heteronuclear d-d and d-f ru(ii)/m complexes [m = gd(iii ... · luminescence;3 and the combination...

58
The University of Manchester Research Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies DOI: 10.1039/C9DT00954J Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Crowston, B., Shipp, J., Chekulaev, D., McKenzie, L., Jones, C., Weinstein, J., Meijer, A., Bryant, H., Natrajan, L., Woodward, A., & Michael, W. (2019). Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies. Dalton Transactions. https://doi.org/10.1039/C9DT00954J Published in: Dalton Transactions Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:14. Sep. 2020

Upload: others

Post on 21-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

The University of Manchester Research

Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III),Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combiningphenanthroline and aminocarboxylate binding sites:combined relaxivity, cell imaging and photophysicalstudiesDOI:10.1039/C9DT00954J

Document VersionAccepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):Crowston, B., Shipp, J., Chekulaev, D., McKenzie, L., Jones, C., Weinstein, J., Meijer, A., Bryant, H., Natrajan, L.,Woodward, A., & Michael, W. (2019). Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III),Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cellimaging and photophysical studies. Dalton Transactions. https://doi.org/10.1039/C9DT00954JPublished in:Dalton Transactions

Citing this paperPlease note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscriptor Proof version this may differ from the final Published version. If citing, it is advised that you check and use thepublisher's definitive version.

General rightsCopyright and moral rights for the publications made accessible in the Research Explorer are retained by theauthors and/or other copyright owners and it is a condition of accessing publications that users recognise andabide by the legal requirements associated with these rights.

Takedown policyIf you believe that this document breaches copyright please refer to the University of Manchester’s TakedownProcedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providingrelevant details, so we can investigate your claim.

Download date:14. Sep. 2020

Page 2: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

1

Heteronucleard-dandd-fRu(II)/Mcomplexes[M=Gd(III),Yb(III),Nd(III),

Zn(II)orMn(II)]ofligandscombiningphenanthrolineandaminocarboxylate

bindingsites:combinedrelaxivity,cellimagingandphotophysicalstudies.

BethanyJ.Crowston,aJamesD.Shipp,aDimitriChekulaev,aLukeK.McKenzie,a,b

CallumJones,a,bJuliaA.Weinstein,aAnthonyJ.H.Meijer,aHelenE.Bryant,b

LouiseNatrajan,cAdamWoodward,candMichaelD.Warda,d,*

a DepartmentofChemistry,UniversityofSheffield,SheffieldS37HF,UK

b SheffieldInstituteforNucleicAcids(SInFoNiA),DepartmentofOncology,Medical

School,BeechHillRoad,SheffieldS102RX,UK

c DepartmentofChemistry,UniversityofManchester,OxfordRoad,ManchesterM13

9PL,UK

d DepartmentofChemistry,UniversityofWarwick,CoventryCV47AL,UK.Email:

[email protected]

Page 3: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

2

Abstract

Aligandskeletoncombininga1,10-phenantholine(phen)bindingsiteandoneortwo

heptadentateN3O4aminocarboxylatebindingsites,connectedviaalkynespacerstothe

phenC3orC3/C8positions,hasbeenusedtopreparearangeofheteronuclearRu•Mand

Ru•M2complexeswhichhavebeenevaluatedfortheircellimaging,relaxivity,and

photophysicalproperties.Inallcasesthephenunitisboundtoa{Ru(bipy)2}2+unittogivea

phosphorescent{Ru(bipy)2(phen)}2+luminophore,andthependantaminocarboxylatesites

areoccupiedbyasecondarymetalionMwhichiseitherlanthanide[Gd(III),Nd(III),Yb(III)]

oranotherd-blockion[Zn(II),Mn(II)].WhenM=Gd(III)orMn(II)theseionsprovidethe

complexeswithahighrelaxivityforwater;inthecaseofRu•GdandRu•Gd2the

combinationofhighwaterrelaxivityand3MLCTphosphorescencefromtheRu(II)unit

providethepossibilityoftwodifferenttypesofimagingmodalityinasinglemolecular

probe.InthecaseofRu•MnandRu•Mn2theRu(II)-basedphosphorescenceissubstantially

reducedcomparedtothecontrolcomplexesRu•ZnandRu•Zn2duetothequenchingeffect

oftheMn(II)centres.UltrafasttransientabsorptionspectroscopystudiesonRu•Mn(and

Ru•Znasanon-quenchedcontrol)revealtheoccurrenceoffast(<1ns)PETinRu•Mn,from

theMn(II)iontotheRu(II)-based3MLCTstate,i.e.MnII–(phen•–)–RuIII→MnIII–(phen•–)–RuII;

theresultingMnIII–(phen•–)statedecayswithτ≈5nsandisnon-luminescent.Thisoccursin

conformerswhenanETpathwayisfacilitatedbyaplanar,conjugatedbridgingligand

conformationconnectingthetwounitsacrossthealkynebridgebutdoesnotoccurin

conformerswherethetwounitsareelectronicallydecoupledbyatwistedconformationof

thebridgingligand.Computationalstudies(DFT)onRu•Mnconfirmedboththeoccurrence

ofthePETquenchingpathwayanditsdependenceonmolecularconformation.Inthe

complexesRu•LnandRu•Ln2(Ln=Nd,Yb),sensitisednear-infraredluminescencefrom

Nd(III)orYb(III)isobservedfollowingphotoinducedenergy-transferfromtheRu(II)core,

withRu→Ndenergy-transferbeingfasterthanRu→Ybenergy-transferduetothehigher

densityofenergy-acceptingstatesonNd(III).

Page 4: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

3

Introduction

Thecombinationoftransitionmetalandlanthanideionsinasinglemolecular

complex(d/fcomplexes)hasprovidedinterestingopportunitiesarisingfromthe

combinationofmetalcentreswithsubstantiallydifferentstructural,photophysicaland

magneticproperties.1-4Particularpropertiesofd/fcomplexesthathaveattractedinterest

aretheabilitytocombineblue[fromIr(III)]andred[fromEu(III)]luminescencetogenerate

whitelight;2fundamentalstudiesofd→fphotoinducedenergy-transfer(PEnT)includingthe

useofd-blockchromophorestoactasantennaforsensitisationofnear-IRlanthanide

luminescence;3andthecombinationofaluminescentd-blockunitwithahighly

paramagneticlanthanide,usuallyGd(III),forpreparationofdual-modalimagingagents

whichpermitbothluminescence-basedvisualisationofcellsandmagneticresonance

imagingbasedanalysisonalargerlengthscaleusingasingleprobemolecule.4

Wehaverecentlyinvestigatedd/fcomplexesbasedonligandskeletonscombininga

diimine-typeunit[basedon2,2’-bipyridyl(bipy)or1,10-phenanthroline(phen)]coordinated

toad-blockcentretoenableabsorbanceinthevisiblerangeduetometal-to-ligandcharge-

transfertransitions,withapolyaminocarboxylateunitthatprovideshighkineticand

thermodynamicstabilitywhencomplexedtolanthanide(III)ions.5,6TheseIr/Lncomplexes

(Scheme1)demonstratedtheabilitytocombineeffectiveluminescenceimagingofHeLa

andMCF7cells,includingtwo-photonphosphorescencelifetimeimagingoflocalO2

concentration,withhighrelaxivityfortheGd(III)unitsassociatedwiththerigidityofthe

assemblywhichcomesfromtheliganddesign.6However,therewereclearlysolubility

limitationsarisingfromthehydrophobicityofthecentralIr(III)corewhichcarriesacharge

ofonly+1.

Inthispaperwedeveloptheworkusingthisligandsystemintwonewdirections.

FirstlywehaveusedaRu(II)tris-diimineunitasthed-blockluminophore,givenitsexcellent

promiseasacomponentofwater-soluble,non-toxicagentsforopticalmicroscopy,7andits

higherchargecomparedtothecyclometallatedIr(III)centre(+2vs.+1)whichshouldaid

watersolubility.WehavecombinedthiswitharangeoflanthanideionsincludingGd(III)(for

itsrelaxivityproperties)andYb(III)/Nd(III)(forthepossibilityofsensitisednear-IR

luminescence).Secondly,wehaveusedthependantheptadentatepolyaminocarboxylate

unitasaligandforcomplexingadditionaltransitionmetalionsaswellasjustlanthanide(III)

ions–creatingthepossibilitytoformd/daswellasd/fassemblies,inwhichultrafast

Page 5: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

4

spectroscopystudieshavebeenusedtoinvestigateintramolecularphotoinducedelectron

transferfromMn(II)totheRu-based3MLCTstateintheRu/Mndyad.

ResultsandDiscussion

(i)Synthesisandcharacterisation.

MononuclearRu(II)complexes.

ThesyntheticstrategyissummarisedinSchemes2–4andissimilartotheapproach

weusedforthepreviously-reportedIr/Lncomplexes6exceptthatthekeySonogashira

couplingstep,connectingthepolyaminocarboxylateandphenanthrolineunits,was

performedwiththephenanthrolineunitalreadycoordinatedtotheRu(II)ion:thistypeof

‘chemistryonthecomplex’approachhasbeenusedbyothers.8Wefoundthatthecoupling

workedbetterifweexchangedthepositionsoftherelevantfunctionalgroupsfromthose

usedpreviously,6suchthatthereactiveBrsubstituentisattachedtotheRu(II)complexcore

asa3-Br-phenor3,8-Br2-phenligand,andtheterminalalkyneispendantfromthe

protectedpolyaminocarboxylateunit.

Thecomplex[Ru(bipy)2(Br-phen)](PF6)2,A(Scheme2),8awaspreparedbyreactionof

3-Br-phen9with[Ru(bipy)2Cl2]•2H2O.Thealkyne-containingcouplingpartnercompoundC

(Scheme3)requiredafive-stepsynthesis,someofthesebeingintheliterature.Atfirst,

commerciallyavailable4-hydroxy-2,6-dimethylpyridinewasbrominatedatthe4-position

usingPBr5.10Thetwomethylgroupswerethenconvertedto–CH2Brgroupsusingradical

brominationwithN-bromosuccinimidetogive4-bromo-2,6-bis(bromomethyl)pyridine.11

Installationofthetert-butylprotectedpendantarmsofthemetalchelatingfragmentsto

givetheknownintermediateB12wasachievedthroughasubstitutionreactionwithtwo

equivalentsofdi-(tert-butyl)-iminodiacetate,andthenastraightforwardSonogashira

reactionwithtrimethylsilylacetylene(TMSA)introducedthetrimethylsilyl-protectedalkyne

groupatthe4-positionofthepyridinering(compoundCSi,Scheme3).Deprotectionofthe

trimethylsilylgrouptorevealthefreealkyneCwascarriedoutinTHFusingtetra-n-

butylammoniumfluoride(TBAF),butasthisdeprotectionwasperformedinsitubefore

immediatefurtherreactionofcompoundC,nocharacterisationdatawererecordedforthis

Page 6: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

5

intermediatespecies;attemptstoisolateanalyticallypureCwereunsuccessfulandtended

toaffordtheGlaser-coupleddi-alkynebridgeddimer.

ComponentsAandCwerethencombinedusingaSonogashiracouplingusingCu(I)/

Pd(dppf)Cl2ascatalystinanhydrousDMF/diisopropylamine(5:1,v/v)assolventunder

argon,affordingtheprotectedRu(II)complexRu•Ein50%yield(Scheme2;‘E’indicatesthe

presenceoftheesterprotectinggroupsatthesecondarybindingsite).Satisfactory

characterisationwasprovidedby1HNMRspectroscopyandhigh-resolutionelectrospray

massspectrometry(SI,Figs.S1andS2).Inparticularatlowerchemicalshiftsinthe1HNMR

spectrumtherearesingletpeaksat1.45ppm,3.49ppmand4.00ppmintegratingas36,8

and4protons,respectively,whichrepresentthealiphaticprotonsonthependantarmsof

theprotectedsecondarybindingsiteformedfromthetwoimino-diacetateunits.Finally,

removalofthetert-butylprotectinggroupswaseffectedbyprolongedstirringofRu•Ewith

excesstrifluoroaceticacidinCH2Cl2toaffordRu•L(where‘L’denotesthedeprotected

secondaryligandsite).Again,satisfactorycharacterisationwasprovidedby1HNMR

spectroscopyandahigh-resolutionESmassspectrum(SI,Figs.S3andS4),withthe1HNMR

spectrumconfirmingcompletelossoftheprotonsfromthetBugroups(previouslyat1.45

ppm).A500MHzCOSYspectrumwasusedtoconfirmthe1HNMRassignments.

Asimilarmethodwasusedtopreparethescaffoldforthepotentiallytrinuclear

complexesinwhichtheretwoaretwoidenticalaminocarboxylatebindingsitespendant

fromthephenligandonthecentralRu(II)unit(Scheme4).InthiscasetheRu(II)-based

startingcomplex[Ru(bipy)2(Br2-phen)](PF6)2(complexD)hasBrsubstituentsatboth

positionsC3andC8ofthephenligand.SonogashiracouplingofDwithtwoequivalentsofC,

undersimilarconditionstothosedescribedabovebutwithalongerreactiontime,afforded

complexRu•E2–withtwoester-protectedheptadentatebindingsitesoneithersideofthe

phenligand–in45%yield(SI,FigS5andS6).Thehigher(twofold)symmetrycomparedto

Ru•Eaffordsasimpler1HNMRspectrumwiththealiphaticsignalsarisingfromthe

protectedpolyaminocarboxylatearmsat1.45ppm,3.49ppmand3.99ppm(Fig.S5)having

integralsconsistentwiththeexpected72:16:8ratioofprotons.Removaloftheestergroups

usingthesamemethodasdescribedabove(TFAinCH2Cl2)affordedthedeprotected

complexligandRu•L2withtwopendantbindingsites.The1HNMRspectrumofthis

compoundinD2O(SI,Fig.S7)wasnoticeablybroaderandlesswelldefinedthanthe

protectedformRu•E2possiblyduetoacombinationofthesizeofthecomplex,theviscosity

Page 7: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

6

ofthesolvent,andstronghydrogen-bondinginteractionsbetweensoluteandsolventwhich

resultsinslowtumblinginsolution.Thenumberofsignalsandtheirrelativeintegralsare

correct,andahigh-resolutionESmassspectrum(SI,Fig,S8)confirmsformulationofthe

complex.

HeteronuclearRu•LnandRu•Ln2complexes(Ln=Gd,Nd,Yb).

TherearetwoparticularreasonsforstudyingRu(II)/Ln(III)(‘Ln’=ageneric

lanthanide)complexesbasedonthisligandskeleton.ThefirstisthatincorporationofGd(III)

ionsallowspreparationofpotentialdual-modalimagingagentsbasedonthecombination

ofluminescenceplusmagneticresonanceimagingwiththesameprobe.4,6Thesecondis

thatincorporationofthenear-IRemittinglanthanideionsNd(III)andYb(III)allowsthestudy

ofsensitisedemissionarisingfromd→fPEnT.3Inbothcasesthefullyconjugated,

unsaturatedstructureofthebridgingligandfacilitatesthedesireduse;thestructuralrigidity

willhelptominimisetherotationalcorrelationtimeoftheGd(III)centreswhichcontributes

tohighrelaxivity,13andtheelectronicconjugatedpathwaydirectlyconnectingbothRu(II)

andLn(III)centreswillfacilitateDexter-typePEnTwhichrequiresthrough-bondelectronic

coupling.6Thevaryingsizesofthelanthanideionsusedmeanthattheheptadentateligand

willbesupplementedbymostlikely1or2watermoleculesdependingonionicradius.

DinuclearRu•Gdwaspreparedin84%yieldsimplybystirring1.1equivalentsof

GdCl3•6H2OwithRu•Linwater(pH5–6)for18h.Size-exclusionchromatographyon

SephadexLH-20inMeOH,followedbyanionmetathesisusingDowex1x2chlorideresinto

ensurethatallhexafluorophosphateanions(fromthestartingRu(II)complex)werereplaced

bychloride,affordedpureRu•Gdasitsmono-chloridesalt.TrinuclearRu•Gd2wasprepared

similarlyin69%yieldfromRu•L2and2.6equivalentsofGdCl3•6H2Oinaqueoussolution.

ThecomplexRu•Gd2isneutralsonoanion-exchangestepwasnecessary,butwaslikewise

purifiedusingSephadexLH-20elutingwithMeOH.Giventhatroutinecharacterisationby1H

NMRspectroscopywasnotfeasibleforthesecomplexesduetoextensiveparamagnetic

line-broadeningbytheGd(III)ions,werelyonacombinationofchromatographicpurityand

high-resolutionmassspectra(SI,Fig.S9andS10),whichforbothcomplexesgiveexcellent

agreementwithexpectedvaluesaswellasthecorrectisotopicpatterns.

TheheteronuclearcomplexesRu•Nd,Ru•Nd2,Ru•YbandRu•Yb2weresynthesised

inhighyieldsinthesamemannerastheanalogousRu/Gdcomplexes,byreactionofthe

Page 8: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

7

starting‘complexligands’Ru•LandRu•L2withexcess(1.6equivalentsor2.8equivalents,

respectively)oftheappropriatelanthanidetriflatesaltinwateratpH5–6.Thedinuclear

complexesRu•NdandRu•Ybwereanion-exchangedtothechloridesaltsusingDowex®1x2

chlorideion-exchangeresinandfinallypurifiedbysize-exclusionchromatographyon

Sephadex®G-15inwater.ThetrinuclearcomplexesRu•Nd2andRu•Yb2areneutralso

requirednoion-exchange.AswiththeRu/Gdcomplexes,highresolutionESmass

spectrometryoftheseparamagneticcomplexesconfirmedtheirformulation(SI,FigsS11–

S14).

HeteronuclearRu•MandRu•M2complexes(M=Mn,Zn).

HavingusedGd(III)ionstoprepareRu•GdandRu•Gd2asdescribedabove,wewere

interestedtotryotherhighlyparamagneticionsinthesesitesforpossiblealternativedual-

modalimagingagents.Recently,interestinutilisinghigh-spinMn(II)ionsasalternative

paramagneticcentrestoGd(III)inT1-weightedMRIcontrastagentshasgrown,14,15dueto

increasingconcernfortheinvivotoxicityoffreeGd(III)ions.Newligandstructuresare

beginningtobeexploredtoincorporateMn(II)intoprobesusedforMRimagingpurposes.14

However,examplesofdual-modalluminescence/MRIprobescontainingMn(II)asthe

paramagneticcentresarerare,withonlyonerecentexampleofMnO2nanosheets

combinedwith[Ru(bipy)3](PF6)2unitsbeingreported.15Accordinglyourligandskeletons

werealsousedtoprepareRu(II)/Mn(II)complexestoexaminetheirluminescenceand

magneticrelaxivityproperties;theanalogousRu(II)/Zn(II)complexeswerealsopreparedfor

controlexperiments.

DinuclearcomplexesRu•MnandRu•ZnwerepreparedbyreactionofRu•Lwith1.3

–1.6equivalentsoftheappropriateM(II)chloridehydrate(M=Mn,Zn)for18hinwaterat

pH5–6.Theexcessmetalsaltwasremovedbysize-exclusionchromatographyon

Sephadex®G-15inwatertoproducethepure,neutralcompoundsingoodyields(80-95%).

AsZn(II)isdiamagnetic,thesuccessfulsynthesisandisolationofpureRu•Znwasconfirmed

by1HNMRspectroscopy(SI,Fig.S15).Thesignalsinthearomaticregionofthe1HNMR

spectrum(400MHz,D2O)integratetotheexpectedtwenty-fiveprotons,althoughthereare

foursingletsatδ=7.52ppm,7.54ppm,8.76ppmand8.79ppmthateachintegratetohalf

aproton.Atwo-dimensional1H-1HNMRcorrelationspectrumconfirmedthatthesepeaks

correspondtoeitherapyridylH3/H5pyridineproton(δ=7.52ppmand7.54ppm)andthe

Page 9: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

8

H2phenanthrolineproton(δ=8.76ppmand8.79ppm).Thesehalf-integralvaluessuggest

thepresenceoftwoisomersinsolution,whichwerenotpresentinthe1HNMRspectrum

(d6-DMSO,500MHz)ofthestartingcomplexRu•L.Astheprotonsinquestionareonlysplit

intoinequivalent‘halves’inRu•Zn,itwouldsuggestthatthetwoisomersarebroughtabout

bythechelationoftheZn(II)ionatthepolyaminocarboxylatebindingsitetogeneratea

chiralcentre,andarethereforediastereoisomersarisingfromthepresenceoftwochiral

centresclosetogether–theotherchiralcentrebeingofcoursetheRu(II)tris-chelateunit.

Thissuggestionissupportedbytheappearanceofamultipletatδ=3.34-3.52ppminthe1H

NMRspectrumforRu•Zn,whichintegratesaseightprotons,andrepresentsthefourCH2

groupsadjacenttothecarboxylategroupsofthesecondarymetalchelatesite.Inthe1H

NMRspectrumofRu•Lthese8protonsareequivalent,occurringasasingletatδ=3.94

ppm.However,oncetheZn(II)ionisboundinRu•Zn,theybecomeinequivalentandappear

asamultipletduetothepresenceofthediastereoisomers.Theremainingsignalinthe

aliphaticregionofthe1HNMRspectrumisfromthetwoCH2groupsattachedtoC2andC6of

thepyridinering(δ=4.15ppm).Wecouldnotobtainmeaningful1HNMRspectrafor

Ru•Mn,butbothcomplexeswerecharacterisedbyhigh-resolutionESmassspectrometry

(SI,Figs.S16andS17).WenotethatsevencoordinationisknownforinsomeMn(II)

complexes,andissupportedbythecalculations(seelater).16Therearealsoafewexamples

ofZn(II)complexeswithseven-foldcoordinationdespitethesmallerionicradiusofZn(II):

thesegenerallyhavetwosmallbidentatenitrateligands.17

TrinuclearRu•Zn2andRu•Mn2werepreparedsimilarlyfromRu•L2andexcess(2.4–

4.8equivalents)oftheappropriateM(II)chloridehydrate(M=Mn,Zn),andwereobtained

ingoodyieldsof67–82%.ThesearedianioniccomplexeswithNa+asthecounter-cation.

Ru•Zn2couldbecharacterisedby1HNMRspectroscopy(SI,Fig.S18)andgivesthecorrect

numberofsignalsinthearomaticandaliphaticregionswhichintegratetotherequired

total:thespectrumisnoticeablybroaderthanthatofRu•Zn,likelyduetoslowertumbling

insolutionbecauseofitssizeandtheviscosityofD2O(similartothedifferencethatwe

observedbetweenRu•LandRu•L2).AswithRu•Znthereisevidencethatthepresenceof

diastereoisomersarisingfromthepresenceofthreechiralcentressplitssomesignalsinto

severalcomponents.Forexample,thesingletatδ=7.69ppmforthefourpyridylH3/H5

protonsinRu•L2issplitintotwobroadsingletsbetween7.50and7.70ppminthespectrum

Page 10: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

9

ofRu•Zn2.HighresolutionESmassspectraconfirmedtheformulationsofRu•Zn2and

Ru•Mn2(Figs.S19,S20).

(ii)Photophysicalproperties.

MononuclearRu(II)complexes.

AllfourmononuclearcomplexesRu•E,Ru•L,Ru•E2andRu•L2werecharacterisedby

UV/Visandluminescencespectroscopy(Table1,Fig.1andS21).Themonosubstituted

complexesRu•EandRu•Lbothshow,inadditiontotheusualligand-centredabsorptionsin

theUVregion,1MLCTabsorptionsspanningthe375–550nmregionwithamaximumat

around440nmineachcase.TheseareassignedasRu→bipyandRu→phen1MLCT

transitionsbycomparisonwithpublishedspectra:18wemightexpecttheRu→phen

transitiontobeatlowerenergygiventhealkynesubstituentconjugatedwiththephencore

whichwillreducetheenergyoftheLUMO,butanysucheffectisnotclearlyresolvedin

thesespectra.However,forRu•E2andRu•L2theabsorptionspectradoclearlyshowthis

effect(Fig.S9):thesecondalkynesubstituentonthephenligandresultsinaRu→phen1MLCTtransitionthatisclearlyapparentasalow-energyshoulderatca.480nmwiththe

moreintense1MLCTRu→bipytransition(astherearetwobipyligands)remainingatca.440

nm.

Theluminescencespectrainfluidandfrozensolution,atRTand77Krespectively

(Fig.1),likewisereflectthegeneralbehaviourof[Ru(bipy)3]2+-typecores18where

modificationbythealkynesubstituentsslightlyreducesthe3MLCTexcitedstateenergies.19

ForRu•EandRu•Lthebroad,featureless3MLCTemissionbandoccursatca.650nm,

slightlylowerinenergythanwhathasbeenobservedfor[Ru(bipy)2(phen)]2+bearingno

alkynesubstituents.8aAt77K(frozenEtOH/MeOHglass)theusualrigidochromismresultsin

ablue-shiftofthemainemissionmaximumto611nm(hence,the3MLCTenergyis16,400

cm-1,measuredfromthe0-0transitionenergy)andresultsintheappearanceofclearfine-

structurewithtwolow-energyshouldersontheemissionprofilearisingfromvibronic

effects.ThepresenceoftheadditionalalkynesubstituentinRu•E2andRu•L2resultsinan

additionalred-shiftofboththesolutionluminescencemaximumtoca.690nm.The77K

emissionspectrum(frozenEtOH/MeOHglass)ofRu•E2islikewisered-shiftedto645nm

Page 11: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

10

comparedtoRu•EandRu•L.Ru•L2wasnotsufficientlysolubleinEtOH/MeOHtopermita

77KspectrumbutitisclearfromcomparisonofRu•EandRu•Lthatthepresenceor

absenceoftheestergroupshasnosignificanteffectontheluminescenceenergy.Thisgives

a3MLCTexcited-stateenergyof15,500cm-1forbothRu•E2andRu•L2.Luminescence

lifetimesinair-equilibratedsolutionatRTforallfourcomplexesareintheregionof100–

300ns;thesebecomelonger(µstimescale)at77K(seeTable1).

HeteronuclearRu•MandRu•M2complexes(M=Gd,Nd,Yb).

UV/Visabsorptionspectrainwater(Table2)revealedthatcoordinationoftheGd(III)

centrehadlittleeffectonthemainspectralfeatureswhichareofcourseassociatedwiththe

Ru(II)tris-diiminecore.18ThustheabsorptionspectrumofRu•GdissimilartothatofRu•L.

However,wecanseethatforRu•Gd2thelowestenergy1MLCTabsorptionfeature–a

shoulderassociatedwiththeRu→phentransition–isslightlyred-shiftedbyabout10nm

comparedtoRu•L2.Thiscanbeascribedtotheelectroniceffectofa3+cationcoordinated

toeachofthetwopyridinegroupspendantfromthephenligand,whichwillreducethe

LUMOinenergyandcausered-shiftingoftheassociatedRu→phenabsorption.Excitation

intothe1MLCTabsorptionprofileaffordedthecharacteristicbroad,featureless(influid

solution)3MLCTluminescencebandineachcase,at664nmand700nmforRu•Gdand

Ru•Gd2,respectively(Fig.2).Theseareslightlyred-shiftedfromtheemissionmaximafor

Ru•LandRu•L2,sincecoordinationofthepyridylgroupspendantfromthephenligandto

the3+ionsreducestheLUMOenergyslightly,whichisalsowhyared-shiftwasobservedin

theabsorptionspectra.Photophysicaldataforthesecomplexes,includingluminescence

lifetimesandquantumyields,areincludedinTable2.

TheUV/VisabsorptionspectrafortheRu/YbandRu/Ndcomplexesinwaterare

identicalwithinexperimentalerrortothoseoftheanalogousRu/Gdcomplexesdescribed

earlier,astheelectroniceffectsoftheperipheralGd(III),Nd(III)andYb(III)ionsonthe

absorptionfeaturesoftheRu(II)tris-diiminecoreareessentiallyidenticalandthusrequire

nofurtherdiscussion.However,theeffectsofthedifferentlanthanideionsonthe

luminescencearesubstantialandaremosteasilydiscussedintermsofcomparisonwiththe

Ru/Gdcomplexes,asinthesecomplexesGd(III)isnon-luminescent:thelowestexcitedstate

fortheGd(III)ion(6P7/2≈32,000cm-1)isfartoohighinenergytobedirectlypopulatedby

Ru→GdPEnT.

Page 12: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

11

Fig.2showstheemissionspectrainthevisibleregionofallsixRu•LnandRu•Ln2

complexes(Ln=Gd,Nd,Yb)inwater,recordedonsamplespreparedtohavethesame

opticaldensityattheexcitationwavelengthof430nm,suchthatcomparisonsofemission

intensitiesareameaningfulindicationofquantumyieldvariations.Itisimmediatelyclear

that(i)theemissionmaximaforallthreeRu•Ln2complexesisatlongerwavelength(700

nm)thantheemissionmaximaforallthreeRu•Lncomplexes(662–664nm),forreasons

discussedearlier,and(ii)theintensityofRu(II)-basedemissionwithineachsetofthree

complexesdecreasesintheorderGd>Yb>Nd.Thus,comparedtoRu•Gd,thequenching

arisingfromthepresenceofYb(III)andthenNd(III)is10%and45%,respectively:and

comparedtoRu•Gd2,thequenchingarisingfromthepresenceofYb(III)andthenNd(III)is

45%and90%,respectively(Table3).

ThisquenchingofRu(II)-basedemissionbyYb(III)andNd(III)isaconsequenceof

PEnTfromtheRu(II)-based3MLCTstatetolower-lyingf-fexcitedstatesoftherelevant

Ln(III)ions.Thedifferentdegreesofquenching,arisingfromdifferentextentsofRu→Ln

PEnT,canbereadilyunderstoodintermsofthespectroscopicoverlapbetweendonorand

acceptorstates.1a,20Yb(III)hasasinglef-fexcitedstateatca.10,200cm-1(absorptionat980

nm)whichoverlapsonlywiththelow-energytailoftheRu(II)-basedemissionprofilethat

hasvanishinglysmallintensityat980nm.IncontrastNd(III)hasalargenumberofclosely-

spacedf-fexcitedstatesbetween10,000cm-1and15,000cm-1,intheregioncoveredbythe

Ru(II)-basedemissionspectrum,sodonor/acceptoroverlapwillbemuchbetter.Indeed,it

isgenerallytruethatforexcitedstatesofdonorsinthevisibleregionofthespectrum,

Nd(III)isafarbetterenergyacceptorthanYb(III)forthisreason,1a,20andweseethisinboth

seriesofcomplexesRu•LnandRu•Ln2.

Time-resolvedmeasurementsontheRu(II)-basedluminescenceallowstheRu→Ln

PEnTratestobequantified.ForRu•GdtheRu(II)-basedluminescenceinair-equilibrated

wateratRTis350ns;inRu•YbandRu•Ndtheluminescencedecayisdominatedbyshorter-

livedcomponentswithτ=73nsand22nsrespectively(Table3),confirmingthegreater

abilityoftheNd(III)iontoactasaquencheroftheRu(II)-basedexcitedstate.Averysmall

contributiontotheluminescencedecayfromalong-liveddecaycomponentwithτ≈300ns

(<5%)isascribedtoatraceoffreeRu•L.

Page 13: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

12

kPEnT=1/τq–1/τu (2)

Usingequation2[whereτuisthe‘unquenched’lifetimeofRu•Gd,andτqisthepartially

quenchedlifetimeoftheRu•Lncomplexes(Ln=Yb,Nd)]theRu→YbandRu→Ndenergy-

transferratesof1.1x107s-1and4.2x107s-1,respectively,wereestimated.Thesevalues

arebroadlycomparabletowhatweobservedintheIr/Lncomplexesbasedonthesame

ligandskeleton,6aandtheserelativelyhighPEnTratesareaconsequenceofthefully

conjugatedpathwayconnectingthetwometalcomplexcomponentswithineachmolecule.

ThedecayoftheRu(II)-basedemissioninRu•Gd2showedtwocomponents:alonger

lifetimeofτ1=402ns(20%oftotal)andadominantshortercomponentofτ2=164ns(80%

oftotalemissionintensity).Wetentativelyascribedthepresenceofasecondlonger-lived

componenttothepresenceofdifferentconformersofthecomplexarisingfromthe

presenceofmultiplediastereoisomers(seesectionsonthe1HNMRspectraofthe

analogousRu/Zncomplexes,andconformationalflexibilityofdinuclearcomplexesstudied

computationally).InRu•Yb2andRu•Nd2theluminescencedecayprofilesaredominatedby

short-livedcomponentswithτ=88nsand18nsforRu•Yb2andRu•Nd2respectively,with

(again)asmallamountofalong-livedcomponentlikelycorrespondingtotracesoffree

Ru•L2.Applicationofeq.2(takingτu=164ns,thedominantcomponentofemissionfrom

Ru•Gd2)yieldsenergy-transferratesof5.3x106s-1(forRu→YbPEnT)and4.9x107s-1(for

Ru→NdPEnT),againconfirmingthatNd(III)isabetterenergy-acceptorthanYb(III)inthese

complexesduetoitshigherdensityofexcitedstatesintherelevantspectralregion.1a,20

FinalproofthatRu→LnPEnThasoccurredintheYb(III)andNd(III)complexesisshownby

theappearanceofsensitisedLn(III)-basedluminescencefollowingexcitationintotheRu(II)-

based1MLCTabsorptionbandofthecomplexesinD2O(thedeuteratedsolventisusedto

minimisesolvent-basedquenchingofthelowenergylanthanideluminescence).21Fig.3

showsthespectraofRu•Yb2andRu•Nd2;thoseofRu•YbandRu•Ndaresimilar.Both

Yb(III)-containingcomplexesdisplayacharacteristicYb(III)-basedemissionfeaturecentred

at980nmarisingfromthe2F5/2→2F7/2transition.Time-resolvedmeasurementsafforded

Yb(III)-basedluminescencelifetimesof13µsforRu•Yband11µsforRu•Yb2(Table3).

LifetimesinthisregionaretypicalofYb(III)-basedluminescenceinfluidsolutionwherethe

effectofthesolventisminimisedbyencapsulationofthemetalioninapolydentateligand,

Page 14: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

13

and/orbydeuteriationofthesolvent(ashere).22ThetwoNd(III)-containingcomplexes

showluminescencebandsat1060nmand1380nm,arisingfromthe4F3/2→4IJtransitions(J

=11/2and13/2),respectively.Time-resolvedmeasurementsonthe1060nmsignal

affordedNd(III)-basedemissionlifetimesof0.8µsforRu•Ndand0.7µsforRu•Nd2.Again,

thesearetypicalvaluesforNd(III)-basedemissioninfluidsolutionwhentherearenoOH

oscillatorsinthesolvent,22withthemuchshorterluminescencefromNd(III)centres

comparedtoYb(III)arisingfromthelowerenergyassociatedwithluminescencewhichis

morereadilyquenchedbymolecular(orsolvent)vibrations.Finally,excitationspectra–

monitoringtheLn(III)-basedemissionintensityasafunctionofexcitationwavelength–

revealedareasofabsorbancebetween400and500nmassociatedwiththeRu(II)-based1MLCTtransitions,confirmingtheoccurrenceofRu→LnPEnTinallcases(seeSI,Fig.S22for

examples).

HeteronuclearRu•MandRu•M2complexes(M=Mn,Zn).

UV/VisabsorptionspectraforthesetoffourRu/MnandRu/Zncomplexes(Table2)

followthesamepatternthatwesawwiththeRu/Lncomplexes,i.e.theabsorptionspectra

areessentiallythesameasthecomplexesRu•GdandRu•Gd2withnosignificant

contributionsfromtheMn(II)orZn(II)ions,aswouldbeexpectedgiventheirhigh-spind5

andd10electronicconfigurations.Toconfirmthatthelowluminescenceintensityfromthe

Ru/MncomplexesisspecificallyassociatedwiththepresenceoftheMn(II)ions,we

comparedtheluminescencepropertiesoftheRu/MncomplexestotheRu/Znanalogues

Ru•ZnandRu•Zn2(seeFig.5).ThesubstantialadditionalquenchingcausedbyMn(II)ions

overZn(II)ions–asshownbyreductioninemissionintensitybyapproximately80%–

confirmstheroleofMn(II)inthequenching.

Thisquenchingcouldhavetwopossibleorigins:(i)photoinducedelectron-transfer

(PET)fromMn(II)totheRu(III)centrethatisphoto-generatedinthe[Ru3+–phen•–]3MLCT

state;23or(ii)photoinducedenergy-transferfromthe3MLCTstatetoMn(II),generatingad-

dexcitedstateofMn(II)thatcannotbepopulatedbydirectabsorptionfromtheground

stateasitisspin-forbidden,butcouldbegeneratedbyenergy-transferfromtheRu-based3MLCTstateactingasasensitiser.24AssembliesbasedonRu(II)chromophoresconnectedto

mononuclearorpolynuclearMn(II)unitshavebeenextensivelystudiedbecauseoftheir

relevancetothePETpropertiesofphotosystemIIingreenplants.Indeed,Hammarström,

Page 15: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

14

Åkermarkandco-workershavedemonstratedthatMn(II)→Ru(III)PEToccursinaseriesof

Ru(III)/Mn(II)dyadsinwhichtheRu(III)centrehasbeengeneratedbyphoto-oxidationofa

Ru(II)unit,providedthemetalcentresareclosetogether.23a-c

Time-resolvedluminescencemeasurementsonRu•ZnandRu•Zn2(inair-

equilibratedaqueoussolution)revealed3MLCTemissionlifetimesthataresimilartothose

ofRu•GdandRu•Gd2.ForRu•Znasingle-exponentialluminescencedecayof329nswas

observed;forRu•Zn2thedecayprofilefittedtotwocomponentswithτ1=301ns(55%)and

τ2=117ns(45%),verysimilartowhatwealsoobservedforRu•Gd2.Wethereforepropose

–forthesamereasonassuggestedearlier–thatthetwolifetimesarisefromamixtureof

diastereoisomerswithdifferentconformations.Wenotethatinthiscaseindividuallifetimes

maynothavespecificphysicalmeaning,asitisadistributionoflifetimes(multiexponential

decay)whichhasbeenfittedsatisfactorilywithatwo-exponentialmodel.Incontrastthe

partialquenchinginRu•MnandRu•Mn2leadstoashortercomponentdominatingthe3MLCTemissiondecayprofiles,withlifetimesof91nsforRu•Mnand21nsforRu•Mn2.In

bothcasessmallcontributionsfromalonger-livedcomponentwerealsopresent,consistent

withtracesoffreeRu•LandRu•L2beingpresentduetolossofMn(II)ionsfromthebinding

sitesofRu•MnandRu•Mn2inthecompetitivesolvent.However,thedominantshort-lived

componentsindicatequenchingoftheRu(II)excitedstatebytheMn(II)ions:theseemission

lifetimesdidnotchangesignificantlyoverarangeofconcentrationsfrom4µMto90µM,

i.e.thequenchingprocessesinRu•MnandRu•Mn2areintramolecular.

Thedecreasedluminescencelifetimes(tensofns)arenotthewholestoryhowever,

sincethelimitationofourluminescencelifetimespectrometer(ca.1nstimeresolution)

meansthatanyfasterdecayprocessesassociatedwithe.g.rapidPETarenotdetectableon

thisinstrument.Toinvestigatewhetheranyultrafastprocesseswereoccurringonthe

timescalefasterthan1ns,theexcitedstatedynamicbehaviourofRu•ZnandRu•Mnwas

investigatedusingfemtosecondtransientabsorptionspectroscopy(TA).Here,Ru•Znacts

asacontrolsinceanyinter-metalPETorPEnTprocessesthatoccurinRu•Mncannotoccur

inRu•Zn.Excitation(λexc=400nm,40fspulse,3mW)ofasolutionofeitherRu•Znor

Ru•Mninaeratedwater,followedbymeasurementoftheabsorptionspectraataseriesof

timedelaysupto5ns,producedsimilarlyshapeddifferentialTAspectraforbothcomplexes

(Fig.5a,6a).Therearenegativesignals(bleaches)oftheMLCTtransitionsat442/480nm,

andpositivesignalsthathavemaximaat367nmand456nmpresentinbothspectra,as

Page 16: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

15

wellasabroadabsorptionintherange500-700nmwithamaximumat620nm.These

transientspectralfeaturesapproximatelyresemblethoseofthe[phen]•–radicalanionin

otherreducedmetalcomplexessuchas[ReICl(CO)3(phen•–)]–.25Thusthetransient

absorptionspectraareinagreementwiththeinitialpopulationofanMLCTstateinboth

cases.

Analysisofthedynamicsofthetransientsignalsforeachoftheheteronuclear

complexesrevealsdifferentdecaykineticsforRu•ZnandRu•Mn.Thedynamicbehaviourof

Ru•Zn(Fig.5b)isdescribedbytwolifetimecomponents;along-livedcomponent(bluetrace

inthefigure)thatdoesnotcompletelydecayoverthepump-probedelayperiod,anda

muchshorter-livedcomponent(redtrace)withalifetimeof6ps.Decay-associatedspectra

forthedifferentlifetimecomponentsareinSI(Fig.S23).Theshorter-livedcomponentcan

beascribedtofastvibrationalcoolingwithinthecomplex,whereasthelonger-lived

componentcanbeascribedtotheRu-based3MLCTstate,forwhichanemissionlifetimewas

measuredas329nsinaeratedwater(seeearlier).Anaccuratelifetimeforthe3MLCTstate

couldnotbedeterminedbyfemtosecondTAasitismuchlongerthanthemaximum

possibletimedelayoftheexperiment.

ThedynamicbehaviourofthetransientabsorptionspectraforRu•Mnismore

complicatedthanforRu•Zn(Fig.6b),andrequiresthreelifetimecomponentstofitthe

decayprofilesatisfactorily.Ashort-livedcomponentwithalifetimeof2ps(greentrace)is

ascribedtofastvibrationalcoolingwithinthecomplex.Afurtherdecayprocesswitha

lifetimeof584ps(redtrace)issynchronouswiththegrow-inforasecondstatewhichthen

decaysmoreslowly,withanestimatedlifetimeof4.7ns(bluetrace).Astheprocesseson

thesetimescalesarenotpresentinRu•Zn,wesuggestthattheyareaconsequenceoffast

processesoccurringbetweenmetalcentresintheexcitedstateofRu•Mn,withone

componentdecayingatthesamerateastheothergrows,inaPETorPEnTprocess.Again,

decay-associatedspectraforthedifferentlifetimecomponentsareinSI(Fig.S23),andthe

evolution-associatedspectra(experimentalTAatdifferenttimedelays)forbothRu•Znand

Ru•MnareinFig.S24.

Ifthe584psdecayprocesswerePEnTfromtheRu(II)-based3MLCTstatetothe

Mn(II)centre,wewouldseedecayoftheintense(phen•–)transientsignalwithτ=584psas

the3MLCTstateconvertedtoa[Mn(II)]*state.However,thisisclearlynotthecase.There

isasmallchangeinshapeofthe(phen•–)transientsignalonthistimescale,butitonly

Page 17: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

16

decaysonthelongertimescaleofτ=4.7ns.Thisisconsistentwiththe584psprocessbeing

Mn(II)→Ru(III)PETinwhichthebridging(phen•–)ispreserved,i.e.theprocesscanbe

writtenasMnII–(phen•–)–RuIII→MnIII–(phen•–)–RuII,generatinganewandlower-energy

MnIII/(phen•–)MLCTstatewhichthendecayswithτ=4.7ns(andisnotvisibleby

luminescencespectroscopy).

TheoccurrenceofMn(II)→Ru(III)PETintotheRu-based3MLCTstateisinagreement

withpreviousreportsofthebehaviourof[Ru(bipy)3]2+/Mn(II)dyadsfollowing

photochemicaloxidationofRu(II)toRu(III),23a-cwhichsimplyrequiresthattheMn(II)/Mn(III)

redoxpotentialislesspositivethantheRu(II)/Ru(III)redoxpotential.Attemptsto

determinetheMn(II)/Mn(III)redoxpotentialofRu•Mnbycyclicvoltammetryinwaterwere

unsuccessfulpossiblybecausethelargeexcessofelectrolyteused(NaCl)resultedinthe

Mn(II)ionbeingstrippedoutofthecomplex.Similarissueshaveoccasionallyprevented

detectionofMn(II)/Mn(III)couplesinotherRu/Mncomplexesrecordedincompetitive

media.23cRu•MnisnotsufficientlysolubleinpolarorganicsolventssuchasMeCNorDMF

toallowelectrochemicalmeasurementstobemade.Howeverwenotethat(i)theharder

N/O-donoranionicliganddonorsetaroundtheMn(II)ionsinRu•MnandRu•Mn2,

comparedtotheall-nitrogendonorsetsusedintheHammarström/Åkermarkcomplexes,

willreducetheMn(II)/Mn(III)redoxpotentialwhichwillfacilitatethePETprocess;and(ii)

thecomputationalstudies(nextsection)confirmthattheMn(II)centreoxidisesbeforethe

Ru(II)centre,asrequired.

AssumingthatthelifetimeofthePETprocessinRu•Mnis584ps,therateofETcan

beestimatedasket=1.7x109s-1.ThisPETrateismuchfasterthanwaspreviouslyobserved

byHammarström,Åkermarkandco-workerswhoreportedPETratesintherangeket=2x

105–2x106s-1;23a-cindeeditisfasterthantheradiativedecayrateoftheRu(II)

chromophore.Thus,theMn(II)→Ru(III)processoccursrapidlyintheMnII–(phen•–)–RuIII

excitedstate,anddoesnotrequirephoto-oxidationofthisstatetogeneratealong-lived

MnII–(phen)–RuIIIspeciesbeforetheMn(II)→Ru(III)ETcanoccur.ThishighETratecanbe

ascribedtothepresenceofafavourablepathwaythroughtheconjugatedbridgingligandin

Ru•Mn,whichprovidesa“conductive”bridgefortheETprocesstooccur,incontrasttothe

saturatedbridgingligandsdescribedpreviously.23a-c

Page 18: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

17

GiventhatthisPETprocessdetectedbyTAspectroscopyisfast(sub-nanosecond

timescale)thefinalquestionarisesastowhyitdoesnotalwaysoccur,asshownbythe

observationofsignificantresidualluminescence(seeFig.4;τ=91nsforRu•Mnand21ns

forRu•Mn2).Thiscanbeascribedtothepresenceofamixtureofconformers,asimpliedby

someoftheNMRstudies(Ru/Zncomplexes)andotherluminescencemeasurements(Ru/Gd

complexes.Rotationofthepyridylgroupanditspendantaminocarboxylateunitsaboutthe

C-CsinglebondatthepyridylC4positioncouldleadthepyridineringtoadopta

conformationperpendiculartothephenunit,whichwouldelectronicallydecouplethe

Mn(II)ionfromthe{Ru(bipy)2(phen)}2+core.Inthisarrangement,through-bondPETwould

bemuchslower.Ifweassumethistobethecase,wearriveatMn(II)→[Ru(III)]*PETrate

constantskPET(usingeq.2)ofca.8x106s-1inRu•Mnand4x107s-1inRu•Mn2forthose

decoupledconformersinwhichPETisslow,whichisstillfastcomparedtothetimescaleof

Mn(II)→Ru(III)ETacrosssaturatedspacersinseveraldyads.23a-cToinvestigatethisfurther,

computationalstudieswereperformedonRu•Mnusingdensityfunctionaltheory.

ComputationalstudiesontheRu•Mndyad.

Allcalculationswereperformedusingtheproceduresoutlinedintheexperimental

detailssection.ThestructureofthelowestsextetstateofRu•MnisgiveninFig.7(a).Fora

Mn(II)ioninthisN/O-donorweak-fieldcoordinationenvironmentweexpectahigh-spin

configuration,whichiswhatthespindensityshows[Fig.7(b)].TheMn(II)ionisseven

coordinate16withanapproximatelypentagonalbipyramidalcoordinationgeometry.16dThe

threeN-donoratomsare2.5ÅfromMn(II),whereasthefourMn–Odistancesareshorterat

ca.2.2Å,reflectingthepartialnegativechargesonthecarboxylateOatomsThepyridineN-

donorisapproximatelyco-planarwithtwoofthecarboxylateO-donors:oneoftheamine

donorsisslightlybelowthisplanewiththeotheraminedonorasimilardistanceaboveit.

However,toafirstapproximation,theMn(II)ionispentagonalbipyramidal.

Giventhepossibilityforconformationalflexibilitywhichmightaffecttheelectronic

couplingbetweenthetwometalcomplexunits,asdiscussedabove,welookedatthe

barriertorotationoftheMn(II)unitwithrespecttotheRu(II)core,aroundtheC-Csingle

bondbetweenthealkynelinkerandthependantpyridylring.Calculationsonthisrotation

showthatanarrangementwiththependantpyridineunitperpendiculartothe

phenanthrolineunitisnotalocalminimum.However,theenergyofthis‘perpendicular’

Page 19: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

18

arrangementisonly4.6kJmol-1(or1.8kT)abovetheenergyoftheco-planarorientation

[Fig.7(a)].ThissmallenergydifferencemeansthatrotationaroundtheC–Cbondisquite

facilesuchthatalargepartofthetorsionalspacewillbesampledinsolutionatRT.This

includestorsionalconformationsinwhichthepyridyl[coordinatedtoMn(II)]andphen

[coordinatedtoRu(II)]unitsareorthogonaltoeachotherandsubstantiallyelectronically

decoupled,inagreementwithourexplanationofthetwoobservedPETratesforRu•Mn.

TheoverlayinFig.8(a)showsthatrotationaroundthisbondhaslittlestructuraleffecton

theRu(II)moiety.

TD-DFTcalculationsonthestructurewithaplanarorientationofthebridgingligand

[Fig.7(a)]showthatthereareonlyasmallnumberofstrongelectronictransitions(Fig.9).

Inspectionofthemajorcomponentsofthesetransitions(seecomputationalSIdocument)

showsthatallstrongtransitionsatwavelengthslongerthan450nmareessentially

Ru→phenMLCTstates,inagreementwithawealthofprecedent,18generatingalocal

Ru(III)/phen•–moietyinatripletexcitedstate.Dependingontheinteractionbetweenthis

complexunitinits3MLCTexcitedstate,andthesextetstateoftheMn(II)ion,overalleither

aquartetoranoctetstatecanarisefollowingphoto-excitationoftheRu(II)centre.Our

calculationsshowthatthequartetstateisthelowerofthetwopossibilities,indicatingweak

antiferromagneticcouplingbetweentheRu(III)/phen•–(triplet)andMn(II)(sextet)moieties.

Ifthisquartetstateisoptimized,thentheresultingelectrondistributionwillreflectthe

relaxationbyPETfromMn(II)totheshort-livedRu(III)centre,andthestructuredepictedin

Fig.7(c)isobtained.Theassociatedspindensityshowsthatthemoleculeinthisstatehas

nospindensityonRu,i.e.theRucentreisnowRu(II),andthereisβ−spindensityonthe

phenligand,indicatingaphen•–species.Asaresult,theformalchargeonMnshouldbe3+:

thisisalsoevidentfromourinspectionofthecoordinationgeometryaroundthisionwhich

revealssubstantialshorteningofalloftheMn-ligandbonddistances[cf.theoverlayofthe

ground-statesextetgeometryofRu•Mnandthisquartetexcitedstate,Fig.8(b)].The

equatorialmetal-ligandbonddistancesreduceby0.1Å(allamineandoxygendonors)orby

0.2Å(pyridineNdonor).Theaxialbonddistancesreduceby0.4Å.ThusaMnII–(phen•–)–

RuIIIstateisshowntobethelowest-energystatefollowingphoto-excitation,confirmingthe

occurrenceofthePETprocessthatwasimpliedbytheTAmeasurements:thisisthespecies

thathasalifetimeof4.7nsaccordingtotransientabsorptiondata.

Page 20: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

19

RotationofthepyridylunitaroundtheC–Cbondseparatingitfromthealkynelinker

togivethe‘perpendicular’orientationmentionedearlierincreasestheenergyofthequartet

excitedstateby25.1kJmol-1(or10.1kT)comparedtotheco-planararrangement–a

considerablylargerdifferencethatwasfoundforthegroundstate.Thissuggeststhatinthe

quartetMnII–(phen•–)–RuIIIexcitedstatethereislesstorsionalmotionofthepyridylunit

withrespecttothephenanthrolineunit,suchthattheperpendiculararrangementinthe

quartetstatecanonlybeaccessedfromthesamearrangementinthesextetstate.

FurtherconfirmationoftheoccurrenceoftheintramolecularPETprocessisprovided

byexaminationofthelocalisationofredoxprocessesinground-stateRu•Mn.Fig.8(c)and

9(d)showtheoverlaybetweenRu•Mn,Ru•Mn+andRu•Mn–,respectively.Bothoxidised

andreducedspeciesweregeometry-optimizedinthequintetstate.Theoverlaybetween

Ru•MnandRu•Mn+showsasimilarstructuralchangetothatseenintheoverlaybetween

thesextetandquartetstatesofRu•Mn,asshowninFig.8(b).Thisindicatesthatone-

electronoxidationdoesindeedhappenattheMncentre,yieldingaformalchargeof3+,and

thatthisisthereforethesiteofthefirstoxidation.Thislocalisationforthefirstoxidation

processisalsoevidentifoneconsidersthedifferenceinthetotalelectrondensitybetween

Ru•Mn+(atthegeometryofRu•Mn)andRu•Mnasdepictedin7(e):thereisadecreasein

electrondensityontheMnmoietyconsistentwithformationofMn(III),buttheelectron

densityoftheRu(II)centredoesnotchangeuponone-electronoxidationofthecomplex.

Incontrast,uponreductionofRu•MntoRu•Mn–thereisalmostnostructural

change,asisclearfromtheoverlayinFig.8(d).ThedifferenceelectrondensityshowninFig.

7(f)(betweenRu•Mn–andRu•MnattheRu•Mn–geometry)confirmsthattheone-electron

reductionisassociatedwiththephenligand.Theseobservationsfromcomputational

studiessupportourexperimentalfindings.

(iii)Applicationsforimaging:relaxivitypropertiesandluminescenceimagingstudies

Ru/Gdcomplexes.

RelaxivitymeasurementsforRu•GdandRu•Gd2wereperformedat400MHzand

298KinD2Obytheinversion-recoverytechnique,alongsidethecommercialcontrastagent

Magnevist®forcomparisonpurposes.Solutionsofeachcomplexwerepreparedatfive

differentconcentrations(0–2.0mM)andthelongitudinalrelaxationtime(T1)forthe

Page 21: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

20

residualH2Opeakineachsamplewasmeasuredusingastandardinversion-recoverypulse

sequence.Theconcentration-normalisedlongitudinalrelaxivityvalue(r1)foreachcomplex

wasthendeterminedfromalinearplotoflongitudinalrelaxationtimeagainstcontrast

agentconcentration(SI,Fig.S25)inaccordancewitheq.1:

1/T1obs=1/T10+r1[M] (1)

wherer1istherelaxivityvalue,[M]isthecomplexconcentration,T1obsistheobservedT1

valueinthepresenceofcomplex,andT10isthevalueofT1intheabsenceofanycomplex.

UndertheconditionsusedthereferencecompoundMagnevist®hasr1=4.6mM-1s-1,and

ournewcompoundsRu•GdandRu•Gd2haver1=6.2and13.6mM-1s-1,respectively.The

increaseinrelaxivitybetweenMagnevist®andbothRu/Gdcomplexescanbeascribedtoa

combinationofgreatercomplexbulk(andhenceslowertumblinginsolution)forRu•Gdand

Ru•Gd2,andpossiblyalsothefactthattheGd(III)ionbindingsiteinbothRu/Gdcomplexes

isheptadentate,whichleavesroomforpotentiallytwowatermolecules(q=2),whereas

Magnevist®hasq=1.InfacttheqvalueforaEu(III)complexwiththesame

aminocarboxylatedonorsetwaspreviouslydeterminedas1.6±0.5,6aimplyingamixtureof

mono-anddi-aquacoordinationinsolution.Theser1valuescomparefavourablywiththose

forotheroligonuclearcomplexes.4a

GiventhepromisingrelaxivitypropertiesofRu•GdandRu•Gd2wewerealso

interestedtoseeiftheRu(II)-basedluminescencecouldbeusedasthebasisofcellular

imaging.LiveHeLacellswereinitiallyincubatedwitheitherofthesecomplexesat

concentrationsof25μM,50μMand75μMforsixorsixteenhours.Cellsstainedwith

eitheroftheprobesforthelongerincubationperiod(16h)atallconcentrationswere

visuallyunhealthywhenviewedunderthemicroscope,andcellsstainedwiththelowest

concentrationoftheprobes(25μM)demonstratedonlyweakRu(II)-basedemissionevenat

thelongerincubationtimes.Theseresultssuggested,therefore,thatshorterincubation

timesandhigherconcentrationswouldprovidetheoptimumimagingconditionsforboth

complexes.Accordingly,furthercellularstainingwasconductedwithliveHeLacells

incubatedwithprobeconcentrationsof50μM,75μMand100μMforfourhours,orwith

anincreasedprobeconcentration(75μM,100μMand150μM)overashorterincubation

period(twohours).Inthisinstanceallofthecellsstainedforeachincubationtimeandat

Page 22: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

21

eachconcentrationforbothprobeswerevisuallyhealthywhenviewedunderthe

microscope,apartfromthecellsincubatedwithaprobeconcentrationof150μM,which

werebeginningtodetachfromthesterilecoverslip.

Ru(II)-basedemissionwasobservedfromallofthehealthycellswhenimagedwitha

confocalmicroscope(λexc=405nm,λem=570-620nm):however,theemissionfromthecells

incubatedforonly2h(witheithercomplex)wasweak,suggestinglowercellularuptake.The

optimumimagingconditionsforeachcomplexwerefoundtobeanincubationtimeof4h

usingaconcentrationof50μM,whichallowedforreasonablecellularuptakewithouthigh

levelsofcytotoxicitybeingobserved.ExampleemissionimagesofHeLacellsincubatedwith

Ru•GdandRu•Gd2(Fig.10)showpunctatecytoplasmicstaining,suggestingthatbothofthe

probeslocaliseinaspecificorganellewithintheHeLacells,suchasthelysosomesorthe

mitochondria.Co-localisationstudieswiththecommerciallysosomalandmitochondrial

stainsLysoTracker®RedandMitoTracker®Redwerenotsuccessfulassomeabsorbanceof

thesestainsattheexcitationwavelengthused(405nm)producedredluminescencewhich

interferedwiththatoftheRu(II)complexes.

ThecytotoxicityofRu•GdandRu•Gd2towardsHeLacellsundertheoptimum

imagingconditions(50μM,4h)andalsoatanincreasedprobeconcentration(200μM,4h)

wasassessedbyclonogenicassay(SI,Fig.S26).Bothofthecomplexesexhibitedlowtoxicity

undertheconditionsusedtoimagethecells,withsurvivalfractionsof>0.85being

observedinbothcases.Increasingtheprobeconcentrationfour-foldto200μMhadthe

expectedeffectofloweringthecellsurvivalfractionincomparisontothelower

concentration,butgoodsurvivallevelswerestillobservedforbothprobes(>0.8).The

trinuclearprobeRu•Gd2causeslowercellsurvivalfractionsatbothprobeconcentrations

whencomparedtodinuclearRu•Gd.Overall,theabilityofthesecomplexestoactasstains

inluminescenceimaging–inadditiontoprovidinghighrelaxivityforwaterprotons–is

clear.

Ru/Mncomplexes

ToseehowtheMn(II)centresfaredforrelaxivitypurposescomparedtoGd(III),

relaxivityexperimentsonRu•MnandRu•Mn2werecarriedoutinD2Oat400MHzand298

K,alongsidethecommercialGd(III)-basedcontrastagentMagnevist®forcomparison

purposes(SI,Fig.S27).ExactlythesamemethodologywasusedasfortheRu/Gd

Page 23: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

22

complexes,affordingrelaxivityvaluesofr1=3.7mM-1s-1and4.8mM-1

s-1forRu•Mnand

Ru•Mn2respectively,whichcomparefavourablytoarangeofmononuclearMn(II)

complexesinasimilarN/O-donorcoordinationenvironmentbasedpredominantlyonamine

andcarboxylateligands.14cUnderthesameexperimentalconditions,Magnevist®hasa

relaxivityvalueofr1=4.6mM-1s-1.WerecallthatRu•GdandRu•Gd2havelargerrelaxivity

values(r1=6.2mM-1s-1and13.6mM-1

s-1,respectively).Thesmallerrelaxivityvaluesforthe

Ru/MncomplexescomparedtotheRu/Gdanaloguesareofcourseprincipallyattributable

tothesmallermagneticmomentofMn(II)comparedtoGd(III),butthesmallernumberof

watermoleculescoordinatedtothemetalcentreinsolutionwillbesignificanttoo.In

Magnevist®theGd(III)ionis9-coordinatefromanoctadentateDTPAligandandonewater

molecule,whereasthesmallerMn(II)ioninthesameligandiscoordinativelysaturatedby

theligand(q=0).14dWeobservedahydrationnumberof1.6±0.5forEu(III)ionsinthe

heptadentatebindingsiteusedinthesecomplexes,6aandbyanalogywiththeDTPA

complexesthisvaluewillbesmallerwhenMn(II)iscoordinatedatthesamebindingsitedue

toitssmallersizeandpreferenceforlowercoordinationnumbers.AlthoughRu•Mn2does

showrelaxivitysimilartothatofMagnevist®,itsuseasadualmagneticresonance/

luminescenceimagingagentisinhibitedbythefactthattheRu(II)-based3MLCT

luminescenceispartlyquenchedbytheMn(II)ions;thesameistrueforRu•Mn.

Conclusion

Theligandskeletoncontainingaphenanthrolineunit(forcoordinationtoa

photosensitisingcomplexcore)withoneortwopendantpyridyl/aminodicarboxylateunits

connectedviaalkynelinkageshasbeenusedtoprepareavarietyofd/dandd/f

heterodinuclearandheterotrinuclearcomplexes.Thecentralphotosensitisingunitis

{Ru(bipy)2(phen)}2+inallcases.Thesecondarymetalionsatthependantsitesareeither

fromthef-block[Gd(III)foritsrelaxivity;Nd(III)orYb(III)fortheirnear-infrared

luminescence]orthed-block[Mn(II)foritsrelaxivityandabilitytoeffectPETtotheexcited

stateoftheRu(II)unit;andZn(II)asacontrolforcomparisonwiththeMn(II)complexes].

Arangeofinterestingbehaviourshasemerged.ThecomplexesRu•GdandRu•Gd2

showrelaxivityofwaterprotonsthatishighforthenumberofGd(III)ionsthattheycontain

becauseoftheirsizeand,therefore,slowrotationinsolution;inadditiontheyretainthe

characteristicphosphorescenceofthe{Ru(bipy)2(phen)}2+corewhichcanbeusedfor

Page 24: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

23

luminescenceimagingofcellssuchthattheyhavepotentialasdual(luminescenceandMRI

relaxivity)imagingagents.TheanalogousRu/YbandRu/NdcomplexesdisplayRu→Yband

Ru→Nd(respectively)photoinducedenergy-transfer,leadingtopartialquenchingofthe

Ru(II)-basedemissionandsensitisednear-infraredluminescencefromthelanthanideunit.

Theenergy-transfertoNd(III)ismuchfasterthantoYb(III)becauseofthehigherdensityof

f-fexcitedstatesinthecorrectspectralregiononNd(III),whichcanactasenergyacceptors.

IntheRu/MncomplexesRu•MnandRu•Mn2thepresenceoftheMn(II)ions

likewiseprovideabasisforrelaxivityofwaterprotons,withrelaxivityvaluescompetitive

withotherMn(II)-basedcomplexes.Inthiscasehoweverthephosphorescenceofthe

{Ru(bipy)2(phen)}2+coreissubstantiallyquenchedbytheMn(II)ions–similarquenching

doesnotoccurwhenMn(II)isreplacedbyZn(II).Ultrafasttransientabsorptionexperiments

onRu•Mn(andRu•Znasacontrol)revealthepresenceoffast(<1ns)PETfromtheMn(II)

iontotheRu(II)-based3MLCTstate,i.e.MnII–(phen•–)–RuIII→MnIII–(phen•–)–RuII.The

resultingMnIII–(phen•–)statedecayswithτ≈5nsandisnon-luminescent.Thisfast

quenchingmechanismdoesnotalwaysoccur,asshownbythepresenceofresidualRu(II)-

basedluminescenceinRu•MnandRu•Mn2(tensofnslifetime),whichweascribetothe

presenceofaconformerinwhichthecentralandperipheralmetalcomplexcentresare

decoupledbyrotationofthepyridylunitssuchthattheyareperpendiculartothephenunit.

Page 25: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

24

Experimental

Generaldetails.

Allreagents,unlessotherwisestated,werepurchasedfromcommercialsources

(Sigma-Aldrich,AlfaAesar,Fluorochem)andusedasreceived.AllsolventswereofHPLC

gradequalityandobtainedfromFisher,excludingdeuteratedsolvents(Sigma-Aldrich,Acros

Organics,VWR).DrysolventswereobtainedfromtheGrubbsdrysolventsystematthe

UniversityofSheffield.Thefollowingmaterialswerepreparedusingliteratureprocedures:

4-bromo-2,6-bis[N,N-bis(tert-butoxycarbonylmethyl)aminomethyl]pyridine(compoundB),12

3-bromo-1,10-phenanthroline,93,8-dibromo-1,10-phenanthroline,9[Ru(bipy)2Cl2]•2H2O.26

Instrumentation.

One-dimensional1Hand13CNMRspectraandtwo-dimensionalCOSYspectrawere

recordedusingeitheraBrukerAvanceIIIHD400spectrometeroraBrukerAvanceIIIHD

500spectrometer.Electrosprayionisation(ES)massspectrawererecordedonanAgilent

Technologies6530Accurate-MassQ-TOFLC/MSinstrument(UniversityofSheffield).High-

resolutionspectrawererecordedonaBrukerMaXisplusinstrument(Universityof

Warwick).UV/VisspectraweremeasuredonaVarianCary50BioUV-Visible

Spectrophotometer.

PhotoluminescencespectrawererecordedonaHoribaJobinYvonFluoromax-4-

Spectrofluorimeterandwerecorrectedusingcorrectionfilesincludedwithinthe

FluorEssenceTMsoftware.Near-IRemissionandexcitationspectraoftheYb(III)andNd(III)

complexeswererecordedonanEdinburghInstrumentFP920PhosphorescenceLifetime

Spectrometerequippedwitha450wattsteadystatexenonlamp;a5wattmicrosecond

pulsedxenonflashlamp(withsingle300mmfocallengthexcitationandemission

monochromatorsinCzernyTurnerconfiguration);aredsensitivephotomultiplierinaPeltier

(aircooled)housing(HamamatsuR928P);andaliquidnitrogencooledNIRphotomultiplier

(Hamamatsu),andwerecorrectedusingcorrectionfilesincludedwithinthesoftware.Near-

IRemissionspectrawererecordedusinga645nmlongpassfilter.Low-temperature

emissionspectrainthevisibleregionweremeasuredinfrozen(77K)glassesof

ethanol/methanol(4:1,v:v).Decaycurvesgeneratedbysinglephotoncounting(SPC)were

Page 26: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

25

fittedusingOrigin®softwareandthequalityoffitjudgedbyminimizationofreducedchi-

squaredandsum-of-residualssquaredvalues.

NMRrelaxivitymeasurements.

RelaxivitymeasurementsforRu•Gd,Ru•Gd2,Ru•Mn,Ru•Mn2andthecommercial

contrastagentgadopenteticacid(‘Magnevist®’)wereperformedonaBrukerAvanceIII400

spectrometerat298K.EachcompoundunderinvestigationwasdissolvedinD2Oatfive

differentconcentrations(0–2.0mM)andthespin-latticerelaxationtime(T1)forthe

residualH2Opeakineachsamplemeasuredusingastandardinversion-recoverypulse

sequencewith12recoverytimesvaryingbetween0.001-60secondsforgadopenteticacid

and15recoverytimesvaryingbetween0.001-15secondsforthefournewcomplexes.

Relaxivityvaluesweredeterminedfromalinearplotofspin-latticerelaxationtime(T1)

againstcontrastagentconcentration(0–2.0mM)inaccordancewitheq.1.

Cellimagingstudies.

HeLacellswereculturedinDulbecco’smodifiedeaglemedium(DMEM,highglucose

withL-glutamine)purchasedfromLonza(500mL)andsupplementedwith10%(v/v)foetal

bovineserum(FBS).CulturesweregrownasmonolayersinT-75flasksat37°Cina5%CO2/

95%air(v/v)environment.Onceat75-80%confluency,cellsweresubculturedusing

trypsin-EDTA(2mL).Subculturesforlivecellstainingwereseededontosterilecoverslips

(15mmx15mm)in6-wellplates(100,000/well)andthoseforclonogenicassayswere

seededdirectlyinto6-wellplates(200-400/well).AllsubcultureswereincubatedinDMEM

at37°Cina5%CO2/95%air(v/v)environmentovernighttoallowforadhesiontothe

well-plateorcoverslip.

Forcellstaining,Ru•GdandRu•Gd2weredissolvedinsterile,double-distilledwater

toformstocksolutionswithaconcentrationof1mM.Furtherdilutiontogenerateworking

solutionsof50-200μMwasachievedusingDMEMsupplementedwith10%(v/v)FBS.After

removalofthegrowthmedia,cellswerewashedwithsterilisedphosphate-bufferedsaline

(PBS,3x2mL/well)beforebeingtreatedwithasolutionoftheappropriateRu/Gdcomplex

atconcentrationsof50–200μM(2mL/well).Cellswereincubatedfor2hor4hat37°Cin

DMEMina5%CO2/95%air(v/v)environment.Afterthedesiredincubationtimethe

growthmediumwasremovedandthecellswerewashedwithPBS(3x2mL/well)to

removeexcessmetalcomplex.Thecellswerethentreatedwithparaformaldehydesolution

Page 27: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

26

(4%inPBS,1mL/well)for20minutes,beforebeingwashedagainwithPBS(3x2mL/well).

Thecoverslipsweremountedontomicroscopeslides(Immu-MountTM,ThermoScientific)

andlefttodryforaminimumof30minutesbeforeimaging.ConfocalimagesoffixedHeLa

cellswererecordedusinganinvertedNikonA1confocalmicroscopewitha60xlens(CFI

PlanApochromatVC60xoil,NA1.4).Adiodelaser(405nm)wasusedforexcitationofthe

Ru/Gdcomplexesanda570-620nmemissionfilterwasused.

Toxicityassay

Afterremovalofthegrowthmedia,liveHeLacellsweretreatedwithasolutionof

Ru•GdorRu•Gd2complexinmediaatboth50μMand200μM(1mL/well).Cellsinfour

controlwellswereleftuntreatedandimmersedinDMEM(2mL/well).Cellswereincubated

for4hat37°Cina5%CO2/95%air(v/v)environment.Followingincubation,the

treatmentsolutionwasremoved,andthecellsimmersedinfreshDMEM(2mL/well)and

incubatedforseventotendaysat37°Cina5%CO2/95%air(v/v)environmentuntil

visiblecellcolonieshadformed.Thegrowthmediumwasremoved,andthecellswerefixed

andstainedwithmethyleneblueinmethanol(4 g/L)foraminimumof30minutes.The

stainingsolutionwasremoved,andthenumberofcoloniescounted,witheachcolony

representingasurvivingcell.The‘survivalfraction’forcellstreatedwiththeRu/Gd

complexesisthenumberofcoloniesformedaftertreatmentwithRu/Gdcomplexes

comparedtocontrolsintheabsenceofcomplex.Experimentswereconductedinduplicate

forseedingdensitiesof200and400cells/wellandrepeatedonthreeseparateoccasions.

Survivalfractionsquotedareaveragesofthethreerepeats.

Transientabsorptionspectroscopymeasurements

ATi:Sapphireregenerativeamplifier(SpitfireACEPA-40,Spectra-Physics)provided

800nmpulses(40fsfwhm,10kHz,1.2mJ);400nmforsampleexcitationwasprovidedby

doublingaportionofthe800nmoutput,inaβ-bariumboratecrystalwithinacommercially

availabledoubler/tripler(TimePlate,PhotopTechnologies).Whitelight,supercontinuum,

probepulsesweregeneratedinsitubyusingaportionoftheTi:sapphireamplifieroutput,

focusedontoaCaF2crystal,allowingforthegenerationoflightspanning340–790nm.

Detectionwasachievedusingacommercialtransientabsorptionspectrometer(Helios,

UltrafastSystems)andwasperformedbyaCMOSsensorfortheUV/Visspectralrange.The

Page 28: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

27

relativepolarisationofthepumpandprobepulseswassettothemagicangleof54.7˚for

anisotropy-freemeasurements.Sampleswereheldin1mmpathlengthquartzcells.The

opticaldensityattheexcitationwavelengthwaskeptatapproximately0.5.Theoptical

densityacrosstheproberangewaskeptbelow0.8.

Excitedstatedynamicswereelucidatedbygloballifetimeanalysis,performedin

Glotaran.27Differencespectrawerebaselinecorrectedthroughsubtractionofanaverageof

thepre-excitationspectra.Sequentialkineticmodelswerethenappliedtoeachdatasetto

modeltheexcitedstatedynamics.Apolynomialcurvewasfittothedatatoaccountforthe

groupvelocitydispersionoftheprobelightinthekineticmodel.Thenumberoflifetime

componentswassystematicallyvariedinordertominimisetheresidualintensitybetween

theexperimentalandmodeldata,wheretheminimumχ2valuehadbeenobtained.

Synthesis

4-(Trimethylsilyl)ethynyl-2,6-bis[N,N-bis(tert-butoxycarbonylmethyl)-

aminomethyl]pyridine(compoundCSi).Amixtureof4-bromo-2,6-bis[N,N-bis(tert-

butoxycarbonylmethyl)-aminomethyl]pyridine(compoundB;6.89g,10.2mmol),

Pd(PPh3)2Cl2(0.50g,0.712mmol),CuI(0.30g,1.58mmol)andPPh3(0.10g,0.381mmol)

wereaddedtoanhydrousiPr2NH(30cm3)andthemixturedeoxygenatedwithargongasfor

30minutes.Trimethylsilyl-acetylene(15cm3,108mmol)wasaddedwithvigorousstirring

andtheresultingmixtureheatedat83°Cfor24hours.Oncecooled,thereactionwas

filteredthroughcelite®andwashedwithCH2Cl2untilthewashingsranclear.Thesolvent

wasthenremovedunderreducedpressuretoaffordablackresidue,whichwasflash-

filteredthroughsilicagel(200-300mesh)withCH2Cl2aseluent.Thecrudeproductwasthen

purifiedfurtherusingcolumnchromatographyonsilicagel(200-300mesh)withpetroleum

ether/ethylacetate(9:1to8:2,v:v)astheeluenttoafford4-(trimethylsilyl)ethynyl-2,6-

bis[N,N-bis(tert-butoxy-carbonylmethyl)aminomethyl]pyridine(CSi:4.25g,60%)asadark

yellowoil.1HNMR(400MHz,CDCl3):δ=0.18(s,9H,SiMe3);1.42(s,36H,tBu);3.43(s,8H,

NCH2–ester);3.96(s,4H,NCH2–pyridyl);7.48(s,2H,pyridylH3/H5).ESMS:m/z=690.4[M+

H]+,712.4[M+Na]+.

4-Ethynyl-2,6-bis[N,N-bis(tert-butoxycarbonylmethyl)-aminomethyl]pyridine

(compoundC).ProtectedcompoundCSi(0.75g,1.09mmol)andtetra-n-butylammonium

fluoride(0.43g,1.63mmol)weredissolvedinTHF(45mL)andstirredatRTfor16hours.

Page 29: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

28

Thesolventwasthenremovedunderreducedpressureandtheresultingresiduedissolved

inCH2Cl2(30cm3),washedwithwater(2x30cm3)anddried(MgSO4).Thesolventwas

removedunderreducedpressuretoaffordcompoundC(0.62g,92%)asadarkyellowoil.

Duetothereactivityofthealkynesubstituentthiscompoundwasusedimmediatelyafter

preparationwithoutfurthercharacterisation.

[Ru(bipy)2(Br-phen)](PF6)2(compoundA).Amixtureof3-bromo-1,10-

phenanthroline(0.95g,3.68mmol)andcis-[Ru(bipy)2Cl2]•2H2O(1.90g,3.65mmol)in

CH3OH(30cm3)washeatedtorefluxfor16hours.Oncecooled,thesolutionwas

concentratedunderreducedpressureandanexcessofsaturatedKPF6(aq)solution(20cm3)

wasadded.Thesolutionwasleftat4°Cfor16hoursandtheresultingprecipitatedissolved

inCH2Cl2(30cm3)andwashedwithwater(3x25cm3).Thecombinedaqueouslayerswere

thenre-extractedwithfurtherportionsofCH2Cl2(2x25cm3)andtheresultingorganic

extractscombinedanddried(MgSO4).Thesolventwasremovedunderreducedpressureto

affordcompoundA(3.51g)asaredsolidinquantitativeyield.1HNMR(400MHz,d6-

acetone):δ=7.36-7.42(m,2H,bipy);7.60-7.66(m,2H,bipy);7.85(dd,1H,J=1.5and5.6

Hz,bipy);7.94(dd,1H,J=5.2and8.2Hz,phen);8.04(dd,1H,J=1.5and5.6Hz,bipy);8.10

(dd,1H,J=1.5andHz,bipy);8.12-8.18(m,2H,bipy);8.19(dd,1H,J=1.5and5.6Hz,bipy);

8.25(tt,2H,J=1.5and7.9Hz,bipy);8.35(d,1H,J=8.9Hz,phen);8.44(dd,1H,J=1.2and

5.2Hz,phen);8.45(d,1H,J=8.9Hz,phen);8.47(d,1H,J=1.9Hz,phen);8.78–8.87(m,

5H,4xbipy,1xphen);9.06(d,1H,J=1.9Hz,phen).ESMS:m/z=337[M–2PF6]2+.High

resolutionESMS:m/z=337.0101(calculatedfor[C32H23N6BrRu]2+,337.0099).

[Ru(bipy)2(Br2-phen)](PF6)2(compoundD).Thiswaspreparedfrom3,8-dibromo-

1,10-phenanthroline(0.33g,0.98mmol)andcis-[Ru(bipy)2Cl2]•2H2O(0.51g,0.98mmol)

exactlyasdescribedaboveforcomplexA,toaffordcompoundD(1.02g)asaredsolidin

quantitativeyield.1HNMR(400MHz,d6-acetone):δ=7.40(ddd,2H,J=1.2,5.6and7.9Hz,

bipy);7.63(ddd,2H,J=1.2,5.6and7.9Hz,bipy);8.01(dd,2H,J=1.5and5.6Hz,bipy);8.12

(dd,2H,J=1.5and5.6Hz,bipy);8.16(td,2H,J=1.5and7.9Hz,bipy);8.25(td,2H,J=1.5

and7.9Hz,bipy);8.40(s,2H,phen);8.48(d,2H,J=1.9Hz,phen);8.79(d,2H,J=7.9Hz,

bipy);8.83(d,2H,J=7.9Hz,bipy);9.07(d,2H,J=1.9Hz,phen).ESMS:m/z=376.0[M–

2PF6]2+.HighresolutionESMS:m/z=375.9650(calculatedfor[C32H22N6Br2Ru]2+,375.9648).

CompoundRu•E.AmixtureofcompoundA(0.53g,0.55mmol),(dppf)PdCl2.CH2Cl2

(0.05g,0.06mmol)andCuI(0.01g,0.05mmol)inanhydrousDMF/iPr2NH(6cm3,5:1,v:v)

Page 30: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

29

wasdeoxygenatedwithargonfor30minutes.Tothiswasaddeddropwiseasolutionof

compoundC(0.62g,1.00mmol)indeoxygenatedanhydrousDMF/iPr2NH(3cm3,5:1,v:v).

Thesolutionwasstirredatroomtemperaturefor16hoursunderargon,beforeremovalof

thesolventunderreducedpressure.Theresultingbrownsolidwaspurifiedbycolumn

chromatographyonsilicagel(200-300mesh)withCH3CN/H2O/sat.KNO3(aq)(100:0:0to

100:4:2,v:v:v)astheeluent.Thesolventwasthenremovedunderreducedpressureandthe

soliddissolvedinCH2Cl2(30cm3),washedwithanexcessofsaturatedKPF6(aq)solution(20

cm3)andseparated.TheaqueouslayerwasextractedwithfurtherportionsofCH2Cl2(2x15

cm3)andthecombinedorganiclayersthenwashedwithwater(2x15cm3)anddried

(MgSO4).ThesolventwasremovedunderreducedpressuretoaffordcomplexRu•E(0.41g,

50%)asadarkredsolid.1HNMR(400MHz,d6-acetone):δ=1.45(s,36H,tBu);3.49(s,8H,

N–CH2–ester);4.00(s,4H,CH2–pyridyl);7.37-7.45(m,2H,bipy);7.61(s,2H,pyridylH3/H5);

7.62-7.67(m,2H,bipy);7.88(d,1H,J=5.6Hz,bipy);7.96(dd,1H,J=5.2and8.2Hz,phen);

8.09(d,1H,J=5.6Hz,bipy);8.13(d,1H,J=5.6Hz,bipy);8.14-8.20(m,2H,bipy);8.21(d,

1H,J=5.6Hz,bipy);8.26(t,2H,J=7.9Hz,bipy);8.40-8.50(m,3H,phen);8.67(d,1H,J=1.9

Hz,phen);8.79-8.88(m,5H,4xbipy,1xphen);9.04(d,1H,J=1.9Hz,phen).ESMS:m/z=

604.7[M–2PF6]2+.HighresolutionESMS:m/z=604.7318(calculatedfor[C65H73N9O8Ru]2+,

604.7316).

CompoundRu•L.AsolutionofRu•E(73mg,0.049mmol)inCH2Cl2(3cm3)and

trifluoroaceticacid(TFA,3cm3)wasstirredatroomtemperaturefor18hours.Thesolvent

wasthenremovedunderreducedpressuretoyieldaredsolid.ToremoveanyresidualTFA

thesolidwasdissolvedinCH2Cl2(10cm3)andthenevaporatedtodrynessinvacuo.This

processwasrepeatedtentimes.ThesolidwasthenwashedwithCH3OH(10x10cm3)

followingthesameprocedure.Finally,theredsolidwasdissolvedintheminimumamount

ofCH3OHandprecipitatedwithanexcessofdiethylether.Thesolidwascollectedby

centrifugationanddriedunderastreamofN2toyieldRu•L(61mg,98%)asaredsolid.1H

NMR(500MHz,d6-DMSO,303K):δ=3.46(s,8H,N–CH2–acid);3.94(s,4H,CH2–pyridyl);

7.33-7.38(m,2H,bipy);7.53(d,1H,J=5.3Hz,bipy);7.56(s,2H,pyridylH3/H5);7.56-7.62

(m,2H,bipy);7.75(d,2H,J=5.3Hz,bipy);7.87(d,1H,J=5.3Hz,bipy);7.90(dd,1H,J=5.2

and8.2Hz,phen);8.07-8.16(m,3H,2xbipy,1xphen);8.21(t,2H,J=7.8Hz,bipy);8.29(d,

1H,J=1.0Hz,phen);8.35(d,1H,J=8.8Hz,phen);8.44(d,1H,J=8.8Hz,phen);8.78-8.90

(m,5H,4xbipy,1xphen);9.16(d,1H,J=1.0Hz,phen).ESMS:m/z=492.6[M–2PF6]2+,

Page 31: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

30

328.7[M–2PF6+H]3+.HighresolutionESMS:m/z=492.6056(calculatedfor

[C49H41N9O8Ru]2+,492.6055).

CompoundRu•E2.AmixtureofcompoundD(1.02g,0.98mmol),(dppf)PdCl2.CH2Cl2

(0.05g,0.06mmol)andCuI(0.01g,0.05mmol)dissolvedinanhydrousDMF/iPr2NH(6cm3,

5:1,v:v)wasdeoxygenatedwithargonfor30minutes.Tothiswasaddeddropwisea

solutionofC(1.28g,2.07mmol)indeoxygenatedanhydrousDMF/iPr2NH(3cm3,5:1,v:v).

Thesolutionwasstirredatroomtemperaturefor16hoursunderargonbeforetheaddition

ofanadditionalportionofC(1.28g,2.07mmol)inthesamedeoxygenatedsolventmixture.

Thereactionwasstirredunderargonfor24hoursbeforethesolventwasremovedunder

reducedpressure.Theresultingbrownsolidwaspurifiedbycolumnchromatographyon

silicagel(200-300mesh)withCH3CN/H2O/sat.KNO3(aq)(100:0:0to100:4:2,v:v:v)asthe

eluent.Thesolventwasthenremovedunderreducedpressureandthesoliddissolvedin

CH2Cl2(30cm3),washedwithanexcessofsaturatedKPF6(aq)solution(20cm3)and

separated.TheaqueouslayerwasextractedwithfurtherportionsofCH2Cl2(2x15cm3)and

thecombinedorganiclayersthenwashedwithwater(2x15cm3),dried(MgSO4)andthe

solventremovedunderreducedpressure.Furtherpurificationwasthenachievedbysize

exclusionchromatographyonSephadex®LH-20inCH3OH.Thesolventwasremovedunder

reducedpressuretoaffordRu•E2(0.94g,45%)asadarkredsolid.1HNMR(400MHz,d6-

acetone):δ=1.45(brs,72H,tBu);3.49(brs,16H,N–CH2–ester);3.99(brs,8H,CH2-pyridyl);

7.40-7.45(m,2H,bipy);7.56(s,4H,pyridylH3/H5);7.60-7.66(m,2H,bipy);8.05(d,2H,J=

5.6Hz,bipy);8.12-8.21(m,4H,bipy);8.25(t,2H,J=7.9Hz,bipy);8.48(s,2H,phen);8.67(d,

2H,J=1.9Hz,phen);8.85(m,4H,bipy);9.05(d,2H,J=1.9Hz,phen).ESMS:m/z=912.4[M

–2PF6]2+,608.6[M–2PF6+H]3+.HighresolutionESMS:m/z=912.4073(calculatedfor

[C98H122N12O16Ru]2+,912.4067).

CompoundRu•L2.AsolutionofRu•E2(92mg,0.044mmol)inCH2Cl2(3cm3)andTFA

(3cm3)wasstirredatroomtemperaturefor18hours.Thesolventwasthenremovedunder

reducedpressuretoyieldaredsolid.Thiswaspurifiedandisolatedexactlyasdescribedfor

Ru•L(above)anddriedunderastreamofN2toyieldRu•L2(71mg,98%)asaredsolid.1H

NMR(400MHz,D2O):δ=4.16(brs,16H,N–CH2–acid);4.74(brs,8H,CH2-pyridyl);7.17-

7.31(brm,2H,bipy)7.37-7.48(brm,2H,bipy);7.65(brd,2H,J=4.0Hz,bipy);7.69(brs,

4H,pyridylH3/H5);7.90(brd,2H,J=4.8Hz,bipy);7.98-8.06(brm,2H,bipy);8.06-8.16(br

m,2H,bipy);8.25(brs,2H,phen);8.35(brs,2H,phen);8.51-8.63(brm,4H,bipy);8.74(br

Page 32: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

31

s,2H,phen).ESMS:m/z=688.2[M–2PF6]2+.HighresolutionESMS:m/z=688.1568

(calculatedfor[C66H58N12O16Ru]2+,688.1563).

CompoundRu•Gd.ToasolutionofRu•L(45mg,0.035mmol)inwater(3cm3)at0

°CwasaddeddropwiseasolutionofGdCl3.6H2O(14mg,0.038mmol)inwater(0.5cm3);

themixturewasstirredandallowedtoreachroomtemperature.After1hourthesolution

wasadjustedtopH5-6usingasolutionofNaOH(aq)(1M)andwasthenlefttostiratroom

temperatureforafurther18hours.SaturatedKPF6(aq)solutionwasthenaddedtoproducea

redprecipitate(hexafluorophosphatesaltofmono-cationicRu•Gd)whichwasfilteredand

washedwithwater.ThisredsolidwasdissolvedintheminimumamountofCH3OHand

precipitatedwithanexcessofdiethylether.Theprecipitatewascollectedbycentrifugation

andpurifiedfurtherusingSephadex®LH-20withCH3OH.Thesolventwasremovedunder

reducedpressureandtheresultingredsoliddriedunderastreamofN2.Counterion

exchangewasthenachievedusingDowex®1x2chlorideform(100-200mesh)inwater.The

aqueoussolutionwasfiltered,thewaterremovedunderreducedpressure,andthe

resultingsoliddriedunderastreamofN2toyieldRu•Gd(chloridesalt;35mg,84%)asared

solid.ESMS:m/z=570.1[M–Cl+H]2+,380.4[M–Cl+2H]3+.HighresolutionESMS:m/z=

570.0562(calculatedfor[C49H37N9O8RuGd+H]2+,570.0558).

CompoundRu•Gd2waspreparedusingthesamemethodasdescribedabovefor

Ru•Gd,fromRu•L2(100mg,0.060mmol)andGdCl3.6H2O(59mg,0.159mmol)inwater,

butwithoutthecounter-ionexchangestepasRu•Gd2isneutral.Attheendofthereaction

thesolutionwaspurifiedbychromatographyonSephadex®LH-20withwater.Evaporation

ofthesolventaffordedRu•Gd2(70mg,69%yield)asaredsolid.ESMS:m/z=842.1[M+

2H]2+,852.5[M+Na+H]2+,864.6[M+2Na]2+.HighresolutionESMS:m/z=842.5664

(calculatedfor[C66H50N12O16RuGd2+2H]2+,842.5530).

CompoundRu•Nd.AsolutionofRu•L(15mg,0.012mmol)inwater(3cm3)was

adjustedtopH5-6usingNaOH(aq)(0.1M).Withstirring,asolutionofNd(OTf)3(11mg,0.019

mmol)inwater(0.5cm3)wasaddeddropwise.Themixturewasstirredatroom

temperatureandthepHreadjustedto5-6usingNaOH(aq)(0.1M)whennecessary.After18

hours,asmallportionofDowex®1x2chlorideform(100-200mesh)wasaddedandthe

mixturestirredatroomtemperatureforafurther24hours.Thesolutionwasthenfiltered,

concentratedunderreducedpressureandpurifiedonSephadex®G-15elutingwithwater.

Thesolventwasremovedunderreducedpressureandtheresultingsoliddriedundera

Page 33: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

32

streamofN2toyieldRu•Nd(chloridesalt;13mg,95%)asaredsolid.ESMS:m/z=563.0[M

–Cl+H]2+,375.7[M–Cl+2H]3+.HighresolutionESMS:m/z=563.0497(calculatedfor

[C49H37N9O8102Ru144Nd+H]2+,563.0488).

CompoundRu•YbwaspreparedinexactlythesamewayasRu•Nd,withRu•L(18

mg,0.014mmol)andYb(OTf)3(14mg,0.023mmol)affording14mg(83%yield)ofRu•Ybas

aredsolid.ESMS:m/z=578.1[M–Cl+H]2+.HighresolutionESMS:m/z=578.0632

(calculatedfor[C49H37N9O8102Ru173Yb+H]2+,578.0632).

CompoundRu•Nd2waspreparedinthesamewayasforRu•Gd2,withRu•L2(11.4

mg,0.007mmol)andNd(OTf)3(10mg,0.017mmol)affording11mg(97%yield)ofRu•Nd2

asaredsolidafterpurificationonSephadex®G-15elutingwithwater.ESMS:m/z=829.0

[M+2H]2+,553.0[M+3H]3+,415.0[M+4H]4+.HighresolutionESMS:m/z=829.0404

(calculatedfor[C66H50N12O16102Ru144Nd2+2H]2+,829.0429).

CompoundRu•Yb2waspreparedinthesamewayasforRu•Gd2,withRu•L2(7.4

mg,0.004mmol)andYb(OTf)3(7mg,0.011mmol)affording7.5mg(99%yield)ofRu•Yb2

afterpurificationonSephadex®G-15elutingwithwater.ESMS:m/z=858.1[M+2H]2+,

572.4[M+3H]3+,429.5[M+4H]4+.HighresolutionESMS:m/z=858.0683(calculatedfor

[C66H50N12O16102Ru173Yb2+2H]2+,858.0710).

CompoundRu•Mn.ToastirredsolutionofRu•L(130mg,0.102mmol)inwater(3

cm3),adjustedtopH5–6withNaOH(aq),wasaddeddropwiseasolutionofMnCl2.4H2O(26

mg,0.131mmol)inwater(0.5cm3).Themixturewasstirredatroomtemperatureandthe

pHre-adjustedto5–6ifnecessary.After18hoursthereactionmixturewasconcentrated

underreducedpressureandpurifiedonSephadex®G-15,elutingwithwater.Thesolvent

wasremovedunderreducedpressureandtheresultingredsoliddriedunderastreamofN2

toyieldRu•Mn(100mg,95%)asaredsolid.ESMS:m/z=519.1[M+2H]2+.Highresolution

ESMS:m/z=519.0658(calculatedfor[C49H37N9O8RuMn+2H]2+,519.0674).

CompoundRu•Zn.ThiswaspreparedinexactlythesamewayasRu•Mn,fromRu•L

(38mg,0.03mmol)andZnCl2.xH2O(10mg,ca.0.049mmol)togiveRu•Zn(25mg,80%)as

aredsolid.1HNMR(400MHz,D2O):δ=3.34-3.52(m,8H,NCH2-CO2);4.15(s,4H,NCH2-

pyridyl);7.16-7.26(m,2H,bipy);7.39-7.46(m,2H,bipy);7.48(s,1H,pyridylH3orH5);7.52

(s,0.5H,pyridylH3orH5);7.54(s,0.5H,pyridylH3orH5);7.58(d,1H,J=5.3Hz,bipy);7.68

(d,1H,J=5.3Hz,bipy);7.73(t,1H,J=6.5Hz,phen);7.91(d,1H,J=5.3Hz,bipy);7.94(d,

1H,J=5.3Hz,bipy);7.99(t,2H,J=7.5Hz,bipy);8.09(t,2H,J=7.5Hz,bipy);8.18(d,1H,J=

Page 34: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

33

4.8Hz,phen);8.19-8.29(m,2H,phen);8.35(d,1H,J=4.5Hz,phen);8.50-8.64(m,5H,4x

bipy,1xphen);8.76(s,0.5H,phen);8.79(s,0.5H,phen).ESMS:m/z=523.6[M+2H]2+.

HighresolutionESMS:m/z=523.5632(calculatedfor[C49H37N9O8RuMn+2H]2+,523.5626).

CompoundRu•Mn2.ThiswaspreparedinthesamewayasRu•Mn,fromRu•L2(41

mg,0.025mmol)andMnCl2•4H2O(12mg,0.061mmol),affordingafterpurification

(Sephadex®G-15,elutingwithwater)pureRu•Mn2asitsdisodiumsalt(25mg,67%).ESMS:

m/z=739.1[M–2Na]2–.HighresolutionESMS:m/z=739.0598(calculatedfor

[C66H50N12O16102RuMn2]2–,739.0631).

CompoundRu•Zn2.ThiswaspreparedinthesamewayasRu•Zn,fromRu•L2(9mg,

5.2µmol)andZnCl2•xH2O(10mg,ca.49µmol),affordingafterpurification(Sephadex®G-

15,elutingwithwater)pureRu•Zn2asitsdisodiumsalt(7mg,82%).ESMS:m/z=748.1[M

–2Na]2–.HighresolutionESMS:m/z=748.0532(calculatedfor[C66H50N12O16102Ru64Zn2]2–,

748.0553).

ComputationalDetails

AllcalculationswereperformedwithGaussian09v.D.0128usingdensity-functional

theory.ThefunctionalusedwasB3LYP29withempiricaldispersioncorrectionsthroughthe

GD3BJkeyword.30ThebasissetusedconsistedofSDD31onRuorlanthanideatoms,and6-

311G(d,p)32,33onallotheratoms.AllbulksolventwasdescribedusingthePCMmethod34,35

asimplementedinGaussianusingtheprovidedparametersforwater.Noadditionalwater

moleculeswereincludedtosimulatehydrogenbonding.

AllRu•Mncomplexes(andtheirreduced/oxidizedforms)wereassumedtobeinthe

high-spinconfigurationforMn,whererelevant.Duringthecalculationsitwasfoundthat

thereisalargemanifoldofpotentialsextetstatesforRu•Mn.Differentstartinggeometries

willleadtodifferentfinalelectronicstatesforasimilarfinalgeometrywiththepyridine

fragmentoftheMn(II)moietyco-planarwiththephenfragmentoftheRu(II)moiety.Infact,

thelowestsextetenergieswereobtainedbystartingfromageometryinwhichthepyridine

fragmentoftheMn(II)moietyisperpendiculartothephenfragmentoftheRu(II)fragment,

i.e.throughrestrictingthesizeoftheconjugatedsystem.Couplingbetweentheexcited-

state(3MLCT)Ru(II)andground-stateMn(II)moietieswasassumedtobeweaklyanti-

ferromagneticuponexcitation:preliminarycalculationsontheoctetstate(whichwould

arisefromferromagneticcoupling)ofphoto-excitedRu•Mnallshowahigherenergythan

Page 35: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

34

thecorrespondingquartetstates.Foralloptimisedstructuresfrequencieswerecalculated

intheharmonicapproximation.Onlysmallimaginaryfrequencies(<15cm−1)werefound.

Thesemoleculeswereconsideredtobetrueminima,sincesuchsmallimaginaryvaluesare

commonlyassociatedwitherrorsintheintegrationgridsused.

AllabsorptionspectrawerecalculatedwiththeTD-DFTmethod36asimplementedin

G09.Allimageswerecreatedwithin-housedevelopedsoftware,whichisavailableupon

request.TheoverlayswerecreatedusingROCS.37,38Finally,thecomputationalESIwas

createdusingin-housedevelopedsoftwarebasedontheOpenEyeToolkit.39

Acknowledgements.WethanktheUniversityofSheffield(Ph.DstudentshipstoBJC,AJA);

theEPSRCCapitalEquipmentawardfortheLordPorterlaserlaboratoryinSheffield

(EP/L022613/1),theGranthamCenterforSustainableFutures(Ph.DstudentshiptoJDS)and

TheRosetreesTrust(Ph.DstudentshiptoCJ).Wealsogratefullyacknowledge(i)theuseof

theWolfsonLightMicroscopyFacilityattheUniversityofSheffield,and(ii)alicenseforthe

OpenEyetools,obtainedviathefreeacademiclicensingprogram.

Page 36: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

35

References

1 (a)M.D.Ward,Coord.Chem.Rev.,2007,251,1663;(b)L.Aboshyan-Sorgho,M.

Cantuel,S.Petoud,A.HauserandC.Piguet,Coord.Chem.Rev.,2012,256,1644;(c)

L.-J.Xu,G.-T.XuandZ.-N.Chen,Coord.Chem.Rev.,2014,273-274,47;(d)C.E.

Plečnik,S.LiuandS.G.Shore,Acc.Chem.Res.,2003,36,499;(e)A.Chakraborty,J.

Goura,P.Kalita,A.Swain,G.RajaramanandV.Chandrasekhar,DaltonTrans.,2018,

47,8841;(f)K.Liua,W.ShiandP.Chenga,Coord.Chem.Rev.,2015,289-290,74.

2 (a)P.Coppo,M.Duati,V.N.Kozhevnikov,J.W.HofstraatandL.DeCola,Angew.

Chem.,Int.Ed.Engl.,2005,44,1806;(b)D.Sykes,I.S.Tidmarsh,A.Barbieri,I.V.

Sazanovich,J.A.WeinsteinandM.D.Ward,Inorg.Chem.,2011,50,11323;(c)G.Yu,

Y.Xing,F.Chen,R.Han,J.Wang,Z.Bian,L.Fu,Z.Liu,X.Ai,J.ZhangandC.Huang,

ChemPlusChem,2013,78,852;(d)D.Sykes,A.J.Cankut,N.MohdAli,A.Stephenson,

S.J.P.Spall,S.C.Parker,J.A.WeinsteinandM.D.Ward,DaltonTrans.,2013,43,

6414.

3 (a)T.Lazarides,D.Sykes,S.Faulkner,A.BarbieriandM.D.Ward,Chem.Eur.J.,

2008,14,9389;(b)T.Lazarides,N.M.Tart,D.Sykes,S.Faulkner,A.BarbieriandM.

D.Ward,DaltonTrans.,2009,3971;(c)S.Faulkner,L.S.Natrajan,W.S.PerryandD.

Sykes,DaltonTrans.,2009,3890;(d)M.D.Ward,Coord.Chem.Rev.,2010,254,

2634;(e)F.-F.Chen,Z.-Q.Chen,Z.-Q.BianandC.-H.Huang,Coord.Chem.Rev.,2010,

254,991.

4 (a)E.DebroyeandT.N.Parac-Vogt,Chem.Soc.Rev.,2014,43,8178;(b)L.E.

JenningsandN.J.Long,Chem.Commun.,2009,3511;(c)M.Tropiano,C.J.Record,

E.Morris,H.S.Rai,C.AllainandS.Faulkner,Organometallics,2012,31,5673;(d)P.

Verwilst,S.V.Eliseeva,L.VanderElst,C.Burtea,S.Laurent,S.Petoud,R.N.Muller,

T.N.Parac-VogtandW.M.DeBorggraeve,Inorg.Chem.,2012,51,6405;(e)P.

Verwilst,S.Park,B.YoonandJ.S.Kim,Chem.Soc.Rev.,2015,44,1791;(f)T.

Koullourou,L.Natrajan,H.Bhavsar,S.J.A.Pope,J.Feng,R.Kauppinen,J.Narvainen,

R.Shaw,E.Scales,A.KenwrightandS.Faulkner,J.Am.Chem.Soc.,2008,130,2178;

(g)A.NithyakumarandV.Alexander,NewJ.Chem.,2016,40,4606;(h)A.Boulay,C.

Deraeve,L.VanderElst,N.Leygue,O.Maury,S.Laurent,R.N.Muller,B.Maestre-

VoegtléandC.Picard,Inorg.Chem.,2015,54,1414.

Page 37: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

36

5 E.Baggaley,D.-K.Cao,D.Sykes,S.W.Botchway,J.A.WeinsteinandM.D.Ward,

Chem.Eur.J.,2014,20,8898.

6 (a)A.Jana,E.Baggaley,A.AmorosoandM.D.Ward,Chem.Commun.,2015,51,

8833;(b)A.Jana,B.J.Crowston,J.R.Shewring,L.K.McKenzie,H.E.Bryant,S.W.

Botchway,A.D.Ward,A.J.Amoroso,E.BaggaleyandM.D.Ward,Inorg.Chem.,

2016,55,5623.

7 (a)M.R.Gill,J.Garcia-Lara,S.J.Foster,C.Smythe,G.BattagliaandJ.A.Thomas,

Nat.Chem.,2009,1,662;(b)E.Baggaley,M.R.Gill,N.H.Green,D.Turton,I.V.

Sazanovich,S.W.Botchway,C.Smythe,J.W.Haycock,J.A.WeinsteinandJ.A.

Thomas,Angew.Chem.,Int.Ed.,2014,53,3367;(c)M.P.CooganandV.Fernández-

Moreira,Chem.Commun.,2014,50,384;(d)S.Zhang,Y.DingandH.Wei,Molecules,

2014,19,11933;(e)T.S.-M.Tang,H.-W.LiuandK.K.-W.Lo,Chem.Eur.J.,2016,22,

9648;(f)E.Baggaley,J.A.WeinsteinandJ.A.G.Williams,Struct.Bonding,2015,165,

205;(g)L.K.McKenzie,H.E.BryantandJ.A.Weinstein,Coord.Chem.Rev.,2019,

379,2;(h)L.K.McKenzie,I.V.Sazanovich,E.Baggaley,M.Bonneau,V.Guerchais,J.

A.G.Williams,J.A.WeinsteinandH.E.Bryant,Chem.Eur.J.,2017,23,234;(i)A.M.-

H.YipandK.K.-W.Lo,Coord.Chem.Rev.,2018,361,138.

8 (a)D.TzalisandY.Tor,J.Am.Chem.Soc.,1997,119,852;(b)T.Ren,Chem.Rev.,

2008,108,4185.

9 D.Tzalis,Y.Tor,F.SalvatorreandS.J.Siegel,TetrahedronLett.,1995,36,3489.

10 H.Li,J.Tatlock,A.Linton,J.Gonzalez,T.Jewell,L.Patel,S.Ludlum,M.Drowns,S.V

Rahavendran,H.Skor,R.Hunter,S.T.Shi,K.J.Herlihy,H.Parge,M.Hickey,X.Yu,F.

Chau,J.NonomiyaandC.Lewis,J.Med.Chem,2009,52,1255.

11 J.-L.Chen,X.Wang,F.Yang,C.Cao,G.OttingandX.-C.Su,Angew.Chem.Int.Ed.,

2016,55,13744.

12 H.Takalo,P.Pasanen,J.Kankare,K.Undheim,G.Wittman,L.Gera,M.Bartók,I.

PelczerandG.Dombi,ActaChem.Scand.,1988,42b,373.

13 P.Caravan,Chem.Soc.Rev.,2006,35,512.

14 (a)D.Fornasiero,J.C.Bellen,R.J.BakerandB.E.Chatterton,Invest.Radiol.,1987,

22,322;(b)S.Aime,P.L.Anelli,M.Botta,M.Brochetta,S.Canton,F.Fedeli,E.

GianolioandE.Terreno,J.Biol.Inorg.Chem.,2002,7,58;(c)E.M.Gale,J.ZhuandP.

Caravan,J.Am.Chem.Soc.,2013,135,18600.(d)J.Wang,H.Wang,I.A.Ramsay,D.

Page 38: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

37

J.Erstad,B.C.Fuchs,K.K.Tanabe,P.CaravanandE.M.Gale,J.Med.Chem.,2018,

61,8811.

15 W.Shi,B.Song,W.Shi,X.Qin,Z.Liu,M.Tan,L.Wang,F.SongandJ.Yuan,ACSAppl.

Mater.Interfaces,2018,10,27681.

16 (a)A.Deroche,I.Morgenstern-Badarau,M.Cesario,J.Guilhem,B.Keita,L.Nadjo

andC.Houée-Levin,J.Am.Chem.Soc.,1996,118,4567;(b)S.T.Frey,H.A.Ramirez,

M.KaurandJ.P.Jasinski,ActaCryst.E,Cryst.Commun.,2018,74,1075;(c)J.J.

Stezowski,R.CountrymanandJ.L.Hoard,Inorg.Chem.,1973,12,1749;(d)G.-F.Liu,

M.Filipovíc,F.W.HeinemannandI.Ivanovic-Burmazovic,Inorg.Chem.,2007,46,

8825.

17 (a)S.M.Jahromi,M.Montazerozohori,A.Masoudiasl,E.Houshyar,S.JoohariandK.

M.White,UltrasonicsSonochem.,2018,41,590;(b)G.J.McManus,M.P.Perry,B.

D.WagnerandM.J.Zaworotko,J.Am.Chem.Soc.,2007,129,9094;(c)P.>U.

Maheswari,B.Modec,A.Pevec,B.Kozlevčar,C.Massera,P.GamezandJ.Reedijk,

Inorg.Chem.,2006,45,6637.

18 A.Juris,V.Balzani,F.BarigellettiandS.Campagna,Coord.Chem.Rev.,1988,84,85.

19 E.C.Glazer,D.MagdeandY.Tor,J.Am.Chem.Soc.,2005,127,4190.

20 M.D.Ward,Coord.Chem.Rev.,2010,254,2634.

21 W.DeW.Horrocks,Jr.andD.R.Sudnick,J.Am.Chem.Soc.,1979,101,334.

22 (a)N.M.Shavaleev,G.Accorsi,D.Virgili,Z.R.Bell,T.Lazarides,G.Calogero,N.

ArmaroliandM.D.Ward,Inorg.Chem.,2005,44,61;(b)N.M.Shavaleev,L.P.

Moorcraft,S.J.A.Pope,Z.R.Bell,S.FaulknerandM.D.Ward,Chem.Eur.J.,2003,9,

5283;(c)T.K.Ronson,T.Lazarides,H.Adams,S.J.A.Pope,D.Sykes,S.Faulkner,S.J.

Coles,M.B.Hursthouse,W.Clegg,R.W.HarringtonandM.D.Ward,Chem.Eur.J.,

2006,12,9299.

23 (a)K.E.Berg,A.Tran,M.K.Raymond,M.Abrahamsson,J.Wolny,S.Redon,M.

Andersson,L.Sun,S.Styring,L.Hammarström,H.ToftlundandB.Åkermark,Eur.J.

Inorg.Chem.,2001,1019;(b)L.Sun,H.Berglund,R.Davydov,T.Norrby,L.

Hammarström,P.Korall,A.Börje,C.Philouze,K.Berg,A.Tran,M.Andersson,G

Stenhagen,J.Mårtensson,M.Almgren,S.StyringandB.Åkermark,J.Am.Chem.

Soc.,1997,119,6996;(c)M.L.A.Abrahamsson,H.B.Baudin,A.Tran,C.Philouze,K.

E.Berg,MK.Raymond-Johansson,L.Sun,B.Åkermark,S.StyringandL.

Page 39: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

38

Hammarström,Inorg.Chem.,2002,41,1534;(d)A.G.Tebo,S.Das,R.Farran,C.

Herrero,A.Quaranta,R.Fallahpour,S.Protti,M.-F.CharlotandW.Leibl,Comptes

RendusChim.,2017,20,323.

24 H.Berglund-Baudin,L.Sun,R.Davidov,M.Sundahl,S.Styring,B.Åkermark,M.

AlmgrenandL.Hammarström,J.Phys.Chem.A,1998,102,2512.

25 S.Záliš,C.Consani,A.ElNahhas,A.Cannizzo,M.Chergui,F.HartlandA.Vlček,Inorg.

Chim.Acta,2011,374,578.

26 B.P.Sullivan,D.J.SalmonandT.J.Meyer,Inorg.Chem.,1978,17,3334.

27 J.J.Snellenburg,S.P.Laptenok,R.Seger,K.M.MullenandI.H.M.vanStokkum,J.

Stat.Soft.,2012,49,1.

28 Gaussian09,RevisionD.01:M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,

M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,

H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.

L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.

Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,

F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,T.Keith,

R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.

Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.

Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,

C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,

P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.

V.Ortiz,J.CioslowskiandD.J.Fox,Gaussian,Inc.,WallingfordCT,2013.

29 A.D.Becke,J.Chem.Phys.,1993,98,5648.

30 S.Grimme,S.EhrlichandL.Goerigk,J.Comput.Chem.,2011,32,1456.

31 M.Dolg,U.Wedig,H.StollandH.Preuss,J.Chem.Phys.,1987,86,866.

32 A.D.McLeanandG.S.Chandler,J.Chem.Phys.,1980,72,5639.

33 R.Krishnan,J.S.Binkley,R.SeegerandJ.A.Pople,J.Chem.Phys.,1980,72,650.

34 M.Cossi,N.Rega,G.ScalmaniandV.Barone,J.Comput.Chem.,2003,24,669.

35 J.Tomasi,B.Mennucci,R.Cammi,Chem.Rev.,2005,105,2999.

36 G.Scalmani,M.J.Frisch,B.Mennucci,J.Tomasi,R.Cammi,andV.Barone,J.Chem.

Phys.,2006,124,094107

37 P.C.D.Hawkins,A.G.Skillman,A.Nicholls,J.Med.Chem.,2007,50,74.

Page 40: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

39

38 ROCS3.2.2.2:OpenEyeScientificSoftware,SantaFe,NM.

http://www.eyesopen.com.

39 OpenEyetoolkits2018.feb.1,OpenEyeScientificsoftware,SantaFe,NM.

http://www.eyesopen.com.

Page 41: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

40

Scheme1:Previously-reportedIr(III)/Ln(III)complexesbasedonabridgingligandskeleton

combiningphenanthrolineandpolyaminocarboxylatebindingsitesfortheIr(III)andLn(III)

metalcentres,respectively,connectedbyanalkynespacer(seeref.6).

NNN

N

N

O

O

Ln

O

O

O

OO

ON

N

N

O

O

Ln

O

O

O

OO

O

IrN N

F

F F

F

NNN

N

N

O

O

Ln

O

O

O

OO

O

IrN N

F

F F

F

Page 42: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

41

Scheme2.PreparationofRu•E,Ru•LandheterodinuclearcomplexesRu•M.

NN

RuN

N

N

N

Br

A

[2+]

N NN CO2tBu

CO2tButBuO2C

tBuO2C

Cu(I) / Pd(dppf)Cl2DMF / iPr2NH

C

NN

RuN

N

N

N

N

N

N

CO2tBu

CO2tBu

CO2tBu

CO2tBu

[2+]

NN

RuN

N

N

N

N

N

N

O

O

M

O

O

O

O O

O

[(n–2)+]Mn+ salt / water

Ru•E

Ru•M

CF3CO2H / DCM

NN

RuN

N

N

N

N

N

N

CO2H

CO2H

CO2H

CO2H

[2+]

Ru•L

Page 43: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

42

Scheme3.Preparationofester-protectedalkyneintermediateC(usedinSchemes2and4)

N NN CO2tBu

CO2tButBuO2C

tBuO2C

C

N NN CO2tBu

CO2tButBuO2C

tBuO2C

CSi

SiMe3

N

Br

NN CO2tBu

CO2tButBuO2C

tBuO2C

BTMS-CCH / Pd(PPh3)2Cl2 /CuI / iPr2NH

Bu4NF / THF

Page 44: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

43

Scheme4.PreparationofRu•E2,Ru•L2andheterotrinuclearcomplexesRu•M2.

NN

RuN

N

N

N

Br

D

[2+]

N NN CO2tBu

CO2tButBuO2C

tBuO2C

Cu(I) / Pd(dppf)Cl2DMF / iPr2NH

C

NN

RuN

N

N

N

N

N

N

CO2tBu

CO2tBu

CO2tBu

CO2tBu

[2+]

NN

RuN

N

N

N

N

N

N

O

O

M

O

O

O

O O

O

[(2n–6)+]Mn+ salt / water

Ru•E2

Ru•M2

CF3CO2H / DCM

Br

N

N

N

tBuO2C

tBuO2C

tBuO2CtBuO2C

NN

RuN

N

N

N

N

N

N

CO2H

CO2H

CO2H

CO2H

[2+]

Ru•L2

N

N

N

HO2C

HO2C

HO2C

HO2C

N

N

N

O

O

M

O

O

O

OO

O

Page 45: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

44

Table1.UV/VisabsorptionandluminescencedataforthenewmononuclearRu(II)

complexes.

λabsRT/nm

[103ε /M-1cm-1]a

λemRT/nm

[τ /ns]a

λem77K/nm

[τ /µs]b

Ru•E 286[88],321(sh)[39],444

(br)[14]

647[240] 611,660(sh),711(sh)[6.2]

Ru•L 285[120],325(sh)[55],

442(br)[16]

661[340] 611,662(sh),706(sh)

[5.8]

Ru•E2 351[56],437[14],476(sh)

[10].

683[271] 645,701(sh)[3.8]

Ru•L2 349[46],434[6.5],485

(sh)[3.7]

697[209,102] Notsoluble

a AbsorptionandemissionspectraatRTmeasuredinMeCN(Ru•EandRu•E2)or

water(Ru•LandRu•L2).Estimateduncertaintyinlifetimesis±10%forsingle

componentdecays.

b Emissionspectraat77KmeasuredinEtOH/MeOH(4:1,v/v)glass

Page 46: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

45

Table2.UV/VisabsorptionandluminescencedatafortheRu/Mheterometalliccomplexes

(M=Gd,Mn,Zn).

λabsRT/nm

[103ε /M-1cm-1]a

λemRT/nm

[τ /ns]a

λem77K/nm

[τ /µs]b

Ru•Gd 286[56],326(sh)[25],443

(br)[7.5]

664[351] 612,662(sh),706

(sh)[5.3]

Ru•Gd2 286[99],350[74],435[11],

486(sh)[5.9]

699[402,104] notsoluble

Ru•Mn 285[80],325(sh)[34],441

(br)[10]

657[410,91] 612,660,709[1.8,

0.45]

Ru•Mn2 286[86],350[59],435[7.9],

481(sh)[4.4]

700[456,164,21] notsoluble

Ru•Zn 285[80],326(sh)[34],440

(br)[10]

666[329] 617,668,720[5.6]

Ru•Zn2 285[88],348[55],435[9.2],

478(sh)[5.3]

695[301,117] notsoluble

a AbsorptionandemissionspectraatRTmeasuredinwater.Estimateduncertaintyin

lifetimesis±10%forsinglecomponentdecays.

b Emissionspectraat77KmeasuredinEtOH/MeOH(4:1,v/v)glass.

Page 47: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

46

Table3.LuminescencedatafortheRu/YbandRu/Ndheterometalliccomplexes.

λemRT/nm[τ /ns]inH2O

forRu(II)emissiona

λemRT/nm[τ /µs]inD2O

forLn(III)emission

Ru•Yb 663[242,73] 980[13]

Ru•Yb2 700[223,88] 980[10.5,0.3]b

Ru•Nd 662[358,22] 1060,1380[0.8]

Ru•Nd2 703[408,18] 1060,1380[0.7]

a TwoRu(II)-basedluminescencecomponents:theshorteroneisassumedtobeassociated

withmaximumquenchingbythelanthanide(seemaintext).

b Theshorterluminescencecomponentdetectedat980nmisfromthetailofunquenched

Ru(II)-basedemissionwhichoverlapswiththeYb(III)-basedemission.

Page 48: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

47

Fig.1. Normalised,correctedluminescencespectraofthefourmononuclearRu(II)

complexesinaeratedEtOH/MeOH(4:1,v/v)at298Kandinaglassat77K,

excitationwavelength435nm.

Page 49: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

48

Fig.2. CorrectedluminescencespectrainwateratRTshowingtheRu(II)-based

luminescenceofthethreedinuclearRu•LnandthreetrinuclearRu•Ln2complexes

(Ln=Gd,Yb,Nd);allsolutionswereisoabsorbingattheexcitationwavelength(λexc

=430nm).

Page 50: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

49

Fig.3. CorrectedluminescencespectrainD2Oat298Kinthenear-infraredregion,

showingthesensitisedlanthanide-basedluminescencefromthecomplexesRu•Yb2

andRu•Nd2complexes(λexc=440nmforbothspectra).

Page 51: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

50

Fig.4. Correctedluminescencespectrainwaterat298KforthefourRu/MnandRu/Zn

complexes;allsolutionswereisoabsorbingattheexcitationwavelength(λexc=435

nm).

Page 52: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

51

Fig.5. Top:differentialtransientabsorptionspectrainair-equilibratedwaterofRu•Znat

arangeofdifferenttimedelaysfollowingexcitation(λexc=400nm,40fs,3mW

pulse).Bottom:dynamicsofthetransientsignalsovera5nsperiod.

Page 53: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

52

Fig.6. Top:differentialtransientabsorptionspectrainair-equilibratedwaterofRu•Mnat

arangeofdifferenttimedelaysfollowingexcitation(λexc=400nm,40fs,3mW

pulse).Thesmallsharpfeatureat400nmisscatteringofthepumplight.Bottom:

dynamicsofthetransientsignalsovera5nsperiod.

Page 54: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

53

Fig.7. ResultsofcomputationalstudiesonRu•Mn.(a)OptimizedstructureforRu•Mnin

itssextetgroundstate.(b)SpindensityforRu•Mninitsgroundstatesextetstate

(isosurfaceatdensity=0.0004;blue=α-spin,red=β-spin).(c)Spindensityfor

Ru•Mninitslowestexcitedquartetstate(isosurfaceatdensity=0.0004,blue=α-

spin,green=β-spin).(d)SpindensityforRu•Mninlowestexcitedquartetstate

(isosurfaceatdensity=0.0004,blue=α-spin,red=β-spin)withrotatedpyridylunit

at90°tothephenanthrolineunit.(e)DifferencedensityforRu•Mnbetween

neutralandmono-oxidisedform(isosurfaceatdensity=0.0004,green=increase,

purple=decrease).(f)DifferencedensityforRu•Mnbetweenmono-reducedand

neutralform(isosurfaceatdensity=0.0004,green=increase,purple=decrease)

withrotatedpyridylunitat90°tothephenanthrolineunit.

Page 55: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

54

Fig.8 OverlaysoftheneutralformofRu•Mnwithotherformsaccessedinthe

computationalexperiments.Inallpanels,theneutralformofRu•Mnisshownin

themajoritygreycolour,theotherformbeingcomparedtoisshowningreen.(a)

OverlayofRu•Mninits‘planar’form,withthe‘perpendicular’formarisingfrom

twistingthepyridylgroupwithrespecttothephengroup.(b)OverlayofRu•Mn(6A

groundstate)withRu•Mn(4Aexcitedstate):thesignificantchangeingeometry

aroundtheMncentreindicatesitstransientoxidationtoMn(III).(c)Overlayof

[Ru•Mn]0(6A)with[Ru•Mn]+(5A):thesignificantchangeingeometryaroundthe

MncentreindicatesitsoxidationtoMn(III).(d)Overlayof[Ru•Mn]0(6A)with

[Ru•Mn]–(5A):thelackofsignificantchangesincoordinationgeometryaround

eithermetalionisconsistentwithaphen-basedreduction.

Page 56: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

55

Fig.9 SimulatedUV-VISspectrumforRu•Mn.Thestickspectrum(greenlines)indicates

thetransitionsascalculatedbyTD-DFTwiththeircalculatedoscillatorstrengths.

ThesimulatedfullspectrumisgeneratedusingGaussianshapeswithaFWHMof

1500cm-1;thismaybecomparedwiththerealspectruminSI.

Page 57: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

56

Fig.10. ConfocalmicroscopyimagesofHeLacellsincubatedwith(a)Ru•Gdor(b)Ru•Gd2

(50µM,4hincubationineachcase).λexc=405nm;λem=570–620nm.Scalebars

=20µm.

Page 58: Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III ... · luminescence;3 and the combination of a luminescent d-block unit with a highly paramagnetic lanthanide, usually Gd(III),

57

Heteronucleard-dandd-fRu(II)/Mcomplexes[M=Gd(III),Yb(III),Nd(III),

Zn(II)orMn(II)]ofligandscombiningphenanthrolineandaminocarboxylate

bindingsites:combinedrelaxivity,cellimagingandphotophysicalstudies.

TableofContentsentry

Aseriesofcomplexesinwhichaphosphorescent[Ru(NN)3]2+coreisattachedtooneortwo

pendantf-block[Gd(III),Nd(III),Yb(III)]ord-block[Mn(II),Zn(II)]ionshavebeenstudiedfor

theirrelaxivityandcellimagingproperties,andphotophysicalpropertieswhichincludeRu-

to-lanthanidephotoinducedenergy-transferandMn-to-Ruphotoinducedelectrontransfer.

NN

RuN

N

N

N

N

N

N

O

O

M

O

O

O

O O

ON

N

N

O

O

M

O

O

O

OO

O

M = Gd(III), Nd(III), Yb(III), Mn(II), Zn(II)