P442H112RO350H113RC351H114RC352H115Rca53

H斜6RC354H119RC357H120RC358H121RC359H122RC360H123RC361H124RC362H125RC363H126RC364H128RC366H130RC368H131RC369H132RC370H133RC371H134RC372H135RC373H136P443H137RC374H138RC375H139P444H140P445H141P446H142P447H143P448H144P449H145P450H146RC376

Lat,IN)

30◆51,75’

30◆03,92’

30.09,91’

29。56,06コ

29059,86’

29◆55,983

30.17,941

30◎13,92’

30.11,945

29.39,95量

29.33,06’

29.26,88じ

29◆20.93’

29.17,98’

28.56,81置

28●39,07’

28.49,20『

28●50,73’

28◆29.67’

28014,93’

28.24.20’

27・29,95’

29●14,84置

28.59,971

28.59,59’

28.51,99’

28.44,97’

28.37,91’

28026.08”

28.17,99’

28.07,919

27◆59.635

Lon、IE)

139.09,375

139056,60’

139.40,261

139.38、58’

140◆01,91’

140000,418

139φ57,700

139058,79璽

140◆01、40-

139.52,93聖

140.12,79’

140●27,88’

140●35,311

140●14,46’

140039,29’

14α03,36’

140。03.23’

140011,938

140●35.26’

140006,131

140●04,951

141018、23’

139。30.54匿

139◎25,22’

139●50.02’

139’47.84’

139。47,04’

139◎36,95’

139●35.78’

139●33,90,

139◎30.948

140じ39。74監

Table A-1 Summary of heat flow meaSUrementS.

epth P.robe A P dT/dz N Cond. s,d, Nc Q Rem, Area

003 P4 2 F 0,131 3 0,981 0,035 15 129

970 G2 1 F 0,023 3 0,862 0,032 9 20 To面shima Ri配

207 G2 1 F 0,043 3 0,895 0,051 9 38 1550 G2 1 F 0,035 3 0、9肇3 0,036 10 32

975 G2 1 1.3 0,038 2 0,860 0,033 7 33 3 Torlshima Ri性恥§驚

960 G2 2 F 0,237 3 0,864 0,031 10 205 Torishima Rifし’ 恥弊

ρ,

480 G2 1 1.3 0,394 2 0,843 0,024 8 332 3 Torishima R醗 容

540 G2 2 F 0,167 3 0,866 0,036 10 145 2 To酉shima Rift 魚飾

538 G2 1 F 0,062 3 0,861 0,041 10 53 To而shima Rift 討鳴

648 G2 1 1.3 0,167 2 0,854 0,028 8 142 3 Sofugan Is,一Nishinoshlma Is, o鳴

649 G2 1 1.6 0,322 3 0,843 0,043 7 272 2 Sofugan ls,・Nishinoshima is、 oho784 G2 1 1.6 0,156 3 0,867 0,016 7 135 Sofuganls,・NishinOShimals.

閃一。ら

808 G2 2 F 0,061 3 0,907 0,048 7 56 Sofugan Is、一N除hinoshima Is、臼N

618 G2 1 1.6 0,106 3 0,868 0,026 8 92 Sofugan Is。9Mshinoshima Is.のミ

651 G2 1 1.6 0,100 3 0,973 0,066 5 97 Sofugan is.・Mshinoshima ls。 §趣

320 G2 1 F 0,072 3 0,933 0,010 8 67 Sofugan ls.一Nishinoshlma ls。只

719 G2 2 F 0,074 3 0,922 0,018 8 68 Sofugan is.一Mshinoshima ls. 旨718 G2 1 F 0,040 3 0,958 0,028 8 38 So佃gan ls.・Nlshinoshima ls. 暦

9ミ

653 G2 1 1.3 0,076 2 0,857 0,027 6 65 3 Sofugan Is.・Nishinoshima Is, }

998 G2 1 F 0,055 3 0,876 0,029 9 48 Sofugan ls,一Nishinoshima Is・ ぎN

644 G2 2 F 0,025 3 0,893 0,015 9 23 Sofugan ls.一Nishhoshima Is,へ

123 P4 1 2 0,184 2 0,868 0,053 9 159 3 OgasawaraTrough 免}

010 G2 1 F 0,033 3 0,935 0,021 8 31 ξ175 G2 1 F 0,069 3 0,905 0,037 9 62 2 へ

038 P4 1+2 F 0,029 5 0,906 0,015 13 26 Sofugan ls.一Nishinoεhima ls,

303 P4 1←2 F 0,029 5 0,897 0,016 12 26 Sofugan ls。一Nishinoshima ls、

531 P4 1+2 F 0,017 5 0,900 0,014 10 16 Sofugan is.・Nishinoshima Is、

638 P4 1+2 F 0,021 5 0,903 0,023 12 19 Sofugan Is,一Nishinoshima ls.

485 P4 1+2 F 0,014 5 01935 0,013 11 13 Sofuga国s.りNishinoshima Is.

550 P4 1+2 F 0,018 5 0,922 0,023 11 17 Sofugan ls.一Nishinoshima Is、

597 P4 1+2 F 0,026 5 0,917 0,021 11 24 Sofugan ls。・Nishinoshima Is.

367 G2 1 1.3 0.斜0 2 O,913 0,065 9 100 3 Sofugan ls,・Nlshinosわima ls,

Page 23: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

1ゆ認

H147RC377H148P451H149P452H150RC378H151RC379H152RC380H153RC381H154RC382H155RC383H159RC387H160RC388H163P453H164P454H165P455H166P456H167P457H168P458H169P459H170P460H171RC391H173RC394H174P461H175P462H176P463H177P464H178RC395H179RC396H180RC397H18{RC398H183RC398H186RC402H187RC403H188RC404H189RC405H190RC406

H19てP483

27.53,621

27.53,82-

27◎45,093

27044,96’

27◆35,75’

31.16,951

31◆07。671

26◆59,97’

26◆58,32’

24●00.08’

24●02,68’

27。20,029

27●12,03唇

27000.06。

27000,16酵

27000,105

26.52,03’

26.52.00’

26052,11’

26。59.90’

26052.10’

26.50,62’

26◆52,06-

26.52,15’

27.33,21’

3C卜55,73’

31012,92[

31◆≦6,87’

30◆4ア,86’

30●47。94’

23.02,64’

22◎56,12’

22.49,62臼

22●36,849

22。38,525

22・30,82響

140.40,275

140ゆ09,06’

140◆09,141

140.36,18-

140032,15’

139◎54,659

139。52,76’

140◎17,12,

141.00,088

14肇◎33,02”

141。32,46,

140000,05,

140●OO,09陰

13go45.47’

139◆47,55’

139●49。81’

139●45.85’

139043.13’

139・44,85’

139●43,75『

139039,46’

139●23,60量

139●46,66’

139●48,381

139●59,87’

139ρ41,23’

139・54,63’

139。53,99’

139◎53,56『

139◎42,72’

142●04,42’

142,08,00-

142●34,66量

142●09,74’

142◆18,’161

142018,95’

3574

3ア153755

3490

35851985

2135

3488

2655

2253

22463895

3778

3835

38453851

3845

38553851

38023845

48483835

3835379522202123

2045

22932235

2560

3103

2928

33793471

3483

G2P4P4

G2G2G2G2G2G2G2G2P4P4P4P4P4P4P4P4G2G2P4P4P4P4

G2G2G2G2G2G2G2G2G2G2P4

Table A-1 Continued

  2

1+2

1+2

 2

  1

  1

  1

  1

 1

 1

 1

1+2

 2

 1

 2

1+2

1+2

1+2

1+10 1

 1

1+101+2

2+101+2

 2

10

 1

 1

 2

 1

 2

 1

 1

 2

1÷10

1,6

 F

 F

 F

 F

 1

 1

 F

 F

 1

1,3

FFF

 F

FFFFFFFFFF

1.6

1,6

1.6

11,5

FFlFFF

0.145

0,101

0,118

0,斜0

0,046

0,284

0,086

0,059

0.031

0.129

0,039

0,093

0,023

0,124

0,122

0,115

0,471

0,107

0,134

0,246

0,075

0.111

0,129

0,118

0,143

0,186

0,187

0.139

0,482

0.043

0,104

0,017

0,438

0,009

0.053

0.0~1

0,891

0。852

0.828

0.902

0,893

10.850】

0,840

0.885

0.880

0,858

0,823

0,849

0,838

0.829

0,830

0,823

0.859

0,825

0.848

0.885

0。864

0,789

0,859

0,839

0,838

0,826

0,838

0.850

0,831

0,871

0,858

0,805

0,919

0,766

0,792

0,727

0,036

0,018

0,030

0.057

0,037

0,024

0,025

0,031

0,010

0,033

0,025

0,017

0,028

0,012

0。023

0.026

0,040

0.015

0,022

0.023

0,018

0.0.17

0.032

0,026

0.021

0.010

0.009

0,007

0,007

0,025

0,051

0,142

0.034

0.040

0,025

 7

10

11

 9

 9

 0

 6

 9

 8

 5

 5

 9

 9

11

10 9

10

10

10

 8

 8

10

10

10

10

78563986879

130

 86

 98100

 41

241

 72

 52

 28

110

 32

 79

 19

103

101

95

404

88

114

217

65

88110

99

120

153

156

118

401

38

8914

402

 7

42

 8

    Sofugan Is。卿Nishinoshima ls、

2 NishinoshimaTrough    NishinoshimaTrough    Sofugan Is.一NishirIoshima Is,

    Sofuganls,・Nishino3himals,

    Sumi3u Ri就

    Sumisu Ri代

    Nishinoshima Trough

    North of Kaika槍Smt,

    Ma㎡anaTrough

    MarianaTrough

    NishinoshimaTrough

    NlshlnoshimaTrough

    Nishinoshima Trough

    醐shinoshima Trough

    Ni師noshimaTrough    Nishinoshi㎞aTrough

    NishinoshimaTrough

    Nishinoshima Tr℃ugh

    Nishinoshima Trough

    NishinoshimaTrough

    Nishinoshima Trough

    Nishinoshima Trough

    肘ishinoshimaTrough

    Nishinoshima Trough

2  Sumisu Ri乱

    Sumisu Rift

    Sumisu Ri仕

1,3 Sumisu Ri忙

    Sumisu Rift

    Marlana Trough

    MarianaTrough

3 MarianaTrough    MarianaTrough

l MarianaTrough    Mariana Trough

331

1,3

評ミ

喬§§’

誉も

紺零

o晦9的9ミヨ

李さミ・

蓉>§

9ざ

……

翁ε

Page 24: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

器○

H192RC40アH193RC408H194RC409H195RC410H196RC411H197P484H198働1

H198-2

H198-3

H198-4

H198-5

H199P485H200-1

H200・2

H200-3

H200-4

H200-5

H201P486H202・1

H202-2

H202・3

H202・4

H202-5

H206H207H208H209H210H211

H212RC431H213RO432

H215RC434H216RC435H218RC437H219RC438H220RC439

22。33,99’

22◆23,01’

21。51,148

22◎02,191

22’12,33’

27。06,18’

27●07,83’

27.07,63’

27.07,45墨

27●07,25暫

27.07.14’

26.49,96撃

26◎52,268

26052,181

26.52,00唇

26。51.82’

26.51,7α

27005,33’

27◎07,33’

27.07,25’

27。07,17曇

27◎07.08’

27◆06,93’

3Cド47、94’

30947。951

29.59,97量

29ゆ59,80‘

29059,741

29ひ59,88’

27●35,801

27◎53,90,

28◎50,96,

28.49.29酵

29033.019

29・32,99,

29・33.041

142◎37,19’

142017,40’

142032,01,

142●39.06’

142’53.86’

140◎00.02’

140●00,13巳

140.00.13’

140。00,04’

139●59,92’

139’59。83’

139054.43’

139ひ46.26’

139◎46,14’

139045,96旧

139の45,821

139,45,731

139046.591

140,00,15’

140。00,10,

139’59.98’

139レ59,811

139’59,65’

139●54.03’

139.54,329

140.0璽,56’

140・02,158

140●02,389

140●02.66’

140032,92’

140◎36,759

140●35,15’

140●34。941

140◎05,319

140◎08.149

140。10,699

33663385

4263

38844557

3762

3761

37603759

37603760

38363834

383638403841

3841

378837553757

3749

37603761

2290

22882980

29842970

2960

35673522

3765

3780

29132914

2812

Table A-1 Continued

 G2   1

 G2  10

G2  1 G2   2

 G2  10 P4  1+2

E2,5M  10

 P4  1+2

E2,5M  10

 P8  1申2

E2,5M  10

E1,5

E1,5

E1,5

E1,5

E1,5

E1,5

G2G2G2G2G2G2G2

10

110

1≦0

110

10憶0

110

11

 F

 F

 F

 F

 l

 F

 F

 F

 F

 F

 F

 F

 F

FFFFFFFFFF

O.7

1,3

FFFFFFFF

重,6

1,5

1.5

0,068

0,007

0,009

0,060

0,396

0,039

0,008

0,024

0,044

0,071

0,1,2

0,124

0,121

0,138

0,511

0,052

0.117

0.124

0,078

0,043

0,174

0,039

0,030

0,842

0.149

0.061

0.204

0,145

0.008

0,062

0,009

0,094

0.斜7

0,083

0,113

0,970

0,752

0.739

0,768

0,841

0,856

10,856》

10,8561

10.856》

10.856》

10.856)

0,840

(0。859》

10。859》

10,859)

〔0,8591

10,859》

0,849

10.8561

{0,856》

10,856》

lO.856》

{0,856》

10.831》

10.831)

10、874)

{0,8741

{0.8741

(0,8741

0.876

0,910

0,883

0,919

0.971

0,941

0,892

0,113

0,053

0,012

0,018

0,003

0,033

0.027

0,017

0,046

0,055

0.034

0,050

0,014

0,093

0,052

 8

 8

 8

 8

 3

 9

 0

 0

 0

 0

 0

 9

 0

 0

 0

 0

 0

15 0

 0

 0

 0

 0

 0

000008743776

66

  5

  6

46

333

33

  7

2~

3861

96

104

104

119

439

45

100

105

67

37

149

34

26

700124

54179

127

 7

54

 8

871i4

78

101

1

3

31,3

2

4312

2

Mariana Trough

Ma㎡anaTroughMarianaTrough

M副anaTroughMarianaTrough

NishinoshlmaTrough

NishinoshimaTrough

NishinoshimaTrough

Nishinoshima Trough

NishinoshimaT飾Dugh

NishinoshimaTrough

NishinoshimaTrough

Nis翫inoshimaτrough

NishinoshimaTrOugh

Nishinoshima Trough

NishinoshimaTr◎ugh

Nishinoshima Trough

NishinoshimaTrough

Nishinoshima’『rough

Nishihoshima Trough

麗ishinoshima T『ough

Nishlnoshima†rough

Nishinoshima Trough

Sumisu Ri仕

Sumisu Ri舵

To『壷shima Ri穐

To丙shima Ri穐

’『o㎡shima Rlft

To㎡shima Ri鷺

Sofugan ls。・Nishinoshima ls.

Sofugan Is、・Ni3hinoshima!s・

So旬ganlS、・Nisめlnoshlmals・

Sofugan Is,一Nishinoshima Is,

Sofugan Is.一Nishinoshima ls,

Sofugan Is.一Nishinoshima Is.

Sofugan Is。一Nishinoshima ls、

切ミざ融ミ

黛§鳴

o鳴も

ご鷺.

いま

§塁

ξ§

叙釦

さ心

Page 25: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

1ロ田

H221RC440H222RC441H224RC443H225P488H226P489H227P490H228P491H229RC444H230RC445H231 RC446

H235RO450H236H237

H242RC452H243RC453H244RC454H245RC455H246RC456H247RC45アH248RC458H253H258RC497H260RC499H261RC500H262RC501H263RC502H265RC504H266RC505H267:RC506

H268RC507H270RC509H271RC510H272RC511H273RC512H274RC513H275RC514

29φ32,97’

29◆26,96’

27.30,10酢

24●48,77’

24026,99書

24044,70’

24043,53’

24。41,12’

24・28,05’

24.29,278

29059.965

30◆00,08’

29●59,83-

30◆47,97『

30.47,97’

32◆17、95’

32’15,83’

32◎15.98’

32’15,88”

32.09,891

30.47,79奮

21◎44,345

21。36,621

21●34,9筆1

21●27,響2’

21●21,72’

22053,76’

22●51,98’

22049,57’

22●35,84’

22◆28,25『

22◎20,65’

22.34,82’

22・43.55’

22044.39酢

22◆46,015

140.13,605

140。32,06’

141。23,86’

138008,51’

138・47,328

138018,709

140.23。42’

140◎22,61’

140●17.30『

140●17,79,

140006,94’

140●05,55陰

140◎05,079

139●53,13’

139052.44’

139ら42.51’

139ρ47,78匿

139045,24,

139●39.821

139。39,959

139D55,63’

143,52.21,

143ひ56,44-

143ゆ57,18’

143ゆ02。95騒

143D15,36’

142D22,73’

142024,235

142●25,74’

142●36,311

142。37.95’

142ひ34.Oア

142001,19’

142.03.711

14200ア.96’

142016,02’

2654

28404125

5391

5666

52183241

3210

3925

3919

2935

2931

2950

2270

22601579

15951609

1589

1610

228035443525351242953917374537453720

3375

3450

33752950

3140

3130

3450

G2G2G2P8P8P8P4G2G2G2G2E1,5

E1.5

G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2

Table A-1 Continued

10

10

10

1+10

2+101+10

1+10 1

10

10

 1

 2

 1

 2

 1

 1

 2

 1

 2

 1

 1

喋0

210

10

10

10

210

10

210

10

10

22

 1

1。6

 F

 F

 F

 F

1,5

1,5

 1

1,5

1,5

0,8

0,8

F l

FFF

1,6

10,8

FFlF

1,5

F1,5

1,5

1,5

FFFFFF

0,340

0,226

0,057

0,008

0,117

0,019

0.085

0,044

0.271

0,020

0.05i

O,194

0,539

0,33ア

0,315

0,086

0,045

0,204

0,188

0,076

0。586

0,079

0,220

0,229

0.012

0,233

0.040

0,366

0.232

0,139

0,036

0.049

0,096

0,102

0,074

0.165

0,854

0,867

0,870

0.785

0.764

0,795

10.8751

(O。8751

0。875

(0.8751

(0,874)

10.874)

10,874》

0,934

0.839

10,930》

0,890

0.890

0,941

1,006

(0,830》

0,883

0。877

0,892

0、786

0,870

0,981

0,929

0,989

1,030

0,970

0,801

0,795

0,744

0,793

0,826

0,008

0,022

0,026

0,02ア

0,024

0,035

0,019

0,083

0,015

0,016

0,047

0.071

0,041

0.039

0.027

0.034

0,037

0。055

0,118

0,093

0.085

0,112

0,099

0,058

0,021

0。044

0,027

0,053

475

14

12

15

003000084058350674846777878888

290

195

 50

  6

 90

 15

 74

 38

237

 17

 44

169

471

315

26480

40

181

176

77

48770

193

20410

202

39

340

230

143

35

40

76

76

59

136

32

1,3

31,3

333

1,3

31,5

55

Sofugan I$.一Nishinoshima ls。

SofUgan IS.一Nishinoshima IS,

Ogasawara T70ughParece Vela Basin

Parece Vela Basin

Pa陀ce Vela Basin

West of lwolima ls,

West of Iwolima is,

West of lwojima ls,

WeSt Of IWojima Is.

Torishima Ri耽

TorlSれima Ri鮭

Torishima Ri丘

Sumisu Rift

SumisuRift

Aggashima Ri丘

Aogashima Rift

Aogashima Rift

1,3,5Aogashima Rifヒ

1,3,5AogashimaR流

3323

32

3

Sumisu Ri僅

Ma㎡anaTrcughMa㎡anaTroughMarianaTrough

Ma繍aTroughMarianaTrough

Ma㎡anaTroughMarlanaTrough

MarbnaTroug斜Mar悟na Trough

Ma虚鵬a Trough

Mar匿naTroughMarぬnaTroughMariana Trougれ

Ma丙ana Trough

Ma㎡ana Trough

寒ミ

る§§0

さぷ

寂零

o晦9ω

9ミま

李さ蓉・

蓉』§

ぎ§器鳶望

Page 26: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

1認⑳

H276RC515H277RC516H278RC517H279RC518H280RC519H281RC520H282RC521H283RC522H286RC525H287RC526H288RC527H289RC528H291・1

H291・2

H291。3

H291-4

H292RC530H294RC531H311H314-1

H316H322H324H325H326H327-1

H327・2

H328RC535H330-1

H331-1

H331-2

H331-3

H332H333-1

H333-2

H334RC561

22.46.959

23◎13.03’

23●15.02’

23●16,86’

23・13、561

23.05,451

23φ11,579

230て6,46‘

23ρ15,48量

23●16,43露

26◎41,31’

26・42,11’

28●37,781

28●37,799

28●37.91’

28.38,07’

27●30,08’

30・47,97,

30.47,971

30◎47,958

26●41,60’

30048,418

30050,11’

30.49,76-

30◆48、25’

30.49,530

30。49,341

31。08,75’

31◆08,77’

30048,10’

30・48,159

30。48、229

30048,06’

30049,13’

30048,953

18◆00,99露

142◎21,63’

142。08,568

142007.13’

142004.10’

142.07,94’

142002,48’

141.59。231

142●03.16’

142・03,781

142002,19’

140・30、73’

141019,849

139037,25’

139◎37.379

139ゆ37,669

139.38,03’

141。40,03匿

139●55.11’

139●54,9α

13go55,95肚

140053,51’

139’53,53’

139◎53,09’

139953.17’

139,53,46’

139D53,22’

139。53.50’

139956.221

139ゆ56;3α

139051,20f

139●51,715

139’52,291

139◎50,82’

139953,191

139D56。59’

144053,31『

Table A-1 Continued

3450

2ア302705

2710

2ア202530

2460

2710

2730

2685

3400

3280

3635

36403640

3640

4120

22852285

2280

1315

2290

2285

2285

2290

2290

2285

2045

2050

2260

2260

22602240

2290

2290

4405

 G2

 G2

 G2

 G2

 G2

 G2

 G2

 G2

G2 G2

 G2

 G2

E2,5M

 G2

 G2

BO,7

BO,7M

E1,0

BO,7

BO,7

BO,7

BO,7

BO,7M

G2BO,7M

BO,7M

BO.7

BO,7M

10

10

210

2210

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

G2 10+11

1,4

 F

1,5

 1

 F

 F

1,3

0,9

1,5

0,9

FO,9

FFFFF

1,2

FF

O,5

FFFFFF

1,3

FFFFFFFF

0,299

0,026

0,252

0,516

0,145

0,074

0,238

0、473

0,334

0,441

0,121

0,496

0.022

0,022

0,024

0.029

0.039

0,021

0,036

0,060

1.063

0.080

0,012

0,040

0,040

0,048

0,斜6

0.331

0,016

0,000

0,072

0,060

0.028

0.148

0,084

0,188

333233323232333333222332333323333334

0,871

0,824

0.817

0.837

0.805

0,854

0,809

(0,8301

0,825

0,814

0,864

0,850

10,9201

(0。9201

10,920》

10,920》

0.851

0,827

(0、8301

(0,8301

10,850)

〔0,830}

〔0,8301

〔0.8301

10、8301

10,8301

{0,8301

{0,8501

(0,8501

(0,8301

10,830》

10,8301

{0,8301

(O.8301

10,830}

0,866

0,056

0,008

0,006

0,012

0.012

0,031

0、013

0,011

0,021

0,034

0,011

0,028

0,017

0,043

26021

205

432

117

63

193

392

276

359105

421

20

20

22

26

3318

30

50

904

6610

33

33

40

96281

14

 0

60

50

23123

70

≦63

33

3,5

11、2

11,2

2

    Mariana Trough

    Mariana Trough

    Mariana Trough

3  Mariana Trough

    MarianaTrough

    Mariana’『rough

    MarianaTrough

3  Mariana T酢ough

    MarianaTrough

3  Mariana Trough

   West of Kaikata Smt,

3  Eastof Kaikata Smt,

   Sofugan ls、一Nishinoshima ls,

   Sofugan ls.一Nishinoshima ls,

   Sofugan ls。一Nishinoshima ls.

   Sofugan ls,一Nishinoshima ls.

   OgaSawara Trough

   Sumisu Ri費

   Sumisu R流

   Sumisu Ri穐

   Kaikata Smt,

   SumisuRift

   Sumisu Rift

1,3 Sumisu Rift

   Sumisu Rift

   SumisuRi靴

   Sumisu Rift

   Sumisu Rift

3  Sumisu Ri代

   SumisuRift

l  Sumisu Rift

   Sumisu Ri鴛

   Sumisu Ri段

   Sumisu R流

   Sumisu Ri俺

   Mariana Tl℃ugh

ヒロ

鳴討.

§

9導恥

○鴨ロざ閃8’

§

のま

§遷

ξ§

へ和

さ職

Page 27: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

1器ω

1

H335RC562H336RC563H338-1

H338。2

H339RC564H341RC566H342-1

H342-2

H342-4

H343-1

H343-2

H343-3

H343-4

H344RC567H345-1

H345-2

H345-3

H345。4

H345-5

H366RC569H367RC570H369RC571H370-1

H370-2

H371-1

H371・3

H373-1

H373・2

H374-1

H374-2

H374・3

H374-4

H375RC601H376RC602H377・1

H377-2

18●00,841

18・00,958

18。00,941

18●00,925

20.54.16’

21φ05,94’

21005,81’

21.05,605

21.05,153

21010,70’

21.10,49-

21●10,31’

21◆10,11’

21030,52’

21.27,10’

2喋.27,09’

21.27,139

21●27.13’

21。27,13’

21●23,69’

21◎30.531

30◎54,93’

30●54,87’

30●54,80’

30●47,83’

30.47.82’

30054.83’

30054.75’

30●47,86『

30●47,65量

30◆47.55重

30.47,46屡

20049,57’

20●49,02’

21006,10’

21。06,10『

144◆55,76匹

145・01,225

144◆56,57’

144.56,34’

143012,38’

143018、121

143◆18,191

143◆18,195

143018,13’

143.11,13’

143011,14’

143●11,13量

143011.09’

143●13,55’

143●02,72B

143●02。50-

143902,269

143ρ02,01’

143●01,73’

143●14,54’

143◆13.711

139.51,28’

139●51,75’

139ひ52、235

139●53.60’

139,53.52’

139053,41’

139◆53,79’

139053,93-

139ゆ53,78’

139053,511

139053,22’

144,38,40’

144036,09’

143。17,905.

143ひ17,691

Table A-l Continued

3608  G2

3770  G23710 E1,5M3708

4220  G2

4392  G24390 E1,5M4400

4439

3730 E1.5M3730

3720

3728

3670  G24298 E1,5M4296

42924291

4287

3915

36682245

22752280

2290

229022802285

2280

2285

 G2

 G2

G2BO,7M

BO,7M

BO、7M

BO,7M

2285

2270

2555  G2

2515  G2

4405 E1。5M

4352

10

11

11

11

11

11

11

11

11

11

11

11

10

10

10

10

11

11

11

 F

1,2

1.2

1,2

 F

 F

 F

 F

 F

 F

 F

FFFFFFFF

1、4

1,4

0,9

FFFFFFFFFFFFFF

0,106

0,038

0,105

0,152

0,014

0,018

0,054

0,038

0,001

0,071

0,059

0,070

0,061

0,012

0,022

0,012

0,005

0,023

0,261

0,474

0,068

0,028

0,072

0.052

0,012

0,012

0,120

0,132

0,044

0,120

0,040

0,224

0,043

0,037

334443554555545555544233333333335566

0,857

10,857》

(0,857》

(0.8571

0.744

0,743

(0,7431

〔0,743》

10、743)

10,743)

10,7431

10,743》

{0,743》

0,828

(0,786》

(0.786》

{0,786)

〔0,786》

{0,7861

0,798

0,840

0,838

{0,838}

(0,8381

(0。8301

(0,8301

(0,838)

10,8381

(0.830)

10,8301

〔0,8301

(0,8301

0,832

0,852

《0.743}

(O,7431

0,067

0,013

0,012

0,026

0,011

0.019

0,028

0,059

0,065

500065000000060000026500000000006700

91

32

90

131

10

13

40

28 1

53

44

52

45

  9

18

10

  4

18

208

397

56

23

60

4310

10

100

110

37

100

33191

40

27

6

4

43

22

6

Mariana Trough

Mariana Trough

Ma再ana Trou9h

Ma締ana’『rough

Ma丙anaTroughMariana Trough

MadanaTroughMariana Tr℃ugh

Mariana Trough

Mariana TrDugh

Mariana Trough

Mariana Trough

Maria自a Trough

Mariana Trough

Marian4Trough

Mariana Trough

Mariana Trough

MarianaTrough

Mariana Trough

Mariana Trough

Mariana Trough

Sumisu Rift

Sumisu R流

Sum盲su Ri覚

Sumisu Ri粍

Sumisu Ri允

Sumisu Rift

Sumisu Ri仕

Sumisu Ri丘

Sumisu Ri仕

Sumisu Rift

Sumisu Ri代

MarianaTrough

Mariana Trough

Mariana Trough

Mariana Trough

評ミ

る§§◎

§鳴

凝書

o偽自Gつ

9ミ9寧§蓉・

蓉』§

へsぎ

…ii

馨ぎ℃

Page 28: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

Table A-1 Continued

H377-3

H377-4

H377-5

H379・1

H379-2

H379-3

21.06,16”

21.06,21-

21。06,21’

30.47,81’

30047,901

30◎47,845

143。17.543

143.17,289

143φ17,04’

139.53.82’

139●53,98-

139.54,19量

43524345

4300

2295  BO,9M

2290

2290

     F

     F

     F

l l  F

     F

     F

0,022

0,029

0,075

0,060

0。325

0.105

666555

lO,7431

10.743》

(0,743)

(0、8261

(0,826》

(0.8261

000000

16

22

56

50

270

87

6

22

Mariana Tめugh

MarianaT酬ghMarianaT酬φSumisu届段

SumisuRi俺

SumisuRi俺

器晶

Foot note of Table

Probe l the type of thermistor probe used.G:a gravity corer with three to six thermistors in outrigger fashion(a number attached to the let-

  ter is the length of the probe),P:a piston corer with three to five thermistors in outrigger fashion,E:a lance without coring with three to

  sixthermistorsinoutriggerfashion,B:athin(20mmφ)Bullar(itypeprobewiththreetofivethemistors,M:multi-penetration

  meaSUrement.

A=theapparatusused;1:GH80-1-No.1,2:GH80-1-No.2,10:NTS10,11:NTSllP:estimated penetration(1epth(m);F:fu11(or over)penetration.

dT/(iz:thermal gradient(。K/m).

Ng:number of active thermistors in se(iiments.

Cond.:themal conductivity(W/mK).

s.(1.:standard deviation of the thermal con(1uctivity(1ata.

Nc:number of thermal conductivity measurements.Q:heat flow(mW/m2).

Remarks:  1.Accuracy of temperature data is low.

  2.Non-linear temperature profile.

  3.Gradient was calculated from only two temperature data.

  4.Anomalous temperature profile.

  5.Gra(iient may be affected by bottom water temperature variation because of shallow water depth.

  6.Large temperature increase at very surface sediments。

bロ

蔑ミ

黛導“

o鳴ロ

ご閃80

の§

§塁

ξ…i

心和

ξ心

Page 29: Heat皿ow in the Iz聰一〇gasawara(Bonin)一Mariana A肥 · 2013-05-14 · Fig.1 Structural framework of the Izu-Ogasawara -Mariana arc.Dotted lines represent1000m and3000m

飽α壇伽伽伽19%一〇8αsα襯搬一M副α冗αz4影6‘T.y齢α~α初

伊豆・小笠原弧及びマリアナ弧の地殻熱流量

山 崎俊嗣

要  旨

 伊豆・小笠原弧及びマリアナ弧において,1984年から1989年にかけて218点で新たに測定された熱流

量値とその解釈を報告する.測定の目的は,熱水活動の可能性を評価することと,表記の海域のテクト

ニクスの理解を深めることであった.主に研究対象とした海域は,(1)伊豆・小笠原弧北部に発達す

る活動的背弧リフト群のひとつであるスミスリフト,(2)伊豆・小笠原弧中部に現在の島弧に斜交し

て存在する,漸新世の古リフトと考えられる西之島トラフの周辺,(3)北部マリアナトラフ(200N-24。N)

である.

 スミスリフトでは高い熱流量を示す地点の存在及び分散の大きな熱流量分布より,熱水循環系の存在

が推定される.ここでは,表層数十cmの温度勾配が異常に小さいことが多いが,底生生物の活動が盛ん

なことによる堆積物の擾乱が原因かもしれない.西之島トラフは,西側を正断層の急崖(嬬婦岩構造線)

により限られているが,熱流量はここを境にトラフ内では比較的高く,構造線の西側では低くなってい

る.このコントラストは,過去のリフティングに起因する地殻の厚さの差を反映しているものと推定さ

れる.西之島トラフ内には,貫入岩体に伴って局地的な高熱流量域が存在する。マリアナトラフの

22。N以北では現在リフティングが起こっているが,ここは熱的に非対称である.高熱流量はトラフの

東縁のみで観測される.マリアナトラフの220N以南では,海洋底拡大が起こっており,拡大軸付近で

は熱水循環に起因すると考えられる異常な温度プロファイルが観測される.

(受付:1991年6月18日;受理:1991年7月24日)

一235一