hidrograma unitario...final

Upload: zoly104

Post on 01-Jun-2018

334 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Hidrograma Unitario...Final..

    1/23

    HIDROGRAMA UNITARIO

    I.  OBJETIVOS

      Analizar y comprender la teoría de hidrograma Unitario

     

    Comparar los métodos para obtener diagramas unitarios

     

    Aplicar el método de diagrama unitario para obtener el caudal de una

    cuenca.

    II.  MARCO TEÓRICO.

    1.  HIDROGRAMA 1.1.  DEFINICIÓN: Es la representación gráfica de las variaciones del caudal con

    respecto al tiempo, en orden cronológico, en un lugar dado de la corriente.

    Figura 1. Hidrograma de tormenta Aislada

    Figura 2. Hidrograma Anual

    En la siguiente figura observa en el hietograma la precipitación que produce infiltración, y la que

    produce escorrentía directa, ésta última se denomina precipitación neta o efectiva. El área bajo el

  • 8/9/2019 Hidrograma Unitario...Final..

    2/23

    hidrograma, es el volumen de agua que ha pasado por el punto de aforo, en el intervalo de tiempo

    expresado en el hidrograma. También se puede observar las partes de un hidrograma.

    Figura 3. Partes o componentes del hidrograma

    Figura 4. Ubicación del punto de inicio de la curva de agotamiento

    1.2.  PARTES

  • 8/9/2019 Hidrograma Unitario...Final..

    3/23

  • 8/9/2019 Hidrograma Unitario...Final..

    4/23

     j)  Tiempo de retraso (tr), es el intervalo del tiempo comprendido entre los instantes

    que corresponden, al centro de gravedad del hietograma de la tormenta, y al centro

    de gravedad del hidrograma (Figura 6). Algunos autores reemplazan el centro de

    gravedad por el máximo, ambas definiciones serian equivalentes si los diagramas

    correspondientes fueran simétricos.

    Figura 5. Intervalos de tiempo asociados con los hidrogramas.

    Figura 6. Tiempo de retraso

    El área bajo el hidrograma, es el volumen total escurrido; el área bajo el hidrograma y arriba de lalínea de separación entre caudal base y directo, es el volumen de escurrimiento directo.

    1.3.  ANÁLISIS DE UN HIDROGRAMA:

    El escurrimiento total (Q) que pasa por un cauce, está compuesto de:

  • 8/9/2019 Hidrograma Unitario...Final..

    5/23

    Donde:Q = escurrimiento totalQd = escurrimiento directo, producido por la precipitaciónQb = flujo base, producido por aporte del agua subterránea (incluye elflujo subsuperficial)

    No todas las corrientes reciben aporte de agua subterránea, ni todas las precipitaciones provocanescurrimiento directo. Solo las precipitaciones importantes, es decir, precipitaciones intensas yprolongadas, producen un aumento significativo en el escurrimiento de las corrientes.

    Figura 7. Escurrimiento base y directo

    Las características del escurrimiento directo y del flujo base, difieren tanto, que deben tratarse

    separadamente en los problemas que involucran períodos cortos de tiempo.

    1.4.  SEPARACIÓN DEL FLUJO BASE DE UN HIDROGRAMA: Se  conoce varias técnicas

    para separar el flujo base del escurrimiento directo de un hidrograma, éstos se

    pueden agrupar en métodos simplificados y métodos aproximados.

    1.4.1. Métodos simplificados para la separación del flujo base

    A). Un método simple, consiste en admitir como límite del escurrimiento base, la línea recta AA’

    (Figura 8.1), que une el punto de origen del escurrimiento directo y sigue en forma paralela al eje

    X. Este método da buenos resultados especialmente en tormentas pequeñas donde los niveles

    freáticos no se alteran. En general sobrestima el tiempo base y el volumen de escurrimiento

    directo.

  • 8/9/2019 Hidrograma Unitario...Final..

    6/23

     

    Figura 8.1 Separación del flujo base 

    B). Como variante, se puede asignar al hidrograma del flujo base, un trazado siguiendo la línea

    recta AD, donde A es el punto de levantamiento y el punto D es el punto de inicio de la curva de

    agotamiento o donde termina el punto final del escurrimiento directo.(Figura 8.2).

    Figura 8.2 Separación del flujo base 

    C). Otra fórmula también subjetiva, es la de admitir para el hidrograma antes citado, la línea ACD(Figura 8.3); el segmento AC esquematiza la porción de la curva de descenso partiendo del caudal

    correspondiente al comienzo de la subida, y extendiéndose hasta el instante del pico del

    hidrograma, el segmento CD es una recta, que une el punto C con el punto D, escogido igual que

    en el proceso anterior.

    Figura 8.3. Separación del flujo base 

  • 8/9/2019 Hidrograma Unitario...Final..

    7/23

    1.4.2. MÉTODO APROXIMADO: Este método consiste en dibujar en papel semilogarítmico

    la curva de descenso. La curva de descenso se puede representar en forma matemática

    por una ecuación del tipo:

    Donde:

    Q = ordenada del hidrograma de descenso para el tiempo t

    Q o = ordenada del hidrograma de descenso para el tiempo to

    K = constante que depende de la cuenca

    De la ecuación (7.15) se tiene:

    1.5.  CLASIFICACIÓN:

    Según la Clasificación de hidrogramas por D. Snyder Clasifica a los hidrogramas en:

    a) 

    Hidrogramas naturales.

    b) 

    Hidrogramas sintéticos.

    c)  Hidrogramas unitarios.

    d) 

    Hidrogramas adimensionales.

    2.  METODO DEL HIDROGRAMA UNITARIO 2.1.  DEFINICIÓN:

    El método del hidrograma unitario se define como el escurrimiento directo, producido por un

    volumen de 1mm, 1 pulgada o 1 cm de lluvia en exceso que cae con una intensidad uniforme

    sobre toda el área de una cuenca durante un periodo determinado.

    Este método es aplicado a cuencas pequeñas o medianas de área menor a 5000km2 para

    obtener el hidrograma real (HR) correspondiente a cualquier tormenta recibida por la cuenca y en

    análisis del proceso de lluvia-escorrentía a escala de una cuenca. Este método se basa en

    considerar que el hidrograma de salida de una cuenca pequeña es la suma de los hidrogramaselementales de todas las subareas de la cuenca, modificados por el viaje por la cuenca y el

    almacenamiento en los cauces.

    Con el método del hidrograma unitario se podrá predecir la forma del hidrograma de la avenida

    y el gasto máximo.

  • 8/9/2019 Hidrograma Unitario...Final..

    8/23

    Tb=Tc+d

    2.2.  HIPOTESIS EN LA QUE SE BASA

    Distribución uniforme: La precipitación efectiva (lluvia neta) esta uniformemente distribuida entoda el área de la cuenca.

    Intensidad uniforme: La precipitación efectiva es de intensidad uniforme en el periodo T horas

    Tiempo base constante: Los hidrogramas generados por tormentas de la misma duración tienen el

    mismo tiempo base (Tb) a pesar de ser diferentes las láminas de precipitación efectiva,

    independientemente del volumen total escurrido.

    Linealidad o proporcionalidad: las ordenadas de todos los hidrogramas de escurrimiento directo

    con el mismo tiempo base, son proporcionales al volumen total de escurrimiento directo (alvolumen total de la lluvia efectiva)

    Como consecuencia las ordenadas de dichos hidrogramas son proporcionales entre si

  • 8/9/2019 Hidrograma Unitario...Final..

    9/23

     

    Superposición de causas y efectos,Es el hidrograma resultante de un periodo de lluvia dado, puede

    superponerse a hidrogramas resultantes de periodos lluviosos precedentes .como los hidrogramas

    producidos por las diferentes partes de la tormenta se asume que ocurren independientemente,

    el hidrograma de escurrimiento total es simplemente la suma de los hidrogramas individuales.

    2.3.  OBTEN

    CIÓN DEL

    HIDROGRAMAUNITARIO: 

  • 8/9/2019 Hidrograma Unitario...Final..

    10/23

     

    Para la obtención de un hidrograma unitario es necesario contar con una precipitación uniforme,

    el área de la cuenca, altura de la precipitación promediada sobre la cuenca y periodo a lo largo del

    cual ocurrió la precipitación efectiva.

    2.3.1.  PASOS PARA LA OBTENCIÓN DEL HIDROGRAMA UNITARIO:  Seleccionar el episodio de precipitación adecuada para la cuenca en estudio.

      Separar el caudal base de la escorrentía directa

      Calcular el volumen de escorrentía directa (Ve) del hidrograma de la tormenta, para lo cual

    debemos transformar los escurrimientos directos a volumen y acumularlos.

  • 8/9/2019 Hidrograma Unitario...Final..

    11/23

     

      Obtener la altura de la precipitación en exceso o efectiva (hp), dividiendo el volumen de

    escurrimiento directo, entre el área de la cuenca

      Obtener las ordenadas del hidrograma unitario, dividiendo las ordenadas del escurrimiento

    directo entre la altura de precipitación efectiva (lluvia en exceso).

     

    Determinar la duración efectiva separando lluvia efectiva e infiltración y viendo la duración dela lluvia efectiva (hacerlo con el índice de infiltración media, ᶲ).

    2.4.  APLICACIONES DEL HIDROGRAMA UNITARIO  Permite obtener el hidrograma de escorrentía directa correspondiente a una tormenta

    simple de igual duración y una lámina cualesquiera de precipitación efectiva o a una tormenta

    ℎ =  

     

  • 8/9/2019 Hidrograma Unitario...Final..

    12/23

    compuesta de varios periodos de igual duración y láminas cualesquiera de precipitación

    efectiva.

      Predecir el impacto de la precipitación sobre el caudal

      Predecir crecidas proporcionando estimaciones de caudales del rio a partir de la

    precipitación.

     

    Calcular el caudal que se producirá en determinado período de tiempo en base a unacantidad de precipitación efectiva

    EJEMPLO 1:

    Obtener el hidrograma unitario de una tormenta, con los siguientes datos:

    Área de la cuenca: A =3077.28km2=3077.28x106 m 2

    Duración en exceso: de 12 horas

    Hidrograma de la tormenta fila 2 de la tabla

    GRUPOAMC

    Lluvia antecedente total de 5 días (pulg)

    Estación inactiva(seca) Estación activa (de crecimiento)

    I < 0.5 < 1.4

    II 0.5 a 1.1 1.4 a 2.1

    III sobre 1.1 sobre 2.1

    Solución

    Tiempo(Hrs)

    Caudalobservado

    (m3/s)

    0 50

    12 150

    24 800

    36 600

    48 400

    60 250

    72 150

    84 120

    96 100

    108 80

    050

    100150200250300350400450500550600650700750800850

    0 10 20 30 40 50 60 70 80 90 100

       C  a  u   d  a   l  m   3   /  s

    Tiempo (Hrs)

    Hidrograma Patron

  • 8/9/2019 Hidrograma Unitario...Final..

    13/23

  • 8/9/2019 Hidrograma Unitario...Final..

    14/23

     

    2.5.  MÈTODO HIDROGRAMAS UNITARIOS SINTÉTICOS

    Para usar el método del hidrograma unitario, siempre es necesario contar con al menos un

    hidrograma medido a la salida de la cuenca, además de los registros de precipitación. Sin

    embargo, la mayor parte de las cuencas, no cuentan con una estación hidrométrica o bien con

    los registros pluviográficos necesarios. Por ello, es conveniente contar con métodos con los que

    se puedan obtener hidrogramas unitarios usando únicamente datos de características generales

    de la cuenca. Los hidrogramas unitarios así obtenidos se denominan sintéticos.

    2.6.  MÉTODO HIDROGRAMA UNITARIO TRIANGULAR

    Mockus desarrolló un hidrograma unitario sintético de forma triangular, como se muestra en la

    Figura 01 que lo usa el SCS (Soil Conservation Service), el cual a pesar de su simplicidad,

    proporciona los parámetros fundamentales del hidrograma: caudal punta (Qp), tiempo base (tb)

    y el tiempo en que se produce la punta (tp).

    La expresión del caudal punta Qp, se obtiene igualando el volumen de agua escurrido con el área

    que se encuentra bajo el hidrograma (Figura 01):

    0

    5

    10

    15

    20

    25

    30

    0100

    200

    300

    400

    500

    600

    700

    800

    900

    0 10 20 30 40 50 60 70 80 90 100 110 120

       C   a   u    d   a    l   m   3    /   s

       C   a   u    d   a    l   m   3    /   s

    Tiempo (Hrs)

    Hidrograma de la tormenta o H.U.

    H. de la tormenta

    Escurrimientobase

    H.U. de 12 Hrs

    hpe = 30mm Tiempo (h)

  • 8/9/2019 Hidrograma Unitario...Final..

    15/23

     

    Figura 01 Hidrograma unitario sintetico triangular

    Ecuación 01 --------->

    Ecuación 02 --------->

    Donde:

    Ve = Volumen de agua escurrido

    hpe = Altura de precipitación efectiva

    A = Area de la cuenca

    Ve = volumen de agua escurrido tb = tiempo base

    Qp = caudal punta

    Al igualar la ecuación (01) con la ecuación (02), y haciendo la transformación de unidades, A en

    Km2, Hpe en mm, tb en hr, y Qp en m3/s., se tiene:

    Ecuación 03 ---------  

    V =h p ∗ A 

    = ∗  ∗  

    =∗ hp ∗ Ab  

  • 8/9/2019 Hidrograma Unitario...Final..

    16/23

     

    Donde:

    Qp = caudal punta, en m3/s

    hp = altura de precipitación en exceso, en mm.

    A = área de la cuenca, en Km2

    tb = tiempo base, en hrs.

    Del análisis de varios hidrogramas, Mockus concluye que el tiempo base y el tiempo pico se

    relacionan mediante la expresión:

    Ecuación 04 ---------

    A su vez el tiempo pico se expresa como: (Figura 02):

    Ecuación 05 ----------

    Donde:

    tb = tiempo base, en hr

    tp = tiempo pico, en hr

    tr = tiempo de retraso, en hr

    de = duración en exceso, en hr

    El tiempo de retraso, se estima mediante el tiempo de concentración Tc, de la forma:

    Ecuación 06 ----------

    Donde:

    tc = tiempo de concentración, en hr

    También tr se puede estimar con la ecuación desarrollada por Chow, como:

    b =∗ 

    =  +  

    r = ∗T 

    =∗  0

     

  • 8/9/2019 Hidrograma Unitario...Final..

    17/23

      Ecuación 07 --------

    Donde:

    L= longitud del cauce principal, en m

    S= pendiente del cauce, en %

    El tiempo de concentración tc, se puede estimar con la ecuación de Kirpich. Además, la

    duración de exceso con la que se tiene mayor gasto de pico, a falta de datos, se puede calcular

    aproximadamente para cuencas grandes, como:

    Ecuación 08 -----------

    O bien, para cuencas pequeñas, como:

    Ecuación 09 -----------

    Donde:

    de= duración de exceso, en hr

    Tc= tiempo de concentración, en hr

    Sustituyendo la ecuación (04) en la ecuación (03), resulta:

    Ecuación 10 ---------

    Además, sustituyendo la ecuación (08) y la ecuación (06) en la ecuación (05), resulta:

    Ecuación 11 ----------

    Con las ecuaciones (04), (10) y (11) se calculan las características del hidrograma unitario

    triangular.

    Ejemplo:

    d e = ∗  c 

    d = T 

    P =∗ hp ∗ A  

    p =   + ∗  

  • 8/9/2019 Hidrograma Unitario...Final..

    18/23

  • 8/9/2019 Hidrograma Unitario...Final..

    19/23

  • 8/9/2019 Hidrograma Unitario...Final..

    20/23

  • 8/9/2019 Hidrograma Unitario...Final..

    21/23

    2.  Desplazando las ordenadas un tiempo de=2 horas, se obtienen las siguientes columnas de

    la Tabla.

    3.  Sumando las ordenadas de los HU desplazados, se obtiene la última columna.

    4.  Para graficar la curva S, se plotean la primera y última columna, el resultado se muestra en

    la figura.

    5.  Para graficar el hidrograma unitario, se plotean la primera y la última columna

    Obtención del HU a partir del hidrograma o curva S

    Curva S desplazada una duracion de’ 

    Para obtener el HU a partir de la curva S, se desplaza una sola vez la curva S un intervalo de tiempo

    igual a la duración en exceso de' (nueva duración en exceso). Las ordenadas del nuevo HU se

    obtienen de la siguiente manera:

    1.  La curva S obtenida a partir de un HU para una duración en exceso de, se desplaza un

    intervalo de tiempo de' (ver figura).

    2.  Para cada tiempo considerado se calcula la diferencia de ordenadas entre las curvas S.3.  Se calcula la relación K, entre las duraciones en exceso de y de’ es  decir:

    =  Dónde:

    de =duración en exceso para el HU utilizado para calcular la curva S

  • 8/9/2019 Hidrograma Unitario...Final..

    22/23

    de'=duración en exceso para el HU que se desea obtener a partir de dicha curva S

    4.  Las ordenadas del nuevo HU se obtienen multiplicando la diferencia de ordenadas entre

    curvas S (paso 2), por la constante K (paso 3).

    Ejemplo:

    A partir de la curva S obtenida en el ejemplo 2, obtener el HU para una duración en exceso de'

    =24 hr.

    Solución:

    1. Cálculo de la constante K: .................. 12/240.5 K

    2. Cálculo del HU para una de' =24 hr: (calculo ver tabla)

    3. Dibujar el H.U. En la siguiente figura se muestra la curva S. el HU para de=12 hr. y el HU para

    de'=24 hr. obtenida este último ploteando la columna (1) vs la columna (5) de la Tabla mostrada.

    3.  CONCLUSIONES: 

      Se logró analizar y comprender la teoría de hidrograma Unitario

      Logramos comparar los métodos para obtener diagramas unitarios

      Se pudo aplicar el método de diagrama unitario para obtener el caudal

    de una cuenca.

    4.  BIBLIOGRAFIA:

    Paginas web:

      http://met-ba.blogspot.com/2009/02/lluvias-acumuladas-1022009-algunas.html

  • 8/9/2019 Hidrograma Unitario...Final..

    23/23

      http://www.miliarium.com/Proyectos/EstudiosHidrogeologicos/Anejos/Metodos_Determin

    acion_Evaporacion/Unidades_Medidas_Evaporacion.asp

      http://www.atmosfera.cl/HTML/temas/INSTRUMENTACION/INSTR5.htm

      http://luisjaimes.galeon.com/pagina_nueva_4.htm

     

    http://biblioteca.universia.net/html_bura/ficha/params/title/estudio-transpiracion-esparto-

    stipa-tenacissima-l-cuenca-semiarido-alicantino-analisis/id/37573262.html

      http://www.geologia.uson.mx/academicos/lvega/ARCHIVOS/ARCHIVOS/EVAP.htm

      http://tarwi.lamolina.edu.pe/~echavarri/clase_vii_evapotranpiracion_def.pdf

    Libros:

      Hidrología, Ing. Esp. Rubén Villodas

     

    Hidrología, Máximo Villon Bejar

    http://luisjaimes.galeon.com/pagina_nueva_4.htmhttp://biblioteca.universia.net/html_bura/ficha/params/title/estudio-transpiracion-esparto-stipa-tenacissima-l-cuenca-semiarido-alicantino-analisis/id/37573262.htmlhttp://biblioteca.universia.net/html_bura/ficha/params/title/estudio-transpiracion-esparto-stipa-tenacissima-l-cuenca-semiarido-alicantino-analisis/id/37573262.htmlhttp://biblioteca.universia.net/html_bura/ficha/params/title/estudio-transpiracion-esparto-stipa-tenacissima-l-cuenca-semiarido-alicantino-analisis/id/37573262.htmlhttp://biblioteca.universia.net/html_bura/ficha/params/title/estudio-transpiracion-esparto-stipa-tenacissima-l-cuenca-semiarido-alicantino-analisis/id/37573262.htmlhttp://www.geologia.uson.mx/academicos/lvega/ARCHIVOS/ARCHIVOS/EVAP.htmhttp://tarwi.lamolina.edu.pe/~echavarri/clase_vii_evapotranpiracion_def.pdfhttp://tarwi.lamolina.edu.pe/~echavarri/clase_vii_evapotranpiracion_def.pdfhttp://www.geologia.uson.mx/academicos/lvega/ARCHIVOS/ARCHIVOS/EVAP.htmhttp://biblioteca.universia.net/html_bura/ficha/params/title/estudio-transpiracion-esparto-stipa-tenacissima-l-cuenca-semiarido-alicantino-analisis/id/37573262.htmlhttp://biblioteca.universia.net/html_bura/ficha/params/title/estudio-transpiracion-esparto-stipa-tenacissima-l-cuenca-semiarido-alicantino-analisis/id/37573262.htmlhttp://luisjaimes.galeon.com/pagina_nueva_4.htm