higgs boson physics

41
Higgs Boson Physics Ambresh Shivaji IISER Mohali, Punjab, INDIA Madgraph School 2019 IMSc Chennai, November 18-22, 2019

Upload: others

Post on 22-May-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Higgs Boson Physics

Higgs Boson Physics

Ambresh Shivaji

IISER Mohali, Punjab, INDIA

Madgraph School 2019IMSc Chennai, November 18-22, 2019

Page 2: Higgs Boson Physics

The only fundamental scalar particle known to us

Neutral under SU(3)c⇑

Q = 0⇐ Higgs Boson (H) ⇒ JCP = 0+

mH = 125.10 ± 0.14 GeVΓH < 0.013 GeV (95% CL)

Its discovery at the LHC (pp collider,√

s = 7 + 8 TeV) was announcedin 2012 by the ATLAS and CMS collaborations.

Page 3: Higgs Boson Physics

Standard Model and Electroweak Symmetry Breaking

In the Standard Model (SM), the electroweak (EW) interactions are described bySU(2)L × U(1)Y gauge symmetry group.

Existance of massive gauge bosons of EW interactions =⇒ EW symmetry is broken.

The EWSB is realized with the help of a complex scalar SU(2)L doublet Φ =(φ+

φ0

).

LHiggs = |DµΦ|2 −∑fyf L̄fΦRf − V(Φ)

V(Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2

〈Φ〉 =1√

2

(0v

)⇒ mW ,mZ ,mf (v ∼ 246 GeV)

Φ =1√

2

(0

v + H

)⇒ Higgs mass and Higgs couplings

Page 4: Higgs Boson Physics

Couplings of the Higgs Boson

LHiggs = |DµΦ|2 −∑fyf L̄fΦRf − V(Φ)

V (Z,W )

H

f

κV κF κλ

Couplings are proportional to the masses. Notice the mass dependence.

I Higgs couplings with gaugebosons (κV) and with heavyfermions (κF) are know withan accuracy of 10-20%.

I Higgs-self couplings arepractically unconstrained.More about them later...

Page 5: Higgs Boson Physics

Single Higgs Production

State-of-the-art calculations and MC tools

Page 6: Higgs Boson Physics

Single Higgs Production: ggFDominant production channel, it’s a loop-induced process. Indirectly sensitive totop-Yukawa coupling.

Mµν = B00 gµν + B11 pνqµ (1)

Gauge invariance (Mµνpµ =Mµνqν = 0) and on-shell conditions⇒ B11 = −B00/p.q, where p.q = m2

H/2.

B00 =Mµν 1

2

(gµν −

pνqµ

p.q

)(2)

At LO, B00 ≡ m2q[(16m2

q − 8p.q)C0 + 8], where,

C0 =

∫d4`

1

(`2 −m2q)((` + p)2 −m2

q)((` − q)2 −m2q)

(3)

Page 7: Higgs Boson Physics

Single Higgs Production: ggF

The LO result depends on mq and mH .

In mq →∞ limit, the amplitude becomes independent of the quark mass in the loop.Note that the amplitude does not vanish⇒ violation of Decoupling theorem.

Mµν →αs3πv(p.q gµν − pνqµ) (4)

We get and effective ggH vertex.

This feature can be utilized to probe the existence of heavy up or down type quarksbeyond SM.

Page 8: Higgs Boson Physics

Single Higgs Production: ggF

The effective ggH vertex can be obtained from an effective Lagrangian (HEFT),

Leff = −14(1 −

αs3π

Hv)GµνGµν (5)

Exercise: Derive the Feynman Rules.

The effective Lagrangian is useful in calculating higher order corrections to gg → H.For example, at NLO

Page 9: Higgs Boson Physics

Single Higgs Production: ggFExact vs HEFT

Scale dependence and pT (H) distribution

More on NLO in Huasheng Shao’s Talk...

Page 10: Higgs Boson Physics

Single Higgs Production: ggF

The most updated result for 13 TeV LHC, mH = 125 GeV and µF = µR = mH/2:

σggH = 48.58 pb+4.56%−6.72%

(Theory)

Page 11: Higgs Boson Physics

Single Higgs Production: VBF

Characteristic features:two hard jets in the forward and backward regions of the detector.no gluon radiation from central-rapidity region

These features allow to distinguish themfrom gg → H + 2j andqq′ → VH → H + 2j

Sensitive to VVH couplings. Results known at NNLO (QCD) and NLO(EW).

Page 12: Higgs Boson Physics

Single Higgs Production: VH

Drell-Yan like production, sensitive to VVH couplings.

Channel through which H → bb̄ isdetected in the boosted regime.

Results known at NNLO (QCD) (including NLO correction to loop-inducedgg → ZH) and NLO(EW).

Page 13: Higgs Boson Physics

Single Higgs Production: ttHDirectly sensitive to the top-Yukawa coupling. Has been observed recently.

NLO QCD corrections increase the cross section by 20%. NLO EW are also known.

Page 14: Higgs Boson Physics

Single Higgs ProductionPDG2017

Signal strength for production, µi =σExp.(i → H)σSM(i → H)

. Assuming SM Higgs BRs,

Page 15: Higgs Boson Physics

Higgs Boson Decay

Computation of decay width is required to interpret the experimentaldata.

mH = 125 GeV

Page 16: Higgs Boson Physics

Higgs Boson Decay to Fermions

H → bb̄ is the dominant decay mode among all, followed byH → τ+τ− and H → cc̄ .Known up to N4LO (QCD) and NLO (EW).

Page 17: Higgs Boson Physics

Higgs Boson Decay to Gauge Bosons

For mH = 125 GeV, one of the two vector bosons is always off-shell.

Invisible decay mode: H → ZZ ∗ → 4ν.

WW ∗ and ZZ ∗ interfere in 2`2ν final state.

Page 18: Higgs Boson Physics

Higgs Boson Decay to Gauge Bosons

H → 4` (2e2µ) (4e) (4µ) is very clean, allows reconstruction of theHiggs mass.

Has been the discovery mode.

Page 19: Higgs Boson Physics

Higgs Boson Decay to Gauge BosonsH → ZZ ∗ → 4` decay mode can be utilized to fix the spin and CP-properties of theHiggs boson.

CP-even (red) vs CP-odd (blue)

Page 20: Higgs Boson Physics

Higgs Boson Decay to Gauge Bosons

Loop-induced decay to di-photon.

Dominated by W-loop contribution.Destructive intereference between t-loop and W-loop contributions.No decoupling for large loop masses.

Page 21: Higgs Boson Physics

Higgs Boson Decay to Gauge Bosons

Another Higgs discovery mode.

H → Zγ is also loop-induced decay but it’s very rare.

Page 22: Higgs Boson Physics

Higgs Boson Decay

Signal strength for decay, µf =BRExp.

H→f

BRSMH→f

. Assuming SM production

rates,

Page 23: Higgs Boson Physics

Higgs Boson Mass

ATLAS and CMS collaborations rely on the two high mass resolutionand sensitive channels, H → γγ and H → ZZ ∗ → 4`.

Page 24: Higgs Boson Physics

Higgs Boson WidthΓSMH = 4.07 MeV+4.0%

−3.9%for mH = 125 GeV

Sensitivity to Higgs decay width via intereference effect. For example, theinterference effect between the signal: gg → h→ γγ and background: gg → γγ

1704.08259

Page 25: Higgs Boson Physics

Double Higgs ProductionCan provide information on Higgs-self coupling parameter (λ).

Page 26: Higgs Boson Physics

Double Higgs Production

10-1

100

101

102

-4 -3 -2 -1 0 1 2 3 4

σ(N

)LO

[fb]

λ/λSM

pp→HH (EFT loop-improved)pp→HHjj (VBF)

pp→ttHH

pp→WHH

pp→ZHH pp→tjHH

HH production at 14 TeV LHC at (N)LO in QCDMH=125 GeV, MSTW2008 (N)LO pdf (68%cl)

MadGraph5_aMC@NLO

Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the√s =14 TeV LHC as a function of the

self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale andPDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.

Grant Agreement numbers PITN-GA-2010-264564 (LHCPhe-noNet) and PITN-GA-2012-315877 (MCNet). The work ofFM and OM is supported by the IISN “MadGraph” con-vention 4.4511.10, by the IISN “Fundamental interactions”convention 4.4517.08, and in part by the Belgian FederalScience Policy Office through the Interuniversity Attrac-tion Pole P7/37. OM is "Chercheur scientifique logistiquepostdoctoral F.R.S.-FNRS".

References

[1] F. Englert and R. Brout, Phys.Rev.Lett. 13, 321 (1964).[2] P. W. Higgs, Phys.Rev.Lett. 13, 508 (1964).[3] CMS-HIG-13-003. CMS-HIG-13-004. CMS-HIG-13-006. CMS-

HIG-13-009. (2013).[4] ATLAS-CONF-2013-009. ATLAS-CONF-2013-010. ATLAS-

CONF-2013-012. ATLAS- CONF-2013-013. (2013).[5] E. Asakawa, D. Harada, S. Kanemura, Y. Okada, and

K. Tsumura, Phys.Rev. D82, 115002 (2010), arXiv:1009.4670[hep-ph] .

[6] S. Dawson, E. Furlan, and I. Lewis, Phys.Rev. D87, 014007(2013), arXiv:1210.6663 [hep-ph] .

[7] R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini,et al., JHEP 1208, 154 (2012), arXiv:1205.5444 [hep-ph] .

[8] G. D. Kribs and A. Martin, Phys.Rev. D86, 095023 (2012),arXiv:1207.4496 [hep-ph] .

[9] M. J. Dolan, C. Englert, and M. Spannowsky, Phys.Rev. D87,055002 (2013), arXiv:1210.8166 [hep-ph] .

[10] M. J. Dolan, C. Englert, and M. Spannowsky, JHEP 1210, 112(2012), arXiv:1206.5001 [hep-ph] .

[11] M. Gouzevitch, A. Oliveira, J. Rojo, R. Rosenfeld, G. P. Salam,et al., JHEP 1307, 148 (2013), arXiv:1303.6636 [hep-ph] .

[12] T. Plehn, M. Spira, and P. Zerwas, Nucl.Phys. B479, 46 (1996),arXiv:hep-ph/9603205 [hep-ph] .

[13] S. Dawson, S. Dittmaier, and M. Spira, Phys.Rev. D58, 115012(1998), arXiv:hep-ph/9805244 [hep-ph] .

[14] T. Binoth, S. Karg, N. Kauer, and R. Ruckl, Phys.Rev. D74,113008 (2006), arXiv:hep-ph/0608057 [hep-ph] .

[15] J. Baglio, A. Djouadi, R. Gröber, M. Mühlleitner, J. Quevillon,et al., JHEP 1304, 151 (2013), arXiv:1212.5581 [hep-ph] .

[16] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer,H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, to appear .

[17] The code can be downloaded at:https://launchpad.net/madgraph5,http://amcatnlo.cern.ch.

[18] U. Baur, T. Plehn, and D. L. Rainwater, Phys.Rev.Lett. 89,151801 (2002), arXiv:hep-ph/0206024 [hep-ph] .

[19] V. Hirschi et al., JHEP 05, 044 (2011), arXiv:1103.0621 [hep-ph].

[20] A. Denner, S. Dittmaier, M. Roth, and D. Wackeroth,Nucl.Phys. B560, 33 (1999), arXiv:hep-ph/9904472 [hep-ph] .

[21] A. Denner, S. Dittmaier, M. Roth, and L. Wieders, Nucl.Phys.B724, 247 (2005), arXiv:hep-ph/0505042 [hep-ph] .

[22] Q. Li, Q.-S. Yan, and X. Zhao, (2013), arXiv:1312.3830 [hep--ph] .

[23] P. Maierhöfer and A. Papaefstathiou, (2013), arXiv:1401.0007[hep-ph] .

[24] J. Grigo, J. Hoff, K. Melnikov, and M. Steinhauser, Nucl.Phys.B875, 1 (2013), arXiv:1305.7340 [hep-ph] .

[25] D. de Florian and J. Mazzitelli, Phys. Rev. Lett. 111, 201801(2013), 10.1103/PhysRevLett.111.201801, arXiv:1309.6594[hep-ph] .

[26] D. Y. Shao, C. S. Li, H. T. Li, and J. Wang, JHEP07, 169(2013), arXiv:1301.1245 [hep-ph] .

6

Dominant production mode is via gluon fusion.

The two diagrams interefere destructively.

Page 27: Higgs Boson Physics

Double Higgs Production

[1608.04798]

Page 28: Higgs Boson Physics

Summary

Being the only fundamental scalar, Higgs has every special place inthe particle spectrum of the SM.

We now know its mass (∼ 125 GeV) and its couplings with heavyfermions and gauge bosons are determined with an accuracy of10-20%.

It has a very narrow width (∼ 4 MeV).

The information on Higgs self-couplings is not available.

Page 29: Higgs Boson Physics

Higgs self-couplings

VSM(Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2

EWSB⇒ V(H) =12m2HH

2 + λ3vH3 +14λ4H4.

λ3 λ4

H

H

H

The mass and the self-couplings of the Higgs boson depend only on λ andv = (

√2Gµ)−1/2,

m2H = 2λv2; λSM3 = λSM4 = λ.

mH = 125 GeV and v ∼ 246 GeV,⇒ λ ' 0.13 .

Presence of new physics at higher energy scales can contribute to the Higgs potentialand modify the Higgs self-couplings.

Independent measurements of λ3 and λ4 are crucial.

Page 30: Higgs Boson Physics

Direct determination of Higgs self-couplings

Information on λ3 and λ4 can be extracted by studying multi-Higgs productionprocesses.

H

H

H

H

H

λ3 λ4

t

10-1

100

101

102

-4 -3 -2 -1 0 1 2 3 4

σ(N

)LO

[fb]

λ/λSM

pp→HH (EFT loop-improved)pp→HHjj (VBF)

pp→ttHH

pp→WHH

pp→ZHH pp→tjHH

HH production at 14 TeV LHC at (N)LO in QCDMH=125 GeV, MSTW2008 (N)LO pdf (68%cl)

MadGraph5_aMC@NLO

Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the√s =14 TeV LHC as a function of the

self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale andPDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.

Grant Agreement numbers PITN-GA-2010-264564 (LHCPhe-noNet) and PITN-GA-2012-315877 (MCNet). The work ofFM and OM is supported by the IISN “MadGraph” con-vention 4.4511.10, by the IISN “Fundamental interactions”convention 4.4517.08, and in part by the Belgian FederalScience Policy Office through the Interuniversity Attrac-tion Pole P7/37. OM is "Chercheur scientifique logistiquepostdoctoral F.R.S.-FNRS".

References

[1] F. Englert and R. Brout, Phys.Rev.Lett. 13, 321 (1964).[2] P. W. Higgs, Phys.Rev.Lett. 13, 508 (1964).[3] CMS-HIG-13-003. CMS-HIG-13-004. CMS-HIG-13-006. CMS-

HIG-13-009. (2013).[4] ATLAS-CONF-2013-009. ATLAS-CONF-2013-010. ATLAS-

CONF-2013-012. ATLAS- CONF-2013-013. (2013).[5] E. Asakawa, D. Harada, S. Kanemura, Y. Okada, and

K. Tsumura, Phys.Rev. D82, 115002 (2010), arXiv:1009.4670[hep-ph] .

[6] S. Dawson, E. Furlan, and I. Lewis, Phys.Rev. D87, 014007(2013), arXiv:1210.6663 [hep-ph] .

[7] R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini,et al., JHEP 1208, 154 (2012), arXiv:1205.5444 [hep-ph] .

[8] G. D. Kribs and A. Martin, Phys.Rev. D86, 095023 (2012),arXiv:1207.4496 [hep-ph] .

[9] M. J. Dolan, C. Englert, and M. Spannowsky, Phys.Rev. D87,055002 (2013), arXiv:1210.8166 [hep-ph] .

[10] M. J. Dolan, C. Englert, and M. Spannowsky, JHEP 1210, 112(2012), arXiv:1206.5001 [hep-ph] .

[11] M. Gouzevitch, A. Oliveira, J. Rojo, R. Rosenfeld, G. P. Salam,et al., JHEP 1307, 148 (2013), arXiv:1303.6636 [hep-ph] .

[12] T. Plehn, M. Spira, and P. Zerwas, Nucl.Phys. B479, 46 (1996),arXiv:hep-ph/9603205 [hep-ph] .

[13] S. Dawson, S. Dittmaier, and M. Spira, Phys.Rev. D58, 115012(1998), arXiv:hep-ph/9805244 [hep-ph] .

[14] T. Binoth, S. Karg, N. Kauer, and R. Ruckl, Phys.Rev. D74,113008 (2006), arXiv:hep-ph/0608057 [hep-ph] .

[15] J. Baglio, A. Djouadi, R. Gröber, M. Mühlleitner, J. Quevillon,et al., JHEP 1304, 151 (2013), arXiv:1212.5581 [hep-ph] .

[16] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer,H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, to appear .

[17] The code can be downloaded at:https://launchpad.net/madgraph5,http://amcatnlo.cern.ch.

[18] U. Baur, T. Plehn, and D. L. Rainwater, Phys.Rev.Lett. 89,151801 (2002), arXiv:hep-ph/0206024 [hep-ph] .

[19] V. Hirschi et al., JHEP 05, 044 (2011), arXiv:1103.0621 [hep-ph].

[20] A. Denner, S. Dittmaier, M. Roth, and D. Wackeroth,Nucl.Phys. B560, 33 (1999), arXiv:hep-ph/9904472 [hep-ph] .

[21] A. Denner, S. Dittmaier, M. Roth, and L. Wieders, Nucl.Phys.B724, 247 (2005), arXiv:hep-ph/0505042 [hep-ph] .

[22] Q. Li, Q.-S. Yan, and X. Zhao, (2013), arXiv:1312.3830 [hep--ph] .

[23] P. Maierhöfer and A. Papaefstathiou, (2013), arXiv:1401.0007[hep-ph] .

[24] J. Grigo, J. Hoff, K. Melnikov, and M. Steinhauser, Nucl.Phys.B875, 1 (2013), arXiv:1305.7340 [hep-ph] .

[25] D. de Florian and J. Mazzitelli, Phys. Rev. Lett. 111, 201801(2013), 10.1103/PhysRevLett.111.201801, arXiv:1309.6594[hep-ph] .

[26] D. Y. Shao, C. S. Li, H. T. Li, and J. Wang, JHEP07, 169(2013), arXiv:1301.1245 [hep-ph] .

6

100755033251413

100

10−1

pp→HH

HLO

FT

pp→HH

HNL

OFT

approx

Mad

Graph5aM

C@NLO

MH=125 GeV, MSTW2008 (N)LO pdf (68%cl)

HHH production at pp colliders

. .

-

√s[TeV]

σ(N

)LO[fb]

[Frederix et al. ‘14, 1408.6542]Very challenging due to small cross sections: ∼33 fb (HH), ∼ 0.1 fb (HHH)Compare it with the single Higgs production (gg → H) cross section: ∼ 50 pb

Page 31: Higgs Boson Physics

Current and future experimental sensitivity (κλ = λ3/λSM3 )

ATLAS (HL-LHC, 2b2γ): [ATL-PHYS-PUB-2017-001],

κλ < −0.8 and κλ >∼ 7.7

Bounds are sensitive to κt value.

Page 32: Higgs Boson Physics

Indirect determination of λ3 in single Higgs

g

g

tH

HH

H

W

γ

γ

Gorbahn, Haisch: 1607.03773; Degrassi, Giardino, Maltoni, Pagani: 1607.04251;Bizon, Gorbahn, Haisch, Zanderighi: 1610.05771; Di Vita, Grojean, Panico,Riembau, Vantalon: 1704.01953; Maltoni, Pagani, AS, Zhao: 1709.08649

Master formula: Anomalous trilinear coupling (κ3 = λ3/λSM3 )

ΣBSMNLO = ZBSM

H [ΣLO(1 + κ3C1 + δZH ) + ∆SMNLO]

ZBSMH =

11 − (κ2

3 − 1)δZH, δZH = −1.536 × 10−3

Page 33: Higgs Boson Physics

Current and future reach at the LHC

0

1

2

3

4

5

−4.7 −1.3 1 2.9 7.9 12.6

χ2min/d.o.f. = 1.3

∆χ2

κ3

13TeV data

0

2

4

6

8

10

−9 −7 −5 −3 −1 1 3 5 7 9 11 13 15

S2

−2∆

lnL

κ3

ggFVBF

tt̄H,tottt̄H,difVH,totVH,dif

Plot by Xiaoran 1709.08649

13 TeV:−4.7 < κ3 < 12.6

HL-LHC:

−2 . κ3 . 8

Page 34: Higgs Boson Physics

CMS Projections: HL-LHCtH + ttH: using the calculation of Maltoni, Pagani, AS, Zhao:1709.08649

λκ10− 5− 0 5 10 15 20

ln L

∆-2

0

1

2

3

4

5

6Simulation Preliminary CMS Phase-2 TeV) (14-13 ab

= 1tκ

68% CL

95% CL

w/ YR18 syst. uncert.

Stat. uncert. only

Hadronic categories only

Leptonic categories only

λκ10− 5− 0 5 10 15

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ln L

∆-2

2

4

6

8

10

12

14

Simulation Preliminary CMS Phase-2 TeV) (14-13 ab

SM

68% CL

95% CL

[CMS-PAS-FTR-18-020]

−3 . κλ . 13

Question: Can we extend this strategy to double Higgs production ?Maltoni, Pagani, Zhao: 1802.07616; Bizon, Haisch, Rottoli: 1810.04665; Borowka,Duhr, Maltoni, Pagani, AS, Zhao: 1811.12366

Page 35: Higgs Boson Physics

Indirect determination of λ4 in double Higgs

At LO, the gg → HH amplitude is sensitive to only λ3.

λ4 affects gg → HH amplitude at two-loop level via NLO EW corrections.

EFT framework is necessary in order to vary cubic and quartic couplingsindependently in a consistent way.

V NP(Φ) ≡

∞∑n=3

c2n

Λ2n−4

(Φ†Φ −

12v2

)n

.

This also ensures gauge invariance and UV finiteness in our calculation.

Page 36: Higgs Boson Physics

NP Paramterization

V (H) =12m2

HH2 + λ3vH3 +14λ4H4 + λ5

H5

v+O(H6) ,

κ3 ≡λ3

λSM3

= 1 +c6v2

λΛ2 ≡ 1 + c̄6,

κ4 ≡λ4

λSM4

= 1 +6c6v2

λΛ2 +4c8v4

λΛ4 ≡ 1 + 6c̄6 + c̄8 .

We can trade κ3 and κ4 with parameters c̄6 and c̄8.

c̄6 ≡c6v2

λΛ2 = κ3 − 1 ,

c̄8 ≡4c8v4

λΛ4 = κ4 − 1 − 6(κ3 − 1) .

Page 37: Higgs Boson Physics

The Phenomenological quantity of interestInclusive/differential cross section

σphenoNLO = σLO + ∆σc̄6 + ∆σc̄8 ,

EFT insertion at one-loop :

σLO = σ0 + σ1c̄6 + σ2c̄26 ,

EFT insertions at two-loop :

∆σc̄6 = c̄26

[σ30c̄6 + σ40c̄2

6

]+ σ̃20c̄2

6 ,

∆σc̄8 = c̄8

[σ01 + σ11c̄6 + σ21c̄2

6

],

Taking an agnostic view on possible values of κ3 and κ4, we haveignored the SM EW corrections, and have kept highest powers of c̄6 in∆σc̄6 .The quantity ∆σc̄8 is the most relevant part of our computation and itsolely induces the sensitivity on c̄8.We assume that higher order QCD corrections factorize fromtwo-loop EW effects.

Page 38: Higgs Boson Physics

Relevant two-loop topologies

Non-factorizable, factorizable and counterterms:

(b)

(d)

(f)(e)

(j)

(k) (ℓ)

(c)

(a)

g

g

t

H

H

(i)

(g) (h)

G0

Page 39: Higgs Boson Physics

Effect on inclusive cross sectionFor αs , µR = µF =

12m(HH) while µEFT = 2mH .

One-loop:√

s [TeV] σ0 [fb] σ1 [fb] σ2 [fb]14 19.49 -15.59 5.414

- (-80.0%) (27.8%)100 790.8 -556.8 170.8

- (-70.5%) (21.6%)

Two-loop:√

s [TeV] σ̃20 [fb] σ30 [fb] σ40 [fb] σ01 [fb] σ11 [fb] σ21 [fb]14 0.7112 -0.5427 0.0620 0.3514 -0.0464 -0.1433

(3.6%) (-2.8%) (0.3%) (1.8%) (-0.2%) (-0.7%)100 24.55 -16.53 1.663 12.932 -0.88 -4.411

(3.1%) (-2.1%) (0.2%) (1.6%) (-0.1%) (-0.6%)

Cross sections grow considerably with energy. The contributions(numbers in brackets) from c̄6 and c̄8 slowly decrease wrt the SM LOprediction.

Page 40: Higgs Boson Physics

Effect on differential cross sectionOne-loop

0.0001

0.001

0.01

0.1

1

10

300 400 500 600 700 800 900 1000

σ[fb]

m(HH) [GeV]

σ0

σ1

σ2

Two-loop

1× 10−8

1× 10−7

1× 10−6

1× 10−5

0.0001

0.001

0.01

0.1

1

300 400 500 600 700 800 900 1000

σ[fb]

m(HH) [GeV]

σ̃20

σ30

σ40

1× 10−6

1× 10−5

0.0001

0.001

0.01

0.1

300 400 500 600 700 800 900 1000

σ[fb]

m(HH) [GeV]

σ01

σ11

σ21

The dashed lines show absolute values of -ve contributions.

Page 41: Higgs Boson Physics

Projections for 100 TeV pp collider

−30

−20

−10

0

10

20

30

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

c̄ 8

c̄6

68% CL (flat µ-bin)68% CL

95% CL (flat µ-bin)95% CL

100 TeV30 ab−1

−30

−20

−10

0

10

20

30

−5 −4 −3 −2 −1 0 1 2 3 4 5

c̄ 8

c̄6

HHH(εb = 60%)HHH(εb = 80%)

HH

100 TeV30 ab−1

95% CL

For κ3 = 1, at 95% CL

−6 . κ4 . 18 [Direct from HHH(4b2γ)]

−4.2 . κ4 . 6.7 [Indirect from HH(2b2γ)]

At 100 TeV pp collider, the HH channel would be more sensitive toindependent variation in self-couplings than HHH channel.