heavy quark potentials in effective string theory · heavy quark potentials in e ective string...

29
Heavy quark potentials in effective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department T30f, Theoretische Teilchen- und Kernphysik, Technische Universit¨ at M¨ unchen [email protected] 17.07.2017, IMPRS Young Scientist Workshop, Ringberg Castle Sungmin Hwang (TU M¨ unchen) Heavy quark potentials in EST IMPRS YSW 2017 1 / 25

Upload: others

Post on 22-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Heavy quark potentials in effective string theory

Sungmin Hwangin collaboration with Nora Brambilla and Antonio Vairo

Physik-Department T30f, Theoretische Teilchen- und Kernphysik,Technische Universitat Munchen

[email protected]

17.07.2017, IMPRS Young Scientist Workshop, Ringberg Castle

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 1 / 25

Page 2: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Long-distance regime in QCD

Confinement in QCD [Wilson, PRD (1974)]

Definition and characteristics

No single color charged object isolated at low-energy (i.e., E ≤ ΛQCD)Detect only hadrons in the form of jetsPerturbative approach breaks down at low-energy (ΛQCD ∼ 200MeV )

Any (analytical) solution?

Not in the form of perturbative methodPhenomenologically treat hadrons as DOFs (e.g., χPT, CQM, etc)Non-perturbative approach: Lattice Gauge Theory (Lattice QCD)

Another approach:QCD flux tube model for heavy meson [Nambu, Phys. Lett. B (1979)]

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 2 / 25

Page 3: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

QCD flux tube model [Bali, Schilling, Schlichter, PRD (1995)]

R: distance between QQ rescaled by lattice spacing

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 3 / 25

Page 4: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Outline

Brief guide towards analytic calculation of long-distance heavy quarkpotentials in EFT framework

1 Non-relativistic EFTs of QCD and Heavy quark potentials

2 Effective string theory (EST)

3 Heavy quark potentials in EST at LO

4 Heavy quark potentials in EST at NLO

5 Summary and outlook

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 4 / 25

Page 5: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Non-relativistic EFTs of QCD

1 NRQCD: Non-relativistic description of QCD for the heavyquark-antiquark pair [Caswell, Lepage, Phys. Lett. B (1986), Bodwin, Braaten, Lepage PRD (1995)]

Hierarchy of scales: M � Mv ,ΛQCD

Integrate out M from QCDHeavy DOFs: Pauli spinors for heavy quarks/antiquarks

2 Potential NRQCD: effective theory for heavy quarkonium[Brambilla, Pineda, Soto, Vairo, Nucl. Phys. B (2000)]

Hierarchy of scales: M � Mv � Mv2

Integrate out momentum transfer Mv ∼ 1/r from NRQCDHeavy DOFs: Color singlet S(t, r,R) and octet Oa(t, r,R)Appearance of potentials

LpNRQCD 3∫

d3r{

Tr[S†(i∂0 − Vs (r) + . . . )S + O†(iD0 − Vo (r) + . . . )O]

+gVA(r)Tr[O†r · ES + S†r · EO] + gVB (r)

2Tr[O†r · EO + O†Or · E]

}

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 5 / 25

Page 6: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Heavy quark potentials

Relativistic corrections to the static potentials in pNRQCD

Heuristically: V = V (0) + V (1/M) + V (1/M2) + . . .

Static singlet potential up to 1/M2

V (r) =V (0)(r) +2

MV (1,0)(r) +

1

M2

{2V

(2,0)

L2 (r)

r2+

V(1,1)

L2 (r)

r2

L2

+[V

(2,0)LS

(r) + V(1,1)L2S1

(r)]L · S + V

(1,1)

S2 (r)

(S2

2−

3

4

)+ V

(1,1)S12

(r)S12 (r)

+

[2V

(2,0)

p2 (r) + V(1,1)

p2 (r)

]p2 + 2V (2,0)

r (r) + V (1,1)r (r)

}

Notations

(a, b): a order of 1/M1 and b order of 1/M2 (1/M1 = 1/M2)

Si = σi

2 (i ∈ {1, 2}): spin of the heavy quark/antiquarkV s: Wilson coefficients to be matched to NRQCD

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 6 / 25

Page 7: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Wilson loop and heavy quark potential (1/2)

NRQCD and pNRQCD matching [Brambilla, Pineda, Soto, Vairo, PRD (2000)]

Static potential:

V (0)(r) = limT→∞

i

Tln⟨W�

Matching QQ correlator to singlet propagatorWilson loop: W� ≡ P exp

{−ig

∮r×T dzµAµ(z)

}〈. . .〉: average value over Yang-Mills action

1st order relativistic correction:

V (1,0)(r) = −1

2lim

T→∞

∫ T

0dtt〈〈gE1(t) · gE1(0)〉〉c

〈〈. . . 〉〉 ≡ 〈. . .W�〉/〈W�〉

〈〈O1(t1)O2(t2)〉〉c ≡ 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉, for t1 ≥ t2

E1,2(t) ≡ E(t,±r/2); heavy quark/antiquark located at (0, 0,±r/2)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 7 / 25

Page 8: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Wilson loop and heavy quark potential (2/2)

2nd order corrections [Pineda, Vairo, PRD (2001)]

1 Spin-independent part: V(2,0)

p2 (r), V(1,1)

p2 (r), V(2,0)

L2 (r), V(1,1)

L2 (r), V(2,0)r (r), V

(1,1)r (r)

V(2,0)

p2 (r) =i

2ri rj∫ ∞

0dtt2〈〈gEi1(t)gEj1(0)〉〉c

V(1,1)

p2 (r) =i ri rj∫ ∞

0dtt2〈〈gEi1(t)gEj2(0)〉〉c

. . . (1)

2 Spin-dependent part: V(2,0)LS

(r), V(1,1)L2S1

, V(1,1)

S2 , V(1,1)S12

,

V(2,0)LS

(r) =−c

(1)F

r2ir ·∫ ∞

0dtt〈〈gB1(t)× gE1(0)〉〉 +

c(1)s

2r2r · (∇rV

(0))

V(1,1)L2S1

(r) =−c

(1)F

r2ir ·∫ ∞

0dtt〈〈gB1(t)× gE2(0)〉〉

. . . (2)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 8 / 25

Page 9: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Lattice fit for spin-orbit potential

[Y. Koma, M. Koma, PoS LAT2009 (2009)]

Confirmation of the Gromes relation: 12r

dV (0)

dr= V

(1,1)L1S2

− V(2,0)LS

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 9 / 25

Page 10: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Limitation

Lattice only?

Fits nicely to Poincare invariance [D. Gromes, Z. Phys. C (1984)]

But 3- and 4-gauge field insertions unknown from lattice

Need other ways to calculate Vr (contains 3 and 4 gauge fieldsinsertions)

Effective String Theory: an analytic description at long-distanceDynamics of strings instead of gluodynamics between heavyquark-antiquarkEffective description below confinement scale (non-perturbative)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 10 / 25

Page 11: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Effective string theory: hypothesis

Wilson loop-string partition function equivalence conjecture[Luscher, Nucl. Phys. B180, 317 (1981)]

limT→∞

〈W�〉 = Z

∫Dξ1Dξ2e iSString[ξ1,ξ2]

ξ1, ξ2: string coordinates

Z : normalization constant

SString: string action

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 11 / 25

Page 12: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Effective string theory: construction

1 Hierarchy: rΛQCD � 1, r distance between heavy quark-antiquark

2 Boundary conditions : ξl(t, z) = 0; z = ±r/2Transversal string vibrations: ξl(t, z), for l = x , y (or 1, 2)

3 Power counting: ∂a ∼ 1/r , ξl ∼ 1/ΛQCD (i.e., ∂aξl ∼ (rΛQCD)−1)

4 String action in 4D with static gauge (starting from Nambu-Goto action):

S = −σ∫

dtdz√− det(ηab + ∂aξl∂bξl)

= −σ∫

dtdz

(1− 1

2∂aξ

l∂aξl + . . .

)

σ: string tension (∼ Λ2QCD), determined by lattice

Truncation up to (rΛQCD)−2

a = z , tStatic potential: V (0) ≈ σr (leading order)[Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173, 365 (1980)]

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 12 / 25

Page 13: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Gauge fields insertion and string mapping

Correlator in Euclidean time (t → −it):

G(t, t′; z, z′) =δlm

4πσln

(cosh[(t − t′)π/r ] + cos[(z + z′)π/r ]

cosh[(t − t′)π/r ]− cos[(z − z′)π/r ]

)(3)

Mapping from gauge fields insertion into Wilson loop to EST:[Kogut, Parisi, PRL (1981), Perez-Nadal, Soto, PRD (2009), Brambilla, Groher, Martinez, Vairo PRD (2014)]

1 Symmetries: rotations w.r.t. z-axis, reflection w.r.t. xz plane, CP, T2 Match the mass dimensions3 Truncate up to (rΛQCD)−2

〈〈. . . El1,2(t) . . . 〉〉 = 〈. . . Λ2∂zξ

l (t,±r/2) . . . 〉

〈〈. . . E31,2(t) . . . 〉〉 = 〈. . . Λ′′2 . . . 〉

〈〈. . .Bl1,2(t) . . . 〉〉 = 〈· · · ± Λ′εlm∂t∂zξ

m(t,±r/2) . . . 〉

〈〈. . .B31,2(t) . . . 〉〉 = 〈· · · ± Λ′′′εlm∂t∂zξ

l (t,±r/2)∂zξm(t,±r/2) . . . 〉

(4)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 13 / 25

Page 14: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Long-distance potentials in EST

Potentials at leading order[Perez-Nadal, Soto, PRD (2009), Brambilla, Groher, Martinez, Vairo PRD (2014)]

Wilson loop expectation values by using Eq. (3) and (4):

〈〈Ei1(−it)Ej1(0)〉〉c = δij πΛ4

4σr2sinh−2

(πt

2r

), 〈〈E3

1(−it)E31(0)〉〉c = 0,

〈〈Ei1(−it)Ej2(0)〉〉c = −δijπΛ4

4σr2cosh−2

(πt

2r

), 〈〈E3

1(−it)E32(0)〉〉c = 0,

. . .

Relativistic correction to static potential

V (1,0)(r) =g2Λ4

2πσln(σr2) + µ1, V

(2,0)

p2 (r) = V(1,1)

p2 (r) = 0, V(2,0)

L2 (r) = −V(1,1)

L2 (r) = −g2Λ4r

6σ,

. . .

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 14 / 25

Page 15: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Poincare invariance in QCD

Emergence of parameters: µ1, µ2, µ3, µ4, µ5, . . .

µi : renormalization constants

Exploit symmetries of the fundamental theory → reduce parameters

Poincare invariance

Theory independent of the reference frame interaction observedSpatial rotations, boosts, as well as spacetime translations

Poincare invariance in QCD constrains parameters[Brambilla, Gromes, Vairo, Phys. Lett. B (2003), Berwein, Brambilla, SH, Vairo, TUM-EFT 74/15]:

Gromes relation: 12r

dV (0)

dr+ V

(2,0)LS

− V(1,1)L2S1

= 0 −→ µ2 = σ2

Momentum dependent potentials: r2

dV (0)

dr+ 2V

(2,0)

L2 − V(1,1)

L2 = 0 −→ gΛ2 = σ

−∇1V(0) = 〈〈gE1〉〉 [Brambilla, Pineda, Soto, Vairo, PRD (2000)]: gΛ′′2 = −σ

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 15 / 25

Page 16: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Full result at LO mapping

In CM, Hamiltonian of the system given, H = p2/M + V[Brambilla, Groher, Martinez, Vairo PRD (2014)]

V (r) =V (0)(r) +2

MV (1,0)(r) +

1

M2

2

V(2,0)

L2 (r)

r2+

VL2 (r)

r2

L2 +[V

(2,0)LS

(r) + V(1,1)L2S1

(r)]L · S

+V(1,1)

S2 (r)

(S2

2−

3

4

)+ V

(1,1)S12

(r)S12 (r) + 2V (2,0)r (r) + V (1,1)

r (r)

}

=σr +1

M

σ

πln(σr2) +

1

M2

(−σ

6rL2 −

σ

2rL · S−

9ζ3σ2r

2π3

)+O(r−2)

Significance

Potential depends only on string tension and heavy quark massThese parameters determined by lattice simulations

Next-to-leading order

Non-trivial impact of the sub-leading terms to the potentialsNLO in the gauge field insertions: (rΛQCD)−2 suppressedSubleading contributions to the action might also be needed

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 16 / 25

Page 17: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

NLO calculation

Possible contributions at NLO:1 Non-gaussian action

Add (∂aξl∂aξl)2, (∂aξ

l∂bξl)(∂aξm∂bξm) [Luscher, Weisz, JHEP (2004)]

Solution via perturbative expansionBut the Green’s function is at O(σ−3r−6), counted as NNLO

2 String Mapping

Gaussian actionSymmetries from QQ bound state (CP,T , rotation, reflection):

〈〈. . . El1,2(t) . . . 〉〉 =〈. . . Λ2∂zξ

l (t,±r/2) + Λ2∂zξ

l (t,±r/2)(∂aξm(t,±r/2))2

. . . 〉

〈〈. . .Bl1,2(t) . . . 〉〉 =〈· · · ± Λ′2εlm∂t∂zξ

m(t,±r/2)± Λ′2εlm∂t∂zξ

m(t,±r/2)(∂aξn(t,±r/2))2

. . . 〉

〈〈. . . E31,2(t) . . . 〉〉 =〈. . . Λ′′2 + Λ′′

2(∂aξ

m(t,±r/2))2. . . 〉

〈〈. . .B31,2(t) . . . 〉〉 =〈· · · ± Λ′′′εlm∂t∂zξ

l (t,±r/2)∂zξm(t,±r/2)

± Λ′′′εlm∂t∂zξl (t,±r/2)∂zξ

m(t,±r/2)(∂aξn(t,±r/2))2

. . . 〉

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 17 / 25

Page 18: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Divergence and regularization

4-string field correlator

Product of two Green’s functions

Three sources of divergence

∂z∂z′G (t, t ′; z , z ′)|t=t′,z=z′=±r/2

∂t∂z∂z′G (t, t ′; z , z ′)|t=t′,z=z′=±r/2

∂t∂t′G (t, t ′; z , z ′)|t=t′,z=z′=±r/2

Infinite sum over vibrational modes and integral over all momentumspace in the Green’s function, Eq. (3)

G(t, t′; z, z′) =1

πσr

∞∑n=0

sin

(nπ

rz −

2

)sin

(nπ

rz′ −

2

)∫ ∞−∞

dke−ik(t−t′)

k2 +(

nπr

)2

Zeta function and dimensional regularization

∂z∂z′G |t=t′,z=z′=±r/2 ∝∑

n n = −1/12∂t∂z∂z′G |t=t′,z=z′=±r/2 ∝

∑n n

2 = 0∂t∂t′G |t=t′,z=z′=±r/2 ∝ 0 ·

∫dy [y2/(y2 + 1)] = 0 · (−2π)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 18 / 25

Page 19: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

NLO result

Poincare invariance → reduce parametersAdditional equality: −4V

(2,0)

p2 + 2V(1,1)

p2 − V (0) + r dV (0)

dr= 0

Exact result with few free parameters:

V(2,0)

p2 (r)|NLO =

(1

12π+π

36

)1

r−µ

4, V

(2,0)

L2 (r)|NLO = −σr

6+

(11

36π+

27

)1

r,

V(1,1)

p2 (r)|NLO =

(1

6π−π

36

)1

r, V

(1,1)

L2 (r)|NLO =σr

6+

(1

9π+

216

)1

r,

. . .

Full expression up to O(M−2; r−1):

V (r) =

{σ +

[−

9ζ3

2π3+

a + b

4π3+

540−

1

)(1

3+

1

4π2

)2]σ2

M2

}r1

πMln(σr2)

+

(µ +

2µ′1M−

µ

2M2p2 +

µ2

M2

)r0

+

{−π

12+

[1

3π+π

36

]p2

M2+

(−

L2

6−

L · S2

+

[50

27π2−

2

9π2−

1

12π6

])σ

M2

}r−1 +O(r−2)

(5)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 19 / 25

Page 20: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Comparison to Lattice QCD (1/5)

1.0 1.2 1.4 1.6 1.8 2.0 2.2-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r/r0

r 02V(1

,0)(r)

▲ β=5.85

■ β=6.00

● β=6.20

LO

NLO

Lattice data: [Y. Koma, M. Koma, PoS LAT2009 (2009)]

1st order relativistic correction via analytic prediction at NLO vs. Lattice data (prelim.)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 20 / 25

Page 21: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Comparison to Lattice QCD (2/5)

●●

1.0 1.2 1.4 1.6 1.8 2.0 2.2

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

r/r0

r 0Vb(r)

▲ β=5.85

■ β=6.00

● β=6.20

LO

NLO

Lattice data: [Y. Koma, M. Koma, PoS LAT2009 (2009)]

Momentum-dependent potential via analytic prediction at NLO vs. Lattice data (prelim.)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 21 / 25

Page 22: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Comparison to Lattice QCD (3/5)

■■

●●

1.0 1.2 1.4 1.6 1.8 2.0 2.2

-0.1

0.0

0.1

0.2

0.3

r/r0

r 0Vc(r)

▲ β=5.85

■ β=6.00

● β=6.20

LO

NLO

Lattice data: [Y. Koma, M. Koma, PoS LAT2009 (2009)]

Momentum-dependent potential, −V(1,1)

L2 , via analytic prediction at NLO vs. Lattice data (prelim.)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 22 / 25

Page 23: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Comparison to Lattice QCD (4/5)

1.0 1.2 1.4 1.6 1.8 2.0 2.2-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

r/r0

r 0Vd(r)

▲ β=5.85

■ β=6.00

● β=6.20

LO

NLO

Lattice data: [Y. Koma, M. Koma, PoS LAT2009 (2009)]

Momentum-dependent potential via analytic prediction at NLO vs. Lattice data (prelim.)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 23 / 25

Page 24: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Comparison to Lattice QCD (5/5)

1.0 1.2 1.4 1.6 1.8 2.0 2.2

-0.4

-0.3

-0.2

-0.1

r/r0

r 0Ve(r)

▲ β=5.85

■ β=6.00

● β=6.20

LO

NLO

Lattice data: [Y. Koma, M. Koma, PoS LAT2009 (2009)]

Momentum-dependent potential, V(2,0)

L2 , via analytic prediction at NLO vs. Lattice data (prelim.)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 24 / 25

Page 25: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

Summary and outlook

Summary

Introduction to low-energy EFTs for QCDHeavy quark potentialsWilson loop and ESTHeavy quark potential via EST (at LO)Correction via NLO mappingHeavy quark potential up to NLO in ESTComparison to Lattice data

Outlook

Heavy quarkonium mass spectrum (in progress)EST to heavy hybrids and baryonic states (in progress)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 25 / 25

Page 26: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

References

K. G. Wilson (1974)

Confinement of quarks

Phys. Rev. D 10, 2445

W.E. Caswell and G.P. Lepage (1986)

Effective lagrangians for bound state problems in QED, QCD, and other field theories

Phys. Lett. B 167, 437 - 442

G. T. Bodwin, E. Braaten, and G. P. Lepage (1995)

Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium

Phys. Rev. D 51, 1125

N. Brambilla, D. Gromes, and A. Vairo (2003)

Poincare invariance constrains on NRQCD and potential NRQCD

Phys. Lett. B 576, 314 - 327

M. Berwein, N. Brambilla, S. Hwang, A. Vairo (2016)

Poincare invaraince in NRQCD and pNRQCD

To be submitted to PRD (2017), TUM-EFT 74/15

N. Brambilla, D. Gromes, A. Vairo (2001)

Poincare invariance and the heavy-quark potential

Phys. Rev. D 64 (2001), 076010

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 25 / 25

Page 27: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

References

M. Luscher, K.Symanzik, P. Weisz (1980)

Anomalies of the free loop wave equation in the WKB approximation

Nucl. Phys. B 173, 365 (1980)

N. Brambilla, A. Pineda, J. Soto, and A. Vairo (2000)

Potential NRQCD: an effective theory for heavy quarkonium

Nucl. Phys. B 566 (2000), 275 - 310

Y. Nambu (1979)

QCD and the string model

Phys. Lett. B 80 (1979), 372

J. Kogut, G. Parisi (1981)

Long-Range Spin-Spin Forces in Gauge Theories

Phys. Rev. Lett. 47 (1981), 16

D. Gromes (1984)

Spin-dependent potentials in QCD and the correct long-range spin orbit term

Z. Phys. C 26 (1984), 401

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 25 / 25

Page 28: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

References

N. Brambilla, A. Pineda, J. Soto, A. Vairo (2000)

QCD potential at O(1/m)

PRD 63 (2000), 014023

A. Pineda, A. Vairo (2001)

The QCD potential at O(1/m2): Complete spin-dependent and spin-independent result

PRD 63 (2001), 054007

G. Perez-Nadal, J. Soto (2009)

Effective-string theory constraints on the long-distance behavior of the subleading potentials.

PRD 79 (2009), 114002

N. Brambilla, M. Groher, H.E. Martinez, A. Vairo (2014)

Effective string theory and the long-range relativistic corrections to the quark-antiquark potential

PRD 90 (2014), 114032

M. Luscher (1981)

Symmetry-breaking aspects of the roughening transition in gauge theories

Nucl. Phys. B 180, 317 (1981)

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 25 / 25

Page 29: Heavy quark potentials in effective string theory · Heavy quark potentials in e ective string theory Sungmin Hwang in collaboration with Nora Brambilla and Antonio Vairo Physik-Department

References

Y. Koma and M. Koma (2009)

Scaling study of the relativistic corrections to the static potential

PoS LAT2009 122 (2009)

J. Heinonen, R.J. Hill, M. Solon (2012)

Lorentz invariance in heavy particle effective theories

Phys. Rev. D D86 (2012) 094020

M. Luke, A. Manohar (1992)

Reparametrisation invariance constraints on heavy particle effective field theories

Phys. Lett. B 286, 348 - 354 (1992)

G.S. Bali, K. Schilling, C. Schlichter (1995)

Observing long color flux tubes in SU(2) lattice gauge theory

Phys. Rev. D 5165-5198, (1995)

Y. Koma, M. Koma, H. Wittig (2007)

Relativistic corrections to the static potential at O(1/m) and O(1/m2)

PoS LAT2007 (2007) 111

M. Luscher, P. Weisz (2004)

String excitation energies in SU(N) gauge theories beyond the free-string approximation

JHEP07 (2004) 014

Sungmin Hwang (TU Munchen) Heavy quark potentials in EST IMPRS YSW 2017 25 / 25