hidden photons in beam dump experiments · april 26th, 2013 intensity frontier workshop based on:...

23
Hidden Photons in Beam Dump Experiments and in connection with Dark Matter Sarah Andreas DESY April 26 th , 2013 Intensity Frontier Workshop based on: 1209.6083 and 1109.2869 with M. Goodsell, C. Niebuhr, A. Ringwald

Upload: others

Post on 07-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Hidden Photons

    in Beam Dump Experiments

    and in connection with Dark Matter

    Sarah AndreasDESY

    April 26th, 2013

    Intensity Frontier Workshop

    based on: 1209.6083 and 1109.2869

    with M. Goodsell, C. Niebuhr, A. Ringwald

  • Outline

    1 Introduction

    2 Electron Beam Dump Experiments

    Production in Bremsstrahlung

    Decay & Detection

    Beam Dump Limits

    3 Hidden Dark Matter

    Toy Model

    Supersymmetric Model

    4 Conclusions & Outlook

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 1 / 21

  • Introduction

    Hidden Sector with Hidden Photon

    • Hidden Sectors in many BSM scenariose.g. string theory, supersymmetry

    • simplest scenario: HS with extra U(1)� breaking of large gauge groups yield hidden U(1)s

    e.g. heterotic or type II strings, supersymmetric models

    � hidden photon γ′ with kinetic mixing χ

    • most general Lagrangian� χ generated at loop level: χ ∼ 10−3 − 10−4

    � hidden photon mass mγ′ ∼ GeV

    HS

    γ′×γ

    γ′

    γ

    [Holdom ’86;

    Galison, Manohar ’84]

    L ⊃ − 14XµνXµν +

    χ2XµνFµν +

    12m2γ′XµX

    µ

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 2 / 21

  • Electron Beam Dump Experiments Production in Bremsstrahlung

    Production

    • γ′ emitted from e−-beamin process similar to ordinary Bremsstrahlung

    • production cross sectionWeizäcker-Williams approximation

    (replace target particle N by flux of effective photons Φ(Z))

    dσγ′

    dxe

    me→0'4 α3 χ2

    m2γ′

    Φ(Z)

    √√√√1−

    m2γ′

    E2e

    (1 +

    x2e

    3(1− xe )

    )

    σ ∝ α3Z2 χ2

    m2γ′

    ' O(10 pb)

    compared to e+e− collider case:

    σ ∝ α2χ2

    E2∼ O(10 fb)

    e−

    e−

    γ′

    E0 Eγ′ = xeEe

    nucleusZ

    e+

    γ′

    e−

    E0

    e− Eγ′

    [Kim, Tsai ’73; Tsai ’74; Tsai ’86;Bjorken, Essig, Schuster, Toro ’09]

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 3 / 21

  • Electron Beam Dump Experiments Decay & Detection

    Decay

    • γ′ can penetrate the dump� carrying most of beam energy

    � emitted in forward direction

    • decay into SM particles

    Γγ′→`+`− 'αχ2

    3mγ′

    • exponential decay with a decay length

    lγ′ = γβcτγ′ ∼Eγ′

    αχ2m2γ′

    ∼ 10cmEγ′

    1GeV

    (10−4

    χ

    )2(10MeV

    mγ′

    )2∼ O(mm− km)

    E0

    e− Eγ′

    γ′ energy

    E0 = 1.6 GeV

    γ′ emission angle

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 4 / 21

  • Electron Beam Dump Experiments Decay & Detection

    Detection

    • decay must take place withindecay volume to be observable

    • detect decay products, mostly e+e−

    no SM background (if shield long enough)

    • number of expected events from γ′ produced in bremsstrahlungdetected via decay products:

    Nevents ∼ Ne nsh∫dEγ′

    ∫dEe

    ∫dl Ie(E0, Ee , l)

    dσγ′

    dEγ′e−Lsh/lγ′

    (1− e−Ldec/lγ′

    )BRe+e−

    energy distribution Ie(E0,Ee , l) of electrons in dump has to be taken into account

    E0

    e− Eγ′

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 5 / 21

  • Electron Beam Dump Experiments Decay & Detection

    Events in Experiment

    • not all events can be detected� geometry of set-up

    � finite detector size

    � possibly energy cuts

    • compare with events from Monte Carlo simulationswith MadGraph

    � four-momentum of produced γ′

    � four-momenta of decay leptons

    → angles, track, energies

    ⇒ experimental acceptance

    [Monte Carlo by Rouven Essig, Philip Schuster, Natalia Toro]

    y@c

    mD

    x @cmD

    z @cmD

    0100

    200

    -5 05

    -5

    0

    5

    Ldec

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 6 / 21

  • Electron Beam Dump Experiments Beam Dump Limits

    Shape & Experimental Limitations

    γ′ has to penetrate O(10 cm) dump

    number of events for lγ′ � Lsh:

    Nevents ∝ Ne e−Lsh/lγ′

    lγ′ ∝ Eγ′/χ2 m2γ′

    enough decays within decay volume

    number of events for small χ:

    Nevents ∝ Ne σ(e−Lsh/lγ′ − e−Ltot/lγ′

    )∝ Ne σ

    Ldec

    lγ′for lγ′ � Lsh,dec

    ∝ Neχ2

    m2γ′

    χ2m2γ′ Ldec ∝ Ne χ4Ldec

    ⇒ independent of mγ′

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    e−Lsh/lγ′

    10−51

    10−1

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 7 / 21

  • Electron Beam Dump Experiments Beam Dump Limits

    Shape & Experimental Limitations

    γ′ has to penetrate O(10 cm) dump

    number of events for lγ′ � Lsh:

    Nevents ∝ Ne e−Lsh/lγ′

    lγ′ ∝ Eγ′/χ2 m2γ′

    enough decays within decay volume

    number of events for small χ:

    Nevents ∝ Ne σ(e−Lsh/lγ′ − e−Ltot/lγ′

    )∝ Ne σ

    Ldec

    lγ′for lγ′ � Lsh,dec

    ∝ Neχ2

    m2γ′

    χ2m2γ′ Ldec ∝ Ne χ4Ldec

    ⇒ independent of mγ′

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    experimental acceptance

    from Monte Carlo simulations

    with MadGraph

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 8 / 21

  • Electron Beam Dump Experiments Beam Dump Limits

    Shape & Experimental Limitations

    γ′ has to penetrate O(10 cm) dump

    number of events for lγ′ � Lsh:

    Nevents ∝ Ne e−Lsh/lγ′

    lγ′ ∝ Eγ′/χ2 m2γ′

    enough decays within decay volume

    number of events for small χ:

    Nevents ∝ Ne σ(e−Lsh/lγ′ − e−Ltot/lγ′

    )∝ Ne σ

    Ldec

    lγ′for lγ′ � Lsh,dec

    ∝ Neχ2

    m2γ′

    χ2m2γ′ Ldec ∝ Ne χ4Ldec

    ⇒ independent of mγ′

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    experimental acceptance

    from Monte Carlo simulations

    with MadGraph

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    +

    E0

    +

    Lsh

    factor 4

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 9 / 21

  • Electron Beam Dump Experiments Beam Dump Limits

    Shape & Experimental Limitations

    γ′ has to penetrate O(10 cm) dump

    number of events for lγ′ � Lsh:

    Nevents ∝ Ne e−Lsh/lγ′

    lγ′ ∝ Eγ′/χ2 m2γ′

    enough decays within decay volume

    number of events for small χ:

    Nevents ∝ Ne σ(e−Lsh/lγ′ − e−Ltot/lγ′

    )∝ Ne σ

    Ldec

    lγ′for lγ′ � Lsh,dec

    ∝ Neχ2

    m2γ′

    χ2m2γ′ Ldec ∝ Ne χ4Ldec

    ⇒ independent of mγ′

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    experimental acceptance

    from Monte Carlo simulations

    with MadGraph

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    + Ldec

    factor 5

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 10 / 21

  • Electron Beam Dump Experiments Beam Dump Limits

    Shape & Experimental Limitations

    γ′ has to penetrate O(10 cm) dump

    number of events for lγ′ � Lsh:

    Nevents ∝ Ne e−Lsh/lγ′

    lγ′ ∝ Eγ′/χ2 m2γ′

    enough decays within decay volume

    number of events for small χ:

    Nevents ∝ Ne σ(e−Lsh/lγ′ − e−Ltot/lγ′

    )∝ Ne σ

    Ldec

    lγ′for lγ′ � Lsh,dec

    ∝ Neχ2

    m2γ′

    χ2m2γ′ Ldec ∝ Ne χ4Ldec

    ⇒ independent of mγ′

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    experimental acceptance

    from Monte Carlo simulations

    with MadGraph

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    + Ne

    factor 10

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 11 / 21

  • Electron Beam Dump Experiments Beam Dump Limits

    Limits from Experiments

    I KEK Japan (1986) [Konaka et al. ’86]• 27 mC electrons at 2.5 GeV• shield: 3.5 cm tungsten target, 2.4 m iron• decay volume: 2.2 m

    I Orsay France (1989) [Davier, Nguyen Ngoc ’89]• 3.2 mC electrons at 1.6 GeV• shield: 65 cm tungsten target, 1 m lead• decay channel: 2 m inside concrete wall

    I SLAC E141 (1987) [Riordan et al. ’87]• 0.32 mC electrons at 9 GeV• shield: 12 cm tungsten; decay volume: 35 m

    I SLAC E137 (1988) [Bjorken et al. ’88]• 30 C electrons at 20 GeV• shield: alu, 179 m rock; decay volume: 204 m

    [SA, Niebuhr, Ringwald]

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    KEK

    Orsay

    E137

    E141

    E774

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    KEK

    Orsay

    E137

    E141

    E774SINDRUM

    CHARM

    NOMAD& PS191

    ν-Cal I

    ae aµ

    K→µνγ′ BaBarKLOE

    A1APEX

    I Fermilab E774 (1991)• 0.83 nC electrons at 275 GeV• shield: 30 cm tungsten• decay volume: 2 m

    [Bross et al. ’91]

    [Bjorken, Essig, Schuster, Toro ’09]

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 12 / 21

  • Electron Beam Dump Experiments Beam Dump Limits

    Limits from Experiments

    I KEK Japan (1986) [Konaka et al. ’86]• 27 mC electrons at 2.5 GeV• shield: 3.5 cm tungsten target, 2.4 m iron• decay volume: 2.2 m

    I Orsay France (1989) [Davier, Nguyen Ngoc ’89]• 3.2 mC electrons at 1.6 GeV• shield: 65 cm tungsten target, 1 m lead• decay channel: 2 m inside concrete wall

    I SLAC E141 (1987) [Riordan et al. ’87]• 0.32 mC electrons at 9 GeV• shield: 12 cm tungsten; decay volume: 35 m

    I SLAC E137 (1988) [Bjorken et al. ’88]• 30 C electrons at 20 GeV• shield: alu, 179 m rock; decay volume: 204 m

    [SA, Niebuhr, Ringwald]

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    KEK

    Orsay

    E137

    E141

    E774

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    KEK

    Orsay

    E137

    E141

    E774SINDRUM

    CHARM

    NOMAD& PS191

    ν-Cal I

    ae aµ

    K→µνγ′ BaBarKLOE

    A1APEX

    I Fermilab E774 (1991)• 0.83 nC electrons at 275 GeV• shield: 30 cm tungsten• decay volume: 2 m

    [Bross et al. ’91]

    [Bjorken, Essig, Schuster, Toro ’09]

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 12 / 21

  • Hidden Dark Matter

    Outline

    1 Introduction

    2 Electron Beam Dump Experiments

    3 Hidden Dark MatterToy ModelSupersymmetric Model

    4 Conclusions & Outlook

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 13 / 21

  • Hidden Dark Matter Toy Model

    Toy Model: Dirac fermion DM

    Simplest hidden sector with DF & DM

    Hidden Photon with mass mγ′ and mixing χ

    Additional Dirac fermion ψ

    I one extra mass parameter mψ

    Relic abundance Ωh2

    • annihilation of ψ through and into γ′

    • s-channel: resonance for mγ′ = 2 mψ• t-channel only when mγ′ < mψ⇒ ψ total DM or subdominant component

    [Fayet ’04; Pospelov, Ritz, Voloshin ’08; Cheung, Ruderman, Wang, Yavin ’09; Morrissey,Poland, Zurek ’09; Dudas, Mambrini, Pokorski, Romagnoni ’09; Chun, Park ’10; Essig,Kaplan, Schuster, Toro ’10; Mambrini ’10; Cline, Frey ’12; Hooper, Weiner, Xue ’12]

    10-2 10-1 1 10

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    mΓ' @GeVD

    Χ

    CoG

    eN

    T

    DAMA

    D&C

    Einasto

    XENON

    overabundant

    subdom

    inant

    mDM = 6GeV

    [SA, Goodsell, Ringwald ’11]

    χ =gY gh16π2

    × κ

    A1APEX

    HPS

    DarkLightMESA

    WMAP

    κ= 10.

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 14 / 21

  • Hidden Dark Matter Toy Model

    Toy Model: Dirac fermion DM

    Simplest hidden sector with DF & DM

    Hidden Photon with mass mγ′ and mixing χ

    Additional Dirac fermion ψ

    I one extra mass parameter mψ

    Relic abundance Ωh2

    • annihilation of ψ through and into γ′

    • s-channel: resonance for mγ′ = 2 mψ• t-channel only when mγ′ < mψ⇒ ψ total DM or subdominant component

    [Fayet ’04; Pospelov, Ritz, Voloshin ’08; Cheung, Ruderman, Wang, Yavin ’09; Morrissey,Poland, Zurek ’09; Dudas, Mambrini, Pokorski, Romagnoni ’09; Chun, Park ’10; Essig,Kaplan, Schuster, Toro ’10; Mambrini ’10; Cline, Frey ’12; Hooper, Weiner, Xue ’12]

    10-2 10-1 1 10

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    mΓ' @GeVD

    Χ

    overabundant

    subdom

    inant

    mDM = 6GeV

    [SA, Goodsell, Ringwald ’11]

    χ =gY gh16π2

    × κ

    WMAP

    κ= 0.1

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 15 / 21

  • Hidden Dark Matter Toy Model

    Toy Model: Dirac fermion DM

    Direct Detection

    • elastic scattering on nuclei• mediated by γ′

    • spin-independent vector-like interaction

    Comparison with experiments

    • signal claimsby DAMA, CoGeNT, CRESST, CDMS

    • limits on σSI : XENON10 & 100, DAMIC

    [SA, Goodsell, Ringwald ’11]

    10-2 10-1 1 10

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    mΓ' @GeVD

    Χ

    5 15 25 3510-5

    10-4

    10-3

    10-2

    10-1

    χ

    mγ′ [GeV]

    overabundant

    κ= 0.1mDM = 6GeV

    CoG

    eN

    T

    XENON10

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 16 / 21

  • Hidden Dark Matter Supersymmetric Model

    Supersymmetric Dark Force models

    • most simple anomaly-free HS:� three chiral superfields S , H+, H− charged under U(1)h

    � superpotential: W ⊃ λS SH+H−(assume MSSM in visible sector)

    • consider gravity mediation gauge med. in [Morrissey, Poland, Zurek ’09]

    � gravitino is not the LSP

    � DM can consist of stable hidden sector particle

    DM

    is either Majorana or Dirac fermion

    • hidden gauge symmetry breaking:� radiatively through running

    � induced by visible sector

    [SA, Goodsell, Ringwald ’11]

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 17 / 21

  • Hidden Dark Matter Supersymmetric Model

    Radiative breaking

    • running of Yukawa coupling λS induces breaking� choose masses & couplings at high scale

    • Majorana fermion ΨM: total & subdominant DM� axial coupling generates SD scattering

    � minor SI scattering (Higgs Portal ∼ 10−46cm−2)

    5 15 25 3510-5

    10-4

    10-3

    10-2

    10-1

    5 10 1510-41

    10-39

    10-37

    5 10 1510-41

    10-39

    10-37

    5 10 1510-48

    10-46

    10-44

    10-42

    10-40

    mDM [GeV]mγ′ [GeV]

    χ

    σSI

    p[cm

    2]

    σSD

    n[cm

    2]

    σSD

    p[cm

    2]

    [SA, Goodsell, Ringwald ’11]

    0.1≤κ≤10

    SIMPLE

    XENON100

    PICASSO

    COUPP

    ΨM

    SD

    XENON100

    XENON10

    ZeplinCDMS

    ΨM

    SD

    XENON100

    XENON100

    XENON10CDMS

    ΨM SI

    ⇒ SD in reach of experiments SI bejond reachSarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 18 / 21

  • Hidden Dark Matter Supersymmetric Model

    Visible sector induced breaking

    • via effective Fayet-Iliopoulos term� assume gravitino heavier than HS

    • Majorana & Dirac fermion as DM� ΨM: mostly SD (like rad. breaking)

    � ΨD: mostly SI (like Toy-Model, but mΨ < mγ′ )

    5 15 25 3510-4

    10-3

    10-2

    10-1

    5 15 25 3510-41

    10-39

    10-37

    5 15 25 3510-41

    10-39

    10-37

    5 15 25 35

    10-47

    10-45

    10-43

    10-41

    10-39

    10-37

    0.1≤κ≤10

    mγ′ [GeV]

    χ

    SD probe ΨM⇒ SI probe ΨD[SA, Goodsell, Ringwald ’11]

    mDM [GeV]σSI

    p[cm

    2]

    σSD

    n[cm

    2]

    σSD

    p[cm

    2]

    SIMPLE

    XENON100

    PICASSO

    COUPP

    ΨMSD

    XENON100

    XENON10

    Zeplin

    CDMS

    ΨMSD

    DAMIC

    XENON100

    XENON100

    XENON10CDMS

    ΨD

    ΨMSI

    10-2 10-1 1

    10-5

    10-4

    10-3

    10-2

    mγ′ [GeV]

    χ

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 19 / 21

  • Conclusions & Outlook

    Outline

    1 Introduction

    2 Electron Beam Dump Experiments

    3 Hidden Dark Matter

    4 Conclusions & Outlook

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 20 / 21

  • Conclusions & Outlook

    Conclusions & Outlook

    10-2 10-1 1

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    mΓ' @GeVD

    Χ

    • electron beam dump experiments� cover lower left corner of the parameter space

    � extending the limits

    . upwards requires short Lsh and/or high E0

    . downwards requires long Ldec and/or large Ne

    ? which electron beams are available in the future?

    ? can they be used parasitically for new bounds?

    • dark matter in hidden sector� viable models with large parameter space

    � SUSY models with gravity mediation also possible

    ? what is the preferred parameter space?

    ? constraints from indirect detection?

    Sarah Andreas (DESY) e–Beam Dumps & Dark Matter Intensity Frontier, 26.04.2013 21 / 21

    IntroductionElectron Beam Dump ExperimentsProduction in BremsstrahlungDecay & DetectionBeam Dump Limits

    Hidden Dark MatterToy ModelSupersymmetric Model

    Conclusions & Outlook