heavy mineral applications in sedimentary petrology

21
University of Louisiana at Lafayette Heavy Mineral Applications in Sedimentary Petrology Advanced Sedimentary Petrology, Fall 2013 Shanna Mason 11182013

Upload: shanna-mason

Post on 18-Aug-2015

136 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Heavy Mineral Applications in Sedimentary Petrology

 

   

University  of  Louisiana  at  Lafayette  

Heavy  Mineral  Applications  in  Sedimentary  Petrology  Advanced  Sedimentary  Petrology,  Fall  2013  

Shanna  Mason  11-­‐18-­‐2013  

Page 2: Heavy Mineral Applications in Sedimentary Petrology

 

Abstract  

Heavy  Mineral  analysis  in  sedimentary  petrology  is  both  important  and  precarious  at  the  same  time.  The  unique  physical  characteristics  that  enable  their  importance  can  also  lend  to  their  detriment.  The  applications  of  heavy  minerals  in  sedimentary  petrology  are  discussed  within  this  text  in  two  sections.  The  first,  dealing  with  applications  of  heavy  minerals  in  

modern  depositional  systems,  and  the  second  discussing  provenance  applications.  Heavy  Mineral  analysis  in  modern  depositional  systems  has  had  a  plethora  of  research  centering  on  hydraulic  equivalents.  One  of  the  most  prominent  studies  by  Gordon  

Rittenhouse  analyzed  heavy  minerals  in  modern  sedimentation  problems  of  the  Rio  Grande.  However,  his  research  was  negated  through  many  other  studies.  

Provenance  determination  in  terms  of  heavy  minerals  occurring  in  sediments  must  have  the  depositional  environment  considered  carefully.  Due  to  the  unique  physical  characteristics  of  

heavy  minerals,  their  occurrence  in  any  assemblage  is  depending  on  their  stability.    Through  analysis  of  multiple  research  studies  on  the  applications  of  heavy  minerals,  it  will  be  evident  how  their  unique  characteristics  can  be  detrimental  to  their  analysis.  However,  with  an  understanding  of  the  sediment  history,  this  text  will  prove  through  various  studies  that  petrologists  can  compensate  for  these  variables,  strengthening  the  importance  of  heavy  

mineral  analyses.    

INTRODUCTION  

Heavy  minerals,  the  fraction  of  a  sandstone  comprised  of  many  different  mineral  grains  with  

specific  physical  and  chemical  characteristics,  have  long  been  recognized  as  an  important  

indicator  of  the  parentage  and  history  of  sediments  within  a  depositional  environment  (Briggs,  

1965).  The  amount  of  research  on  accessory  minerals,  as  they  are  also  called,  available  for  

discussion  is  immense.  Given  the  early  popularity  of  heavy  mineral  analysis,  the  recent  decline  

in  their  use  gives  reason  to  analyze  the  cause.  This  decline  is,  in  part,  due  to  technological  

advances,  but  it  is  also  due  to  the  general  realization  of  their  susceptibility  to  the  processes  of  

transport,  deposition,  and  diagenesis.  However,  by  assessing  the  history  of  the  sediment,  

analysis  of  these  minerals  can  be  enhanced  by  compensating  for  their  environmental  variables  

in  various  ways  (Bateman,  2007).  This  paper  will  focus  on  applications  of  heavy  minerals  in  

Page 3: Heavy Mineral Applications in Sedimentary Petrology

sedimentary  petrology  in  two  sections.  First  their  application  in  modern  depositional  systems,  

and  various  studies  conducted,  will  be  discussed,  then  heavy  mineral  analysis  in  terms  of  

provenance.  Showing  how,  through  research,  we  can  identify  the  weaknesses  of  heavy  minerals  

in  certain  environments  and  use  this  knowledge  to  improve  the  accuracy  of  their  use.  

Unfortunately,  every  application  of  heavy  minerals  in  sedimentary  petrology  cannot  be  

discussed.  The  application  of  heavy  minerals  can  expand  well  into  other  areas  besides  modern  

depositional  systems  and  provenance.  Subsurface  correlation  of  mineral  zones,  tectonic  history  

determined  by  heavy  mineral  analysis,  and  varietal  studies  of  many  other  species  besides  

tourmaline  all  indicate  promise  towards  research  in  the  field  of  heavy  mineral  analysis  that  can  

only  add  to  its  value.    

HEAVY  MINERALS  IN  MODERN  ENVIRONMENTS  

FLUVIAL  SETTINGS  

Much  of  the  research  dealing  with  heavy  mineral  analysis  in  modern  depositional  systems  has  

centered  on  Hydraulic  Equivalents.  Beginning  in  1933  with  William  Rubey,  who  coined  the  term  

‘hydraulic  equivalence’  to  show  how  minerals  with  different  physical  properties  can  be  the  

result  of  the  same  hydraulic  conditions.  These  hydraulic  equivalents  were  calculated  using  

settling  velocities  of  heavy  minerals  according  to  Stokes  Equation  (see  fig.  1).  Stoke’s  Law  states  

that  settling  velocities  of  spherical  particles  are  a  function  of  particle  diameters,  effective  

densities,  and  inversely  as  the  viscosity  of  fluids  (Rubey,  1933).  Rubey  determined  that  the  

equation  outlined  in  figure  1  worked  for  particles  between  the  diameters  of  0.0002  and  0.2  

millimeters.  For  larger  particles,  hydraulic  equivalents  will  deviate  until  quartz  particles  reach  

Page 4: Heavy Mineral Applications in Sedimentary Petrology

1.5mm  in  size,  at  which  point  fall  velocities  will  be  proportional  to  the  square  root  of  diameter  

particles  (Rubey,  1933;  Tourtelot,  1968).  The  hydraulic  equivalents  of  quartz,  magnetite,  silver  

and  gold,  calculated  by  Tourtelot  (1968)  using  the  values  from  the  equations  outlined  by  Rubey  

can  be  seen  in  Figure  2.  Even  though  Rubey  did  not  use  his  work  to  analyze  depositional  

environments,  Rittenhouse  knew  that  it  could  be  (1944).    

In  his  study  on  the  modern  sedimentation  problems  of  the  Rio  Grande  River,  

Rittenhouse  figured  out  an  empirical  way  to  assess  source  areas  on  different  streams  in  the  

Middle  Valley  using  the  Hydraulic  Ratio.  Between  1936  and  1941,  the  Rio  Grande  and  the  

tributaries  that  feed  it,  were  depositing  around  12,000  acre-­‐feet  of  sediment  per  year.  This  

caused  multiple  issues  such  as;  the  channel  and  floodway  capacity  to  discharge  flood  waters  

was  diminished,  the  ground-­‐water  table  had  been  raised,  infertile  sands  were  being  deposited  

onto  pastures  and  cultivated  land,  and  accelerated  soil  erosion  was  occurring  in  relation  to  

channel  aggradation  (Rittenhouse,  1944).  In  conjunction  with  the  Soil  Conservation  Service  in  

Greenville,  South  Carolina,  Rittenhouse  set  out  to  tackle  the  sedimentation  problems  by  using  

heavy  mineral  analyses  to  figure  out  which  tributary  was  depositing  the  most  sediment  so  that  

controls  could  be  implemented  to  stop  damage  from  continuing  to  occur.  He  took  the  hydraulic  

equivalent  size,  determined  by  Rubey,  and  calculated  a  ratio  that  he  believed  to  be  more  

reliable  than  other  quantitative  methods.  The  Hydraulic  Equivalent  sizes  calculated  

experimentally  from  two  sites  of  the  Rio  Grande  experiment  is  outlined  in  Figure  3.  Rittenhouse  

defined  the  Hydraulic  ratios  as  “100  times  the  weight  of  a  mineral  in  a  known  range  of  sizes,  

divided  by  the  weight  of  light  minerals  of  equivalent  hydraulic  size  (Rittenhouse,  1943:  1725).”  

Rittenhouse  said  that  when  the  hydraulic  ratio  is  used,  it  helps  to  eliminate  variations  in  

Page 5: Heavy Mineral Applications in Sedimentary Petrology

assemblage  caused  by  hydraulic  selectivity,  or  the  selectivity  of  a  stream  to  deposit  all  the  

heavy  minerals  in  the  bed  load  (Briggs,  1965).  Multiple  analyses  concerning  the  size  distribution  

of  heavy  minerals  have  since  occurred,  offering  varying  validity  opinions  of  this  method.    

Rittenhouse  based  the  Hydraulic  Ratio  on  the  constant  relative  availability  of  the  heavy  

minerals  along  a  transverse  section  of  a  stream.  During  an  investigation  of  sediments  in  the  

Rhine  River,  Van  Andel  rejected  this  basis  of  constant  availability,  stating  that  this  did  not  apply  

to  his  area  of  study  (1959).  The  negation  of  the  basis  of  hydraulic  ratios  puts  the  validity  of  

Rittenhouse’s  theory  in  question.  If  it  cannot  be  applied  elsewhere,  it  is  of  no  use  to  

sedimentary  petrologists  (Young,  1966).  Edward  Young  conducted  a  study  of  four  quantitative  

methods  used  in  heavy  mineral  analysis  using  two  samples  from  Rittenhouse’s  Rio  Grande  

study.  He  discounted  the  hydraulic  ratio  method  in  part  due  to  the  laboriousness  of  

calculations,  but  also  due  to  relative  deviation  results  (see  fig.  4).  Rejecting  the  hydraulic  ratio  

method,  Young  obtained  results  favoring  the  weighted  number  percentage  and  weight  

percentage  methods  for  heavy  mineral  analysis  (Young,  1966).  Louis  Briggs  also  called  into  

question  the  validity  of  Rittenhouse’s  argument,  postulating  that  modal  separation  of  heavy  

and  light  minerals  increases  with  grain  size  for  samples  with  diameters  larger  than  0.125mm.  

He  also  determined  that  the  frequency  of  any  mineral  in  a  sandstone  depends  on  interactions  

between  minerals  with  different  specific  gravities,  particle  shape,  availability  of  size  to  transport  

mechanism,  and  the  hydraulic  selectivity  of  the  agent  (Briggs,  1965).  White  and  Williams  (1967)  

studied  the  settling  velocities  of  light  and  heavy  minerals  in  cross  bedding.  Determining  that  

settling  velocity  equivalents  varied  between  bottomset  and  foreset  laminations  due  to  

deposition,  which  can  be  resolved  into  components  of  suspension  and  traction  loads  (White  

Page 6: Heavy Mineral Applications in Sedimentary Petrology

and  Williams,  1967).  Variations  from  hydraulic  equivalent  sizes  can  also  be  found  when  looking  

at  studies  that  focus  on  lacustrine  and  coastal  depositional  settings.    

COASTAL  AND  LACUSTRINE  SETTINGS  

In  1959,  Donald  McIntyre  attempted  to  relate  the  hydraulic  equivalent  sizes  determined  by  

Rubey  to  Lake  Eerie  foreshore  deposits.  The  deposits  to  be  sampled  occurred  in  alternating  

light  and  dark  layers  that  were  called  “lenses.”  Three  separate  lenses  were  sampled  and  

categorized  as  layers  A,  B,  and  C.  Hydraulic  equivalent  quartz  sizes  were  then  compared  for  five  

present  heavy  minerals  in  each  layer  using  both  quartz  and  garnet  as  the  basis.  The  accuracy  of  

calculated  hydraulic  equivalent  sizes  varied  within  each  layer.  The  variances  can  be  seen  when  

looking  at  Figure  5,  which  describes  hydraulic  equivalences  obtained  either  by  calculations  or  by  

subtracting  the  mean  grain  size  of  quartz  or  garnet  from  the  mean  grain  size  of  each  of  the  

heavy  minerals  in  the  same  layer.  Using  quartz  as  the  basis,  only  the  C  layer  came  close  to  the  

theoretical  values.  For  values  of  the  A  and  B  layers,  hydraulic  sizes  using  quartz  taken  from  the  

samples  were  continuously  greater  than  the  calculated  sizes.  However,  when  garnet  was  used  

as  a  base,  calculated  hydraulic  equivalent  sizes  more  closely  related  to  those  observed  in  the  

samples  (Mcintyre,  1959).  Looking  at  this  experiment  and  the  numerical  values  exhibiting  

deviations  from  hydraulic  equivalent  sizes,  it  is  evident  how  subjective  to  environmental  

conditions  hydraulic  equivalents  are.  

Bryce  Hand  (1967)  set  out  to  determine  hydraulic  equivalents  using  settling  velocities  in  

his  study  that  examined  sand  samples  from  beaches  and  dunes  along  a  strip  of  the  New  Jersey  

coast.  Hand  thought  that  beach  deposits  should  mimic  hydraulic  equivalence  theory  laid  out  by  

Page 7: Heavy Mineral Applications in Sedimentary Petrology

Rubey  and  Rittenhouse,  because  they  are  both  deposited  by  a  fluid  medium  (Hand,  1967).  The  

determination  of  his  study  was  that  the  correlation  was  incorrect.  His  results  showed  that  

actual  settling  velocities  related  to  lower  hydraulic  equivalents  sizes  more  so  than  their  

calculated  equivalents,  which  is  outlined  by  figures  6  and  7  that  show  cumulative  percentage  

curves  according  to  settling  velocities.  Hand  attributed  this  to  the  stability  of  heavy  minerals  

and  their  ability  to  withstand  various  conditions  in  a  deposit  relative  to  their  light  mineral  

counterpart.  He  uses  the  example  of  quartz  and  garnet  to  illustrate  this  point.  Showing  that  to  

make  garnet  and  quartz  actual  equivalent  counterparts,  you  must  decrease  the  settling  velocity  

of  garnet  slightly  to  account  for  its  ability  to  remain  in  a  deposit  longer  than  quartz  (Hand,  

1967).  

These  significant  studies  on  heavy  minerals,  and  their  hydraulic  equivalent  sizes  as  seen  

in  modern  deposition,  show  the  amount  of  variation  present  in  each  environment.  In  some  

cases,  heavy  minerals  can  be  very  useful  in  modern  sedimentation  problems.  They  can  also  

enable  us  to  understand  hydraulic  conditions  acting  on  various  sediments  loads  more  than  light  

minerals  can.  However,  their  physical  characteristics  lend  the  need  for  unique  knowledge  on  

how  they  react  in  each  environment.  Petrologists  must  take  a  second  look  at  their  reactions  to  

transportation  and  depositions  mechanisms  to  ensure  each  variable  is  accounted  for  in  

quantitative  analyses,  leaving  more  space  for  error.  

 

 

 

Page 8: Heavy Mineral Applications in Sedimentary Petrology

HEAVY  MINERALS  AND  PROVENANCE  

PROBLEMS  WITH  HEAVY  MINERAL  ANALYSIS  IN  PROVENANCE  DETERMINATION  

Historically,  heavy  mineral  analysis  has  been  most  widely  used  by  Petrologists  as  provenance  

indicators   (Briggs,   1965).   Their   unique   physical   characteristics   and   lesser   abundance   in  

sedimentary   rocks   than   light  minerals  give   them  a  distinct  advantage   in   the  determination  of  

source   rocks   (Blatt,   1985).   However,   these   unique   characteristics   can   also   be   their   downfall.  

The  declination  of  heavy  mineral  applications  in  sedimentary  petrology  in  the  last  20th  century  

is   due   to   the   revelation   that   these   minerals   are   specifically   more   apt   to   post-­‐depositional  

processes  (Van  Andel,  1959).  Therefore,  many  variables  must  be  considered  when  using  heavy  

mineral   analyses.  Recent   research  of   these   variables   suggest   that  when   considered   correctly,  

these  variables  can  be  used  to  attribute  to  the  accuracy  of  heavy  mineral  analysis  rather  than  

take   away   from   it.   Here   we   will   discuss   how   research   surrounding   the   post-­‐depositional  

alteration  of  heavy  minerals  can  be  applied  in  a  way  that  aids  in  the  accuracy  of  their  analysis,  

then   we   will   look   at   one   of   the   many   important   stable   minerals   and   its   applications   in  

provenance  determination.    

Richard  Bateman  and   John  Catt   (2007)   identified   five  phases  of   the   sedimentary  cycle  

that   can   affect   a   heavy  mineral   assemblage,   and   processes  within   each   one   that   particularly  

have   an   impact.   They  use   an   approach  designed   to   compensate   for   the   specific   sedimentary  

history  of  an  assemblage  in  the  determination  of  the  parent  rock.  To  do  this,  they  examine  the  

various   processes   identified   in   each   phase   of   the   sedimentary   cycle.   By   understanding   the  

processes  they  intended  to  show  (1)  the  value  in  applying  multivariate  statistical  techniques  to  

Page 9: Heavy Mineral Applications in Sedimentary Petrology

identify  trends  of  heavy  mineral  data  and  (2)  to  demonstrate  the  value  of  heavy  mineral  data  

when  accompanied  with  other  paleoenvironmental  data  analysis.  They  published  research  on  

five   case   studies   and   the   implication   of   the   identified   modifying   processes   on   provenance  

identifications   in   tertiary   and   quartenary   deposits   found   in   the   British   Isles   (Bateman,   2007:  

153).   During   their   analysis   they   claim   that   the   provenance   interpretation   ability   of   heavy  

minerals   is   so   unique   that   it   is   worth   the   research   surrounding   post-­‐deposition   alteration  

processes,  because  most  of  them  are  predictable  and  can  be  compensated  for  in  some  fashion.    

STABILITY  OF  HEAVY  MINERALS  IN  PROVENANCE  DETERMINATION  

The  composition  of  a  heavy  mineral  assemblage  must  be  analyzed  with  the  various  physical  and  

chemical  processes   that  were  active  post-­‐deposition  of   the  sediment.  The  appearance  of  any  

heavy  mineral   in  an  assemblage   is   the  direct   result  of   its  ability   to  withstand  abrasion  during  

transport,   weathering,   and   diagenesis   after   deposition   (Pettijohn,   1942).   The   stability   of   an  

accessory  mineral,  or   its  ability  to  resist  alteration,  has  been  analyzed  by  a  variety  of  authors,  

each  one  determining  an  “order  of  stability”  to  interpret  the  presence  of  certain  minerals  in  an  

assemblage.   This   stability   factor   is   controlled   by   pressure,   temperature,   connectivity   and   PH  

level   of   pore   fluids,   presence  of  oil,   variation   in   the  mineral’s   chemical   composition,   and   the  

amount   of   time   the   sediment   spent   in   deep   burial.   Pettijohn,   in   “Sedimentary   Rocks,”  

illustrated   the   most   notable   authors   to   determine   orders   of   stability,   both   in   terms   of  

weathering   and   intrastratal   solution,   which   is   outlined   in   Figure   8.   The   research   behind   the  

progressive   stability   of   heavy   minerals   overtime   led   to   the   development   of   the   Zircon-­‐

Tourmaline-­‐Rutile  index.  

Page 10: Heavy Mineral Applications in Sedimentary Petrology

Zircon,   Tourmaline,   and   Rutile,   all   heavy   minerals   that   are   very   mechanically   and  

chemically   stable,   have  been   shown   to   concentrate  with  quartz   as   sandstones  become  more  

quartzose.   Therefore,   it   has   been   determined   that   grains   of   these   heavy   minerals   can   be  

composed   into   an   index   that   progresses   amongst   various   sandstone   classifications   (Hubert,  

1962).   This   index   can   then   be   correlated   to   other   samples   to   determine   the   depositional  

environment  that  created  the  sediment  in  question.  As  the  index  of  these  minerals  increases,  it  

is  also  noted   that  other   transparent  heavy  mineral  presence  decreases.  Which   is  why  Hubert  

proposed  this  ZTR   index  as  an   indication  of   the  “maturity”  of  sandstone,   in  his   interpretation  

meaning   the   degree   to  which   the   sediments   had   been  modified.   The   index   ranges   from   low  

values   in   arkoses   and   graywackes,   to   over   90%   in   most   orthoquartzite   sandstones   (Hubert,  

1962).    

In  contrast  to  compensation  of  variables  involving  intrastratal  solution,  Van  Andel  (1952)  

proposed   that   in   some   cases   the   absence   of   unstable   minerals   was   instead   the   result   of  

processes   occurring   prior   to   deep   burial.   To   account   for   this,   heavy  mineral   analysis   used   in  

provenance   determination   of   basins   must   look   at   regional   heavy   mineral   distribution.   This  

regional   province   method   required   the   inclusion,   interpretation   and   sampling   of   multiple  

geographic   regions.  Van  Andel   applied   this   theory   to   the  Rio  Grande   in  which  he  argued   the  

importance  of  the  applicability  of  heavy  minerals  in  sedimentation  analysis.  Flores  and  Shideler  

(1978)   supported   this   theory   as   well   in   their   analysis   of   the   same   region,   concluding   that  

selective  decomposition,  determined  by  the  ZTR  index,  did  not  contribute  to  regional  variations  

in  the  Rio  Grande  (Flores,  1978).    

 

Page 11: Heavy Mineral Applications in Sedimentary Petrology

TOURMALINE  

Krynine  (1946)  studied  the  application  of  Tourmaline  and  its  multiple  varieties   in  provenance.  

He  outlined  5  major  types  of  provenance  producing  Tourmaline,  and  the  subsequent  varieties  

that  are  characteristic  of  each.  Due  to  its  high  geochemical  stability,  Tourmaline  can  withstand  

ranges   of   temperatures   and  pressures.   Varieties   of   Tourmaline   are   not   only   applicable   as   an  

index   guide   in   primary   occurrences,   but   also   as   reworked   sediments.   Krynine   notes   that  

Tourmaline  can  survive  multiple  sediment  cycles,  depending  on  the  variety.  Also  notable  is  the  

authigenic  occurrence  of  Tourmaline.  As  a  secondary  mineral,  its  occurrence  is  widespread  and  

therefore  predictable  over   a   geographic   range.   Tourmaline   varietal   studies   can  be   applied   to  

provenance  determination,  such  as  the  identification  of  the  Gatesburg  formation  as  the  parent  

rock   of   the   Bellefonte   Sandstone.   They   can   also   be   applied   in   determination   of   the   tectonic  

history   of   a   formation,   such   as   the   Tuscarosa   Quartzite   in   relation   to   the   Appalachian  

Geosyncline   in  East  Central  Pennsylvania.  More   information  on  both  of   these  determinations  

can  be   found   in   Paul   Krynine’s  work   “The   Tourmaline  Group   in   Sediments,”   published   in   the  

Journal  of  Geology  in  1946.  

 

 

 

 

 

Page 12: Heavy Mineral Applications in Sedimentary Petrology

CONCLUSION  

Even   though   the   unique   physical   characteristics   that   comprise   a   heavy   mineral   assemblage  

leads  to  their  environmental  weaknesses,  it  is  also  those  characteristics  that  enable  them  to  be  

of   such   value   to   sedimentary   petrology.   Applying   knowledge   gained   through   the   research   of  

their   susceptibilities   to   their   analysis   in   varying   applications   can   actually   benefit   their   use.  

However,  this  does  require  careful  analysis  of  the  geochemical  and  physical  properties  present  

in  a  sample  and  how  they  relate  to  the  sediment  history.      

Page 13: Heavy Mineral Applications in Sedimentary Petrology

REFERENCES  

Allen,  V.  T.,  1948,  Weathering  and  Heavy  Minerals,  Journal  of  Sedimentary  Petrology,  v.  18,  no.  

1,  p.  38-­‐42.  

Bateman,  J.  R.  and  J.  A.  Catt,  2007,  Provenance  and  Palaeoenvironmental  Interpretation  of  

Superficial  Deposits,  with  Particular  Reference  to  Post-­‐Depositional  Modification  of  

Heavy  Mineral  Assemblages,  in  Heavy  Minerals  in  Use,  eds.,  Mange,  M.  and  D.  T.  Wright,  

Oxford,  Linacre  house,  151-­‐188  p.  

Blatt,  H.,  1969,  Intrastratal  Solution  and  Non-­‐Opaque  Heavy  Minerals  in  Shales,  Journal  of  

Sedimentary  Petrology,  v.  39,  no.  2,  p.  591-­‐600.  

Blatt,  H.,  1967,  Provenance  Determinations  and  Recycling  of  Sediments,  Journal  of  Sedimentary  

Petrology,  v.  37,  no.  4,  p.  1031-­‐1044.    

Blatt,  H.,  1985,  Provenance  Studies  and  Mudrocks,  Journal  of  Sedimentary  Petrology,  v.  55,  no.,  

p.  69-­‐75.    

Blatt  H.,  G.  Middleton,  and  R.  Murray,  1980,  Origin  of  Sedimentary  Rocks:  New  Jersey,  Prentice-­‐

Hall.    

Briggs,  Louis,  1965,  Heavy  Mineral  Correlations  and  Provenances,  Journal  of  Sedimentary  

Petrology,  v.  35,  no.  4,  p.  939-­‐955.  

Flores,  R.  M.,  and  G.  L.  Shideler,  1978,  Factors  Controlling  Heavy  Mineral  Variations  on  the  

South  Texas  Outer  Continental  Shelf,  Gulf  of  Mexico,  Journal  of  Sedimentary  Petrology,  

v.  48,  no.  1,  p.  269-­‐280.  

Page 14: Heavy Mineral Applications in Sedimentary Petrology

Hand,  B.  M.,  1967,  Differentiation  of  Beach  and  Dune  Sands,  Using  settling  Velocities  of  Light  

and  Heavy  Minerals,  Journal  of  Sedimentary  Petrology,  v.  37,  no.  2,  p.  514-­‐520.  

Hubert,  J.  F.,  1962,  A  Zircon-­‐Tourmaline-­‐Rutile  Maturity  Index  and  the  Interdependence  of  the  

Composition  of  Heavy  Mineral  Assemblages  with  the  Gross  Composition  and  Texture  of  

Sandstones,  Journal  of  Sedimentary  Petrology,  v.  32,  no.  3,  p.  440-­‐450.  

Krynine,  P.  D.,  1946,  The  Tourmaline  Group  in  Sediments,  The  Journal  of  Geology,  v.54,  no.2,  p.  

65-­‐87.    

McIntyre,  D.  D.,  1959,  The  Hydraulic  Equivalence  and  Size  Distributions  of  Some  Mineral  Grains  

from  a  Beach,  The  Journal  of  Geology,  v.  67,  no.  3,  p.  278-­‐301.  

Pettijohn,  F.  J.,  1941,  Persistence  of  Heavy  Minerals  and  Geologic  Age,The  Journal  of  Geology,  v.  

49,  no.  6,  p.  610-­‐625.  

Pettijohn,  F.  J.,  1975,  Sedimentary  Rocks:  New  York,  Harper  and  Row,  Publishers,  inc.    

Preston,  J.,  A.  Hartley,  M.  Mange-­‐Rajetzky,  M.  Hole,  G.  May,  S.  Buck  and  L.  Vaughan,  2002,  The  

Provenance  of  Triassic  Continental  Sandstones  from  the  Beryl  Field,  Northern  North  Sea:  

Mineralogical,  Geochemical,  and  Sedimentological  Constraints,  Journal  of  Sedimentary  

Research,  v.  72,  no.  1,  p.  18-­‐29.  

Rittenhouse,  G.,  1944,  Sources  of  Modern  Sands  in  the  Middle  Rio  Grande  Valley,  New  Mexico,  

The  Journal  of  Geology,  v.  52,  no.  3,  p.  145-­‐183.  

Rittenhouse,  G.,  1943,  Transportation  and  Deposition  of  Heavy  Minerals,  Geological  Society  of  

America  Bulletin,  v.  54,  p.  1725-­‐1780.  

Page 15: Heavy Mineral Applications in Sedimentary Petrology

Rubey,  W.  W.,  1933,  The  Size-­‐Distribution  of  Heavy  Minerals  within  a  Water-­‐Laid  Sandstone,  

Journal  of  Sedimentary  Petrology,  v.  3,  no.  1,  p.  3-­‐29.  

Scheidegger,  K.F.,  L.D.  Klum,  and  E.J.  Runge,  1971,  Sediment  Sources  and  Dispersal  Patterns  of  

Oregon  Continental  Shelf  Sands,  Journal  of  Sedimentary  Petrology,  v.  41,  no.  4,  p.  1111-­‐

1120.  

Stattegger,  K.,  1987,  Heavy  Minerals  and  Provenance  of  Sands:  Modeling  of  Lithological  End  

Members  from  River  Sands  of  Northern  Austria  and  from  Sandstones  of  the  

Austroalpine  Gosau  Formation  (Late  Cretaceous),  Journal  of  Sedimentary  Petrology,  v.  

57,  no.  2,  p.  301-­‐310.  

Tourtelot,  H.,  1968.  Hydraulic  Equivalence  of  Grains  of  Quartz  and  Heavier  Minerals,  and  

Implications  for  the  Study  of  Placers  Geological  Survey  Professional  Paper,  594-­‐F:  US  

Department  of  the  Interior,  Washington  DC:  Government  Printing  Office.  

Van  Andel,  T.  J.,  1959,  Reflections  on  the  Interpretation  of  Heavy  Mineral  Analyses,  Journal  of  

Sedimentary  Petrology,  v.  29,  no.  2,  p.  153-­‐163.  

White,  J.  and  E.G.  Williams,  1967,  The  Nature  of  a  Fluvial  Process  as  Defined  by  Settling  

Velocities  of  Heavy  and  Light  Minerals,  Journal  of  Sedimentary  Petrology,  v.  37,  no.  2,  p.  

530-­‐539.  

Young,  E.  J.,  1966,  A  Critique  of  Methods  for  Comparing  Heavy  Mineral  Suites,  Journal  of  

Sedimentary  Petrology,  v.  36,  no.  1,  p.  57-­‐65.  

Page 16: Heavy Mineral Applications in Sedimentary Petrology

!Stokes!Law!of!Settling!Velocities!

! = ! !18�!!!! − !!!

! !!! = !ℊ18 !�!

!! − !!!! !!! !

Where:!! ! ! ! ! ! ! Magnetite!Example:!!ν!=!Fall!Velocity!! ! ! ! ! !g!=!gravity! !!!!=!Specific!Gravity!of!Quartz!Grain! !!!=!2.66!!! = Specific!Gravity!of!Water! !! = 1.00!!! = Specific!Gravity!of!Magnetite! !! = 5.18!!! = Diameter!of!Magnetite!Grain! !!! =!Diameter!of!Quartz!Grain! !η!=!Coefficient!of!Viscosity!of!Water!(Constant!Under!Conditions)! η!=!1.00!

!

!

!

! !

!=(2.66−1.00)%↓'↑2 

=(5.18−1.00) %↓*↑2 !

%↓* =,√1.66/4.18 , %↓' =0.63

%↓'  !

Only!MagneLte!grainns!0.63!

mm!in!diameter!will!fall!with!the!same!velocity!as!Quartz!

Grains!1.00!mm!in!diameter!

Hydraulic!Equivalent!of!Magnetite!

Figure!1:!(modified!from!Rubey,!1933)!

 

 

 

 

 

Page 17: Heavy Mineral Applications in Sedimentary Petrology

 

 

 

 

 

   

Figure  2:  (From  Rittenhouse,  1944)   Figure  3:  (from  Tourtelot,  1968)  

Page 18: Heavy Mineral Applications in Sedimentary Petrology

 

   

Figure  4:  (from  Young,  1966)  

Figure  5:  (from  McIntyre,  1959)  

Page 19: Heavy Mineral Applications in Sedimentary Petrology

 

 

 

 

 

 

Figure  7:  (from  Hand,  1967)  Figure  6:  (from  Hand,  1967)  

Page 20: Heavy Mineral Applications in Sedimentary Petrology

 

 

 

   

 

 

 

 

     

   

Figure  8:  (from  Petitjohn,  1975)  

Page 21: Heavy Mineral Applications in Sedimentary Petrology