heteroskedasticity and autocorrelation consistent standard...

33
Lecture 9 1, July 21, 2008 NBER Summer Institute Minicourse – What’s New in Econometrics: Time Series Lecture 9 July 16, 2008 Heteroskedasticity and Autocorrelation Consistent Standard Errors

Upload: others

Post on 08-Dec-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 1, July 21, 2008 

 

NBER Summer Institute Minicourse –

What’s New in Econometrics: Time Series

Lecture 9  

 

July 16, 2008  

Heteroskedasticity and Autocorrelation Consistent Standard Errors

Page 2: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 2, July 21, 2008 

 

Outline 1. What are HAC SE’s and why are they needed? 2. Parametric and Nonparametric Estimators 3. Some Estimation Issues (psd, lag choice, etc.)

4. Inconsistent Estimators

Page 3: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 3, July 21, 2008 

 

1. What are HAC SE’s and why are they needed?

Linear Regression: yt = xt′β + et

1 1

1 1 1 1

ˆ ' ' ' 'T T T T

t t t t t t t tt t t t

x x x y x x x eβ β− −

= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∑ ∑ ∑ ∑

1

1

1 1

1 1ˆ( ) ' 'T T

t t t t XX Tt t

T x x x e S AT T

β β−

= =

⎛ ⎞ ⎛ ⎞− = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∑ ∑ .

SXX p

→ ΣXX = E(xtxt′), AT (0, )d

N→ Ω , where Ω = limT→∞ Var1

1 'T

t tt

x eT =

⎛ ⎞⎜ ⎟⎝ ⎠

Thus 1ˆ ,a

N VT

β β⎛ ⎞⎜ ⎟⎝ ⎠

∼ , where 1 1ˆ ˆXX XXV S S− −= Ω

HAC problem : Ω̂ = ???

Page 4: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 4, July 21, 2008 

 

(Same problem arises in IV regression, GMM, … ) Notation:

Ω = limT→∞ Var1

1 'T

t tt

x eT =

⎛ ⎞⎜ ⎟⎝ ⎠

Let wt = xtet (assume this is a scalar for convenience)

Feasible estimator of Ω must use ˆ ˆt t tw x e= ,

The estimator is { }( )ˆ ˆ twΩ , but most of our discussion uses { }( )ˆ

twΩ for convenience.

Page 5: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 5, July 21, 2008 

 

An expression for Ω: Suppose wt is covariance stationary with autocovariances γj. (Also, for notational convenience, assume wt is a scalar). Then

1 21

0 1 1 2 2 1 1

1 1

1 1

1 1( ) ( ... )

1 { ( 1)( ) ( 2)( ) 1 ( )}

1 ( )

T

t Tt

T T

T T

j j jj T j

var w var w w wTT

T T TT

jT

γ γ γ γ γ γ γ

γ γ γ

=

− − − −

− −

−=− + =

Ω = = + + +

= + − + + − + + ... × +

= − +

∑ ∑

If the autocovariances are “1-summable” so that jj γ| |< ∞∑ then

Ω = 1

1( )T

t jt j

var wT

γ∞

= =−∞

→∑ ∑

Recall spectrum of w at frequency ω is S(ω) = 12

i jj

je ωγ

π

∞−

=−∞∑ , so that Ω =

2π×S(0). Ω is called the “Long-run” variance of w.

Page 6: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 6, July 21, 2008 

 

II. Estimators (a) Parametric Estimators, wt ~ ARMA φ(L)wt = θ(L)εt,

S(ω) = 21 ( ) ( )2 ( ) ( )

i i

i i

e ee e

ω ω

ε ω ω

θ θσπ φ φ

Ω = 2π×S(0) = 22

1 22 22 2

1 2

(1 )(1)(1) (1 )

q

pε ε

θ θ θθσ σφ φ φ φ

− − − −=

− − − −

2

1 222

1 2

ˆ ˆ ˆ(1 )ˆ ˆ ˆ ˆ ˆ(1 )q

θ θ θσ

φ φ φ− − − −

Ω =− − − −

Page 7: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 7, July 21, 2008 

 

Jargon: VAR-HAC is a version of this. Suppose wt is a vector and the estimated VAR using wt is

1 1ˆ ˆ ˆ...t t p t p tw w w ε− −= Φ + +Φ + ,

where 1

1ˆ ˆ ˆ 'T

t ttTε ε ε=

Σ = ∑

Then 1 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ( ... ) ( ... ) 'p pI Iε

− −Ω = −Φ − −Φ Σ −Φ − −Φ

Page 8: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 8, July 21, 2008 

 

(b) Nonparametric Estimators

jj

γ∞

=−∞

Ω = ∑

ˆ ˆ

m

j jj m

K γ=−

Ω = ∑

with 1

1ˆ ˆT

j t t j jt j

w wT

γ γ− −= +

= =∑ (j ≥ 0)

Page 9: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 9, July 21, 2008 

 

III. Issues (a) Ω̂ ≥ 0 ? (b) Number of lags (m) in non-parameter estimator or order of ARMA in parametric estimator (c) form of Kj weights

Page 10: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 10, July 21, 2008 

 

(a) Ω̂ ≥ 0 ?

21 22

21 2

ˆ ˆ ˆ(1 )ˆ ˆ ˆ ˆ ˆ(1 )q

θ θ θσ

φ φ φ− − − −

Ω =− − − −

(yes)

ˆ ˆ

m

j jj m

K γ=−

Ω = ∑ (Not necessarily)

MA(1) Example: Ω = (γ−1 + γ0 + γ1) and 1 0 1

ˆ ˆ ˆ ˆ( )γ γ γ−Ω = + + |γ1| ≤ γ0/2 … but 1 0ˆ ˆ| | / 2γ γ> is possible. Newey-West (1987): Use Kj = | |1

1j

m−

+ (Bartlett “Kernel”)

Page 11: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 11, July 21, 2008 

 

An alternative expression for ˆ ˆm

j jj m

K γ=−

Ω = ∑

Let W = (w1 w2 … wT)′ where W ~ (0, ΣWW), U = HW, U ~ (0, ΣUU) with ΣUU= HΣWWH′. Choose H so that ΣUU = D a diagonal matrix.

A useful result: with W covariance stationary (ΣWW is “special”), a particular H matrix yields (approximately) ΣUU = D (diagonal). (The u’s are the coefficients from the discrete Fourier transform of the w’s.)

Variable 2π×Variance (Dii) u1 S(0)

u2 and u3 S(1×2π/T) u4 and u5 S(2×2π/T) u6 and u7 S(3×2π/T)

… … uT−1 and uT (T odd, similar for T even) S([(T−1)/2]×2π/T)

Page 12: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 12, July 21, 2008 

 

Some algebra shows that

ˆ ˆm

j jj m

K γ=−

Ω = ∑ = 2 2( 1)/22 2 12

0 11 2

Tj j

jj

u uk u k

−+

=

⎛ ⎞++ ⎜ ⎟⎜ ⎟

⎝ ⎠∑

where the k-weights are functions (Fourier transforms) of the K-weights. The algebraic details are unimportant for our purposes – but, for those interested, they are sketched on the next slide. Jargon: the term

2 22 2 1

2j ju u +⎛ ⎞+

⎜ ⎟⎜ ⎟⎝ ⎠

is called the j’th periodogram ordinates. Because

2 22 2 1

2( ) ( ) 2j jjE u E u S

Tππ+

⎛ ⎞= = ⎜ ⎟⎝ ⎠

, the j’th periodogram ordinate is an estimate

of the spectrum at frequency (2πj/T). The important point: Evidently, Ω̂ ≥ 0 requires kj ≥ 0 for all j.

Page 13: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 13, July 21, 2008 

 

The algebra linking the data w, the u’s, the periodogram ordinates and the sample covariances parallels the expressions the spectrum presented in lecture 1. (Ref: Fuller (1976), or Priestly (1981), or Brockwell and Davis (1991)).

In particular, let cj = 1

12

jT

i tt

tw e

=∑ where ωj = 2πj/T

Then 2 2 12 2 1 2

1

ˆ| | cos( )2

Tj j

j p jp T

u uc pγ ω

−+

=− −

⎛ ⎞+= =⎜ ⎟⎜ ⎟

⎝ ⎠∑ ,

where ˆpγ = 1

1 ( )( )T

t t pt p

w w w wT −

= +

− −∑

Thus 2 22 2 1 2| |

2j j

j

u uc+⎛ ⎞+

=⎜ ⎟⎜ ⎟⎝ ⎠

is a natural estimator of the spectrum at frequency

ωj.

Page 14: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 14, July 21, 2008 

 

ˆ ˆm

j jj m

K γ=−

Ω = ∑ = 2 2( 1)/22 2 12

0 11 2

Tj j

jj

u uk u k

−+

=

⎛ ⎞++ ⎜ ⎟⎜ ⎟

⎝ ⎠∑

is then a weighted average (with weights k of the estimated spectra at difference frequencies. Because the goal is to estimate at ω = 0, the weights should concentrate around this frequency as T gets large. Jargon: Kernel (K-weights, sometimes k-weights), Lag Window (K-weights, RATS follows this notation and calls these “lwindow” in the code), Spectral Window (k-weights)

Page 15: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 15, July 21, 2008 

 

Truncated Kernel: Kj = 1(|j| ≤ m)

Spectral Weight (k) (m = 12, T=250)

Page 16: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 16, July 21, 2008 

 

Newey-West (Bartlet Kernel): Kj = 1− |1

jm|+

Spectral Weight (k) (m = 12, T=250)

Page 17: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 17, July 21, 2008 

 

Implementing Estimator (lag order, kernel choice and so forth) Parametric Estimators: AR/VAR approximations: Berk (1974) Ng and Perron (2001), lag lengths in ADF tests. Related, but different issues. Shorter lags: Larger Bias, Smaller Variance Longer lags: Smaller Bias, Larger Variance Practical advice: Choose lags a little longer than you might otherwise (rational given below).

Page 18: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 18, July 21, 2008 

 

How Should m be chosen? Andrews (1991) and Newey and West (1994): minimize mse(Ω̂ − Ω) MSE = Variance + Bias2

2 2( 1)/22 2 12

0 11

ˆ2

Tj j

jj

u uk u k

−+

=

⎛ ⎞+Ω = + ⎜ ⎟⎜ ⎟

⎝ ⎠∑

Variance: Spread the weight out over many of the squared u’s: Make the spectral weights flat.

Bias: E(Ω̂) depends on the values E 2 22 2 1

2j ju u +⎛ ⎞+

⎜ ⎟⎜ ⎟⎝ ⎠

≈ S(j×2π/T). So the bias

depends on how flat the spectrum is around ω = 0. The more flat it is, the smaller is the bias. The more curved it is, the higher is the bias.

Page 19: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 19, July 21, 2008 

 

Spectral Window (kj) for N-W/Bartlett Lag Window (Kj = 1− |1

jm|+

), T = 250. m = 5 m = 10

m = 20 m = 50

Page 20: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 20, July 21, 2008 

 

MSE minimizing values for wt = φwt−1 + et, Bartlett Kernel (note … the higher is φ, more serial correlation, more “curved” spectrum around ω = 0, more bias for given value of m.) m* = 1.1447×41/3×(φ2)1/3×T1/3 = 1.82×φ2/3×T1/3

φ m* T 100 400 1000

0.00 0 0 0 0 0.25 0.72×T1/3 3 5 7 0.50 1.15×T1/3 5 8 11 0.75 1.50×T1/3 6 11 15 0.90 1.70×T1/3 7 12 17 0.95 1.76×T1/3 8 12 17

Page 21: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 21, July 21, 2008 

 

Kernel Choice: Some Kernels (lag windows)

Page 22: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 22, July 21, 2008 

 

Does Kernel Choice Matter? In theory, yes. (QS is optimal) In practice (for psd kernels), not really.

Page 23: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 23, July 21, 2008 

 

Does lag length matter? Yes, quite a bit … yt = β + wt, wt = φwt−1 + et, T = 250. Rejection of 2-sided 10% test φ ˆ *m

AR ˆ *m (PW) m* 2×m*

0.00 0.10 0.11 0.11 0.10 0.10 0.25 0.13 0.11 0.11 0.13 0.13 0.50 0.15 0.11 0.11 0.15 0.14 0.75 0.21 0.12 0.12 0.21 0.18 0.90 0.33 0.15 0.15 0.33 0.25 0.95 0.46 0.20 0.19 0.46 0.37

(More Simulations: den Haan and Levin (1997) … available on den Haan’s web page … and other papers listed throughout these slides)

Page 24: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 24, July 21, 2008 

 

Why use more lags than MSE Optimal (Sun, Phillips, and Jin (2008) ) Intuition: z ~ N(0,σ2) , 2σ̂ an estimator of σ2 (assumed independent of z)

( ) ( ) ( )

( ) ( )

21

22 2 2 2 2

2

2 2 2 2 2 2 2 2

2 2

ˆ ˆ ˆPr Pr 1( ) ( )ˆ

1ˆ ˆ( ) ( ) '( ) ( ) ''( )2

1ˆ ˆ( ) ( ) ' ( ) ''2

z c z c E z c E g

E g E g E g

F c Bias g MSE gχ

σ σ σσ

σ σ σ σ σ σ σ

σ σ

⎛ ⎞< = < = < =⎜ ⎟

⎝ ⎠

≈ + − + −

= + × + ×

MSE … Bias2 + Variance This formula … Bias and MSE … Thus m should be bigger

Page 25: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 25, July 21, 2008 

 

IV. Making m really big m = bT where b is fixed. (Kiefer, Vogelsang and Bunzel (2000), Kiefer and Vogelsang (2002), Kiefer and Vogelsang (2005))

Bartlett … m = (T−1): ˆ ˆ( )wΩ = 1

1

| | ˆ(1 )T

jj T

jT

γ−

=− +

−∑

1

1ˆ ˆˆ ˆT

j t t j jt j

w wT

γ γ− −= +

= =∑ , and where ˆ t tw w w= − .

KV (2002) show that some rearanging yields : 2

1 1/2

1 1

ˆ ˆ ˆ( ) 2T t

jt j

w T T w− −

= =

⎛ ⎞Ω = ⎜ ⎟

⎝ ⎠∑ ∑

But, [ ]

1/2 1/2

1( )

sT d

jj

T w W s−

=

→Ω∑ , [ ]

1/2 1/2

1

ˆ ( ( ) (1))sT d

jj

T w W s sW−

=

→Ω −∑ , and [ ]

1/2

1

ˆ ( )T

jj

T w ξ⋅

=

⇒ ⋅∑ , where ξ(s) = Ω1/2(W(s)−sW(1)).

Page 26: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 26, July 21, 2008 

 

Thus

ˆ ˆ( )wΩ : 2 1

1 1/2 2

1 1 0

ˆ ˆ ˆ( ) 2 2 ( ( ) (1))T t d

jt j

w T T w W s sW ds− −

= =

⎛ ⎞Ω = →Ω −⎜ ⎟

⎝ ⎠∑ ∑ ∫

So that ˆ ˆ( )wΩ is a “robust,” but inconsistent estimator of Ω. Distributions of “t-statistics” (or other statistics using this Ω̂) will not be asymptotically normal, but large sample distributions easily tabulated (see KV (2002)).

Page 27: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 27, July 21, 2008 

 

Table of t cricitical values

F-critical values .. See KVB (DIVIDE BY 2 !)

Page 28: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 28, July 21, 2008 

 

Power “loss” (From KVB)

Page 29: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 29, July 21, 2008 

 

Size Control (Finite Sample AR(1))

Page 30: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 30, July 21, 2008 

 

(a) Advantages ... (i) Some what better size control (in Monte Carlos and in theory (Jansson (2004)). (ii) More “Robust” to serial correlation (Müller (2007). Müller proposes estimators that yield “t-statistics” with t-distributions. (b) Disadvantages ... (i) Wider confidence intervals ... In the one-dimensional regression problem a value of β–β0 chosen so that β is contained in the (true, not size-distorted) 90% HAC confidence interval with probability 0.10. The value of β is contained in the KVB 90% CI with probability 0.23. (Based on an asymptotic calculation) (ii) Robustness to volatility breaks ... No ....

Page 31: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 31, July 21, 2008 

 

KVB Cousins: (Some related work) (a) (Müller (2007): Just focus on low frequency observations. How many do you have? Periodogram ordinates at 2 j

Tπ , j = 1, 2, … (T-1)/2

Let p denote a low frequency “cutoff” … frequencies with periods greater than p are ω ≤ 2

pπ . Solving … number of periodogram ordinates with

periods ≥ p: Tp

60 years of data, p = 6 years, number of ordinates = 10. (Does not depend on sampling frequency). Müller : do inference based on these obs. Appropriately weighted these yield t-distributions for t-statisics.

Page 32: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 32, July 21, 2008 

 

(b) Panel Data: Hansen (2007). “Clustered” SEs (over T) when T is large and n is small (T → ∞ and n fixed). This too yields “t-statistics” being distributed t (with n−1 df) and appropriately constructed “F-stats” having Hotelling t-squared distribution. (c) Ibragimov and Müller (2007). Allows heterogeneity.

Page 33: Heteroskedasticity and Autocorrelation Consistent Standard …papers.nber.org/WNE/slides7-14-08/Lecture9.pdf · 2008. 7. 23. · Lecture 9 ‐ 13, July 21, 2008 The algebra linking

Lecture 9 ‐ 33, July 21, 2008 

 

HAC Bottom line(s) (1) Parametric Estimators are easy and tend to perform reasonably well. In some applications a parametric model is natural (MA(q) model for forecasting q+1 periods ahead). In other circumstances VAR-HAC is sensible. (den Haan and Levin (1997).) Think about changes in volatility. (2) Why are you estimating Ω? (a) Optimal Weighting matrix in GMM: Minimum MSE Ω̂ seems like a good idea. (Analytic results on this ?) (b) Inference: Use more lags than you otherwise would think you should in Newey-West (or other non-parametric estimators). Worried? Use KVB estimators (and their critical values for tests) or Müller (2007) versions (with t or F critical values).