heavy hadron phenomenology on light front zheng-tao wei nankai university 1 2012...

28
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年年年年年年年年年年年 年年年 年年年 ,, 5.7—5.12

Upload: lorena-williams

Post on 17-Jan-2018

267 views

Category:

Documents


0 download

DESCRIPTION

Introduction  The theory to describe the strong interaction is quantum chromodynamics (QCD). It is a beautiful but difficult theory. Asymptotic freedom: weak coupling at short distances, perturbation theory, 2004 Nobel prize Confinement: non-perturbative at long distance, hadron structure, spectrum, chiral symmetry breaking… 3

TRANSCRIPT

Page 1: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

Heavy hadron phenomenology on light front

Zheng-Tao Wei

Nankai University

1

2012年两岸粒子物理与宇宙学研讨会,重庆, 5.7—5.12。

Page 2: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

Introduction

Light front QCD and quark model

Phenomenologies: 1. ηb

2. Λb decay 3. fDs puzzle Summary

2

Page 3: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

Introduction The theory to describe the strong interaction is quantum chromodynamics (QCD). It is a beautiful but difficult theory. Asymptotic freedom: weak coupling at short distances, perturbation theory, 2004 Nobel prize

Confinement: non-perturbative at long distance, hadron structure, spectrum, chiral symmetry breaking…

3

Page 4: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

4

Non-perturbative methods: 1. Lattice 2. Effective field theories 3. QCD sum rules 4. Light-fone method 5. AdS/QCD 6. …

Page 5: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

5

Light front method For a relativistic Hamiltonian system, the definition of time is not unique. There are three forms.

Dirac’s three forms of Hamiltonian dynamics (1949)

Page 6: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

6

Why light-cone framework?

1. A relativistic particle looks like non-relativistic if viewed on the light-cone.

2. Simple vacuum: vacuum is trivial. k+=k0+k3>0

The LC framework is the most possible way to reconcile the high energy parton model and the non-relativistic constitute quark model.

Page 7: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

7

Page 8: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

8

LF Fock space expansion provides a convenient description of a hadron in terms of the fundamental quark and gluon degrees of freedom. The LF wave functions is Lorentz invariant. Ψ(xi, k┴i ) is independent of the bound state momentum. The vacuum state is simple, and trivial if no zero-modes. Only dynamical degrees of freedom are remained. for quark: two-component ξ, for gluon: only transverse components A┴.

Advantage of LF framework

Disadvantage

In perturbation theory, LFQCD provides the equivalent results as the covariant form but in a complicated way.

It’s difficult to solve the LF wave function from the first principle.

Page 9: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

9

1

/ ),,(,,:][)(n

iiiMniiiiin kxPxkPxndPM

LF Fock space expansion

2MPPHLF

LF bound state equation

It is impossible to solve the equation for all Fock states.

Some theorists assumes valence quark dominance and a linear potential to solve the equation.

Page 10: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

10

Basic assumptions of LF quark model

Valence quark contribution dominates.

The quark mass is constitute mass which absorbs some dynamic effects.

LF wave functions are Gaussian.

Choose Gaussian-type wave function

The parameter β determines the confinement scale.

Page 11: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

11

Melosh rotation 22

0

'0

'

)(

)(2

),()',()(

pMxm

npiMxmm

spuspuR

ii

ssiii

iiDssM

meson. for vector

),,()(),(~21

meson;ar pseudoscalfor

),,(),(~21

:) ,( seigenstatehelicity LC ofout ),( spin of of statea constructs

2221

110

1

225110

00

21

21

21

21

kvw

kkkuM

R

kvkuM

R

SSR

V

S

zSS

z

z

Page 12: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

12

with

The pseudoscalar meson decay constant is

)1(21 xmxmA

The physical form factors are expressed by convolution of hadron LC wave functions.

Page 13: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

13

C. Hwang, Wei, JPG (2007)

ηb study ηb was not observed until 2008.

Page 14: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

14

Adopting different β parameters will break the orthogonality among the nS states.

Conventional harmonic oscillator model

Page 15: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

15

LF wave function for Υ(nS)

The harmonic oscillator model shows a discrepancy for Y(nS) decay constants . The LF wave function is questionable.

A modified wave function

H. Ke, X. Li, Wei, X. Liu, PRD (2010)

Page 16: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

16

Orthogonality, normalization

Page 17: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

17

Page 18: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

18

Λb decay Diquark picture for baryon Two quarks in a color-antitriplet state can form a diquark. Baryon looks like a meson.

Diquark approximation simplifies greatly the calculation of baryon decays.

Page 19: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

19

Λb→Λc decays H. Ke, Li, Wei, PRD (2008)

Page 20: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

20

Wei , Ke , Li , PRD (2009) Λb→p, Λ decays

Definition of form factors

Page 21: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

21

Page 22: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

22

Page 23: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

23

We propose that there are three independent form factors. Large energy limit relations:

C. Chen, C. Geng, hep-ph/0106193, HQET

T. Feldman, M. Yip, 1111.1184;T. Mannel, Y. Wang, 1111.1189.

Symmetry relations

Page 24: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

fDS Puzzle?

Most model predictions are smaller than exp. 3σ deviations between experiment and lattice results.

24

Page 25: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

It is easy to adjust parameters β to fit the data.

One prediction is that D->τν is 1.2*10^{-3 }, which will be observed soon.

25

Page 26: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

With the new parameters, theory predictions are closer to experimental data.

26

Page 27: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

27

Rosner, 1201.2401

No puzzle?

Page 28: Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 1 2012 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

28

Summary LC quark model provides a convenient non-perturbative method to study the decay constants, form factors, etc.

We proposed a modified LC wave functions for Y(nS) states.

The study of heavy baryon in LC quark model indicates the reliability of the diquark approximation.

Within the standard model, “fDs puzzle” can be explained.