high-resolution analysis of the least distortion of fixed ... · least distortion of fixed-rate...

24
Z-1 High-Resolution Analysis of the Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine an approximate formula for the distortion of an optimal k-dimensional quantizer with dimension k and size M, assuming M is large. That is, we wish to find an approximate formula for the OPTA function δ(k,M) when M is large. To do this, we begin with the Bennett integral approximation to distortion: D 1 M 2/k m( x) λ 2/k ( x) f X ( x) d x A first thought is to find functions λ( x) and m( x) that minimize Bennett's integral, and then substitute these into the integral to find the least possible distortion. This is indeed a reasonable approach, which we shall take. However, we need to take into account the fact that λ( x) and m( x) are not arbitrary functions. Rather they represent a quantization density and an inertial profile, respectively. Thus, we must make sure to minimize Bennett's integral over the set of functions λ( x) and m( x) that are potential quantization densities and inertial profiles, respectively. On the one hand it is easy to say what functions are potential quantization densities is -- any nonnegative Z-2 function that integrates to one is a potential quantization density. On the other hand, it is more challenging to say what functions are potential inertial profiles. We would obviously like m( x) to be as small as possible. But it is not easy to say how small it can be. In what follows we first show that the best inertial profile is a constant. We next find the best quantization density. Finally we substitute these into Bennett's integral to determine what is called Zador's formula as an approximation to the OPTA function δ(k,M).

Upload: others

Post on 13-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-1

Hig

h-R

esol

utio

n A

naly

sis

of th

e

Leas

t Dis

tort

ion

of F

ixed

-Rat

e V

ecto

r Q

uant

izer

s:

Zad

or's

For

mul

a

We

wis

h to

use

hig

h-re

solu

tion

anal

ysis

to d

eter

min

e an

app

roxi

mat

e fo

rmul

afo

r th

e di

stor

tion

of a

n op

timal

k-d

imen

sion

al q

uant

izer

with

dim

ensi

on k

and

size

M,

assu

min

g M

is

larg

e. T

hat i

s, w

e w

ish

to fi

nd a

n ap

prox

imat

efo

rmul

a fo

r th

e O

PT

A fu

nctio

n δ

(k,M

) w

hen

M i

s la

rge.

To

do th

is, w

e be

gin

with

the

Ben

nett

inte

gral

app

roxi

mat

ion

to d

isto

rtio

n:

D

1

M2/

k

⌡⌠

m(x

)λ2/

k

(x) f

X(x

) dx

A fi

rst t

houg

ht is

to fi

nd fu

nctio

ns λ

( x)

and

m(x

) th

at m

inim

ize

Ben

nett'

sin

tegr

al, a

nd th

en s

ubst

itute

thes

e in

to th

e in

tegr

al to

find

the

leas

t pos

sibl

edi

stor

tion.

Thi

s is

inde

ed a

rea

sona

ble

appr

oach

, whi

ch w

e sh

all t

ake.

How

ever

, we

need

to ta

ke in

to a

ccou

nt th

e fa

ct th

at λ

(x)

and

m(x

) a

re n

otar

bitr

ary

func

tions

. R

athe

r th

ey r

epre

sent

a q

uant

izat

ion

dens

ity a

nd a

nin

ertia

l pro

file,

res

pect

ivel

y. T

hus,

we

mus

t mak

e su

re to

min

imiz

e B

enne

tt's

inte

gral

ove

r th

e se

t of f

unct

ions

λ(x

) a

nd m

(x)

that

are

pot

entia

l qua

ntiz

atio

nde

nsiti

es a

nd in

ertia

l pro

files

, res

pect

ivel

y. O

n th

e on

e ha

nd it

is e

asy

to s

ayw

hat f

unct

ions

are

pot

entia

l qua

ntiz

atio

n de

nsiti

es is

--

any

non

nega

tive

Z-2

func

tion

that

inte

grat

es to

one

is a

pot

entia

l qua

ntiz

atio

n de

nsity

. O

n th

e ot

her

hand

, it i

s m

ore

chal

leng

ing

to s

ay w

hat f

unct

ions

are

pot

entia

l ine

rtia

l pro

files

.W

e w

ould

obv

ious

ly li

ke m

(x)

to b

e as

sm

all a

s po

ssib

le.

But

it is

not

eas

y to

say

how

sm

all i

t can

be.

In w

hat f

ollo

ws

we

first

sho

w th

at th

e be

st in

ertia

l pro

file

is a

con

stan

t. W

ene

xt fi

nd th

e be

st q

uant

izat

ion

dens

ity.

Fin

ally

we

subs

titut

e th

ese

into

Ben

nett'

s in

tegr

al to

det

erm

ine

wha

t is

calle

d Z

ador

's fo

rmul

a as

an

appr

oxim

atio

n to

the

OP

TA

func

tion

δ(k

,M).

Page 2: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-3

Bes

t Ine

rtia

l Pro

file

The

follo

win

g fa

ct a

nd it

s pr

oof w

ere

disc

usse

d in

cla

ss.

It sh

ould

be

follo

wed

with

a d

iscu

ssio

n le

adin

g to

m* k.

How

ever

, I h

ave

foun

d a

mor

e di

rect

app

roac

hto

det

erm

inin

g th

e be

st in

ertia

l pro

file

and

m* k.

It r

epla

ces

Fac

t 1 w

ith F

act 2

.T

houg

h fo

r co

mpl

eten

ess,

I ha

ve le

ft F

act 1

her

e, o

ne m

ay s

kip

ahea

d di

rect

ly to

the

"Mor

e D

irect

App

roac

h".

• F

act 1

: Le

t f X

(x)

and

λ(x

) b

e k-

dim

ensi

onal

pro

babi

lity

and

quan

tizat

ion

dens

ities

, res

pect

ivel

y.

The

n fo

r al

l suf

ficie

ntly

larg

e in

tege

r M

, ev

ery

k-

dim

ensi

onal

qua

ntiz

er w

ith s

ize

M,

quan

tizat

ion

dens

ity λ

, an

d sm

alle

stm

ean-

squa

red

erro

r fo

r th

e pr

obab

ility

den

sity

f h

as c

onst

ant i

nert

ial p

rofil

e.

We

can

conc

lude

from

this

fact

that

the

best

iner

tial p

rofil

e is

a c

onst

ant.

•S

ketc

h of

Pro

of1 :

We'

ll ar

gue

that

if a

qua

ntiz

er's

iner

tial p

rofil

e m

(x)

is n

otco

nsta

nt, t

hen

the

quan

tizer

can

be

impr

oved

, i.e

. it i

s do

es n

ot h

ave

the

smal

lest

pos

sibl

e M

SE

for

the

give

n k

, M, λ

and

f X.

The

con

trap

ositi

ve o

f thi

sst

atem

ent i

s: I

f a q

uant

izer

has

sm

alle

st p

ossi

ble

MS

E, t

hen

its in

ertia

l pro

file

is a

con

stan

t, w

hich

is th

e de

sire

d fa

ct.

If th

e in

ertia

l pro

file

m(x

) o

f a q

uant

izer

is n

ot a

con

stan

t, th

en th

ere

exis

tspo

ints

xb

and

xg

suc

h th

at m

(xb)

> m

(xg)

. M

oreo

ver,

sin

ce m

is

a sm

ooth

func

tion,

ther

e ex

ists

a s

mal

l reg

ion

B s

uch

that

m(x

) >

m(x

g) f

or a

ll x

∈B

.("

b" is

for

"bad

' and

"g"

is fo

r "g

ood"

.) T

he id

ea o

f thi

s pr

oof i

s to

impr

ove

the

1 Thi

s fa

ct h

as n

ot b

een

rigor

ousl

y pr

oven

.

Z-4

quan

tizer

by

repl

acin

g th

e co

nfig

urat

ion

of q

uant

izat

ion

poin

ts a

nd c

ells

in B

with

thos

e fr

om a

con

grue

nt r

egio

n ne

ar x

g, b

ecau

se th

ose

poin

ts a

nd c

ells

have

a b

ette

r no

rmal

ized

mom

ent o

f ine

rtia

.

We

will

ass

ume

that

M i

s so

larg

e th

at th

e nu

mbe

r M

b o

f qua

ntiz

atio

npo

ints

/cel

ls in

B i

s its

elf l

arge

, and

can

be

appr

oxim

ated

in te

rms

of th

equ

antiz

atio

n de

nsity

as

Mb

≅ λ

(xb)

|B| M

We

now

wis

h to

cho

ose

Mb

qua

ntiz

atio

n po

ints

/cel

ls in

the

neig

hbor

hood

of

x g.

Let

G b

e a

regi

on s

urro

undi

ng x

g th

at is

con

grue

nt to

B a

nd th

at c

on-

tain

s M

b p

oint

s/ce

lls.

The

num

ber

of p

oint

s/ce

lls in

the

G i

s ap

prox

imat

ely

λ(x g

) |G

| M .

Equ

atin

g th

is to

the

form

ula

for

Mb

det

erm

ines

the

volu

me

of G

|G|

≅ |B

| λ(x b

)

λ(x g

)

We

will

ass

ume

that

G i

s so

sm

all t

hat

m(x

) ≅

m(x

g) f

or x

∈G

. (W

e ca

nas

sum

e th

is b

ecau

se w

e co

uld

have

cho

sen

B v

ery

smal

l and

M v

ery,

ver

yla

rge.

)

We

now

"co

py"

the

poin

ts a

nd c

ells

in G

and

tran

slat

e an

d sc

ale

them

so

they

just

fit i

nto

B,

repl

acin

g th

e or

igin

al p

oint

s an

d ce

lls in

B.

(We

don'

t wor

ryab

out c

ells

on

the

boun

dary

of

G b

ecau

se th

ese

cons

titut

e a

negl

igib

le

Page 3: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-5

frac

tion.

We

leav

e th

e po

ints

and

cel

ls in

G u

ncha

nged

.) T

he r

esul

t is

that

with

in B

, w

e no

w h

ave

the

sam

e nu

mbe

r of

poi

nts

as o

rigin

ally

(an

dco

nseq

uent

ly th

e sa

me

poin

t den

sity

), b

ut w

e ha

ve c

ells

with

nor

mal

ized

mom

ent o

f ine

rtia

app

roxi

mat

ely

m(x

g),

whi

ch is

sm

alle

r th

an b

efor

e.

To

see

that

this

has

the

desi

red

effe

ct, c

onsi

der

the

effe

ct o

n di

stor

tion.

Obv

ious

ly, t

he e

ffect

is o

nly

in th

e re

gion

B, w

hich

we

now

con

side

r.O

rigin

ally

, the

dis

tort

ion

in B

was

⌡⌠ B

||x-Q

(x)|

|2 fX(x

) dx

⌡⌠ B

m

(x)

M2/

k λ2/k (x

) f X(x

) dx

m(x

b)M

2/k λ2/

k (xb)

f X(x

b)

Afte

r th

e ch

ange

, the

dis

tort

ion

in B

is

⌡⌠ B

||x-Q

(x)|

|2 fX(x

) dx

⌡⌠ B

m

(xg)

M2/

k λ2/k (x

) f X(x

) dx

m(x

g)M

2/k λ2/

k (xb)

f X(x

b)

Sin

ce m

( xg)

< m

(xb)

, th

e ne

w q

uant

izer

has

less

dis

tort

ion,

and

thus

the

orig

inal

qua

ntiz

er c

ould

not

hav

e be

en o

ptim

al, w

hich

is th

e co

ntra

posi

tive

ofth

e de

sire

d fa

ct.

Hav

ing

show

n th

at th

e be

st in

ertia

l pro

files

are

con

stan

ts, w

e co

uld

now

pro

ceed

to s

how

that

the

cons

tant

is th

e sa

me

for

all p

roba

bilit

y an

d qu

antiz

atio

nde

nsiti

es a

nd is

the

min

imum

all

valid

iner

tial p

rofil

es, a

ll so

urce

and

qua

ntiz

atio

nde

nsiti

es a

nd a

ll po

ints

x.

How

ever

, in

hind

sigh

t, th

ere

is a

mor

e di

rect

appr

oach

, whi

ch w

e no

w p

rese

nt.

Z-6

Mor

e D

irect

App

roac

h

Def

initi

on:

For

k-d

imen

sion

al q

uant

izat

ion,

a fu

nctio

n m

(x)

: ℜk →

[0,∞

) is

sai

dto

be

a va

lid in

ertia

l pro

file

if f

or a

ll su

ffici

ently

larg

e M

the

re a

re q

uant

izer

sw

ith d

imen

sion

k,

size

M,

and

iner

tial p

rofil

e m

.

We

asse

rt th

at a

ny n

onne

gativ

e fu

nctio

n th

at in

tegr

ates

to o

ne is

a v

alid

quan

tizat

ion

dens

tiy.

And

we

asse

rt th

at v

alid

poi

nt d

ensi

ties

and

iner

tial p

rofil

esar

e co

ntin

uous

func

tions

or,

at l

east

, pie

cew

ise

cont

inuo

us.

Def

initi

on:

The

k-d

imen

sion

al s

hape

fact

or 2 ,

den

oted

m* k,

is th

e m

inim

umva

lue

of a

ny v

alid

iner

tial p

rofil

e fo

r an

y po

int d

ensi

ty.

Tha

t is,

m* k

=

min

valid

k-d

ime

nsi

on

al

ine

rtia

l pro

file

s m

min x

m(x

)

Late

r w

e'll

disc

uss

wha

t's k

now

n ab

out t

he v

alue

s of

fin

d m

* k.

• F

act 2

: Le

t f X

(x)

and

λ(x

) b

e k-

dim

ensi

onal

pro

babi

lity

and

quan

tizat

ion

dens

ities

, res

pect

ivel

y.

The

n fo

r al

l suf

ficie

ntly

larg

e in

tege

rs M

, ev

ery

k-

dim

ensi

onal

qua

ntiz

er w

ith s

ize

M,

quan

tizat

ion

dens

ity λ

and

sm

alle

stm

ean-

squa

red

erro

r fo

r th

e pr

obab

ility

den

sity

f h

as in

ertia

l pro

file

m(x

) ≅

m* k

for

all

x

2 Can

you

thin

k of

a b

ette

r na

me?

Page 4: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-7

Not

e: T

he b

est i

nert

ial p

rofil

e do

es n

ot d

epen

d on

the

prob

abili

ty d

istr

ibut

ion

of th

e ra

ndom

vec

tor

to b

e qu

antiz

ed.

Ske

tch

of P

roof

3 : T

he p

roof

is v

ery

sim

ilar

to th

at o

f Fac

t 1.

We'

ll ar

gue

that

ifa

quan

tizer

's in

ertia

l pro

file

m(x

) d

oes

not a

ppro

xim

atel

y eq

ual

m* k

for a

ll x

,th

en th

e qu

antiz

er c

an b

e im

prov

ed, i

.e. i

t is

does

not

hav

e th

e sm

alle

stpo

ssib

le M

SE

for

the

give

n k

, M, λ

, and

fX.

The

con

trap

ositi

ve o

f thi

sst

atem

ent i

s: I

f a q

uant

izer

has

sm

alle

st M

SE

, the

n its

iner

tial p

rofil

e eq

uals

m* k,

whi

ch is

the

desi

red

fact

.

Acc

ordi

ngly

, con

side

r a

k-di

men

sion

al q

uant

izer

Q w

ith la

rge

size

M a

ndpo

int d

ensi

ty λ

who

se in

ertia

l pro

file

m(x

) is

gre

ater

than

m* k

at a

poi

nt x

b.S

ince

m i

s pi

ecew

ise

cont

inuo

us, t

here

exi

sts

a sm

all r

egio

n B

sur

roun

ding

x b s

uch

that

m(x

) ≅

m(x

b) >

m* k,

for

all

x ∈

B.

The

idea

now

is to

impr

ove

the

quan

tizer

by

repl

acin

g th

e co

nfig

urat

ion

ofqu

antiz

atio

n po

ints

and

cel

ls in

B w

ith th

ose

from

a q

uant

izer

who

se in

ertia

lpr

ofile

equ

als

m* k

in s

ome

regi

on.

By

the

defin

ition

of

m* k,

the

re m

ust e

xist

aqu

antiz

er Q

' w

ith la

rge

size

who

se in

ertia

l pro

file

m'(x

) e

qual

s m

* k a

t som

epo

int

x g.

("b"

is fo

r "b

ad' a

nd "

g" is

for

"goo

d".)

We

will

ass

ume

that

M i

s so

larg

e th

at th

e nu

mbe

r M

b o

f qua

ntiz

atio

npo

ints

/cel

ls in

B i

s its

elf l

arge

, and

can

be

appr

oxim

ated

in te

rms

of th

equ

antiz

atio

n de

nsity

as

3 Thi

s fa

ct h

as n

ot b

een

rigor

ousl

y pr

oven

.

Z-8

Mb

≅ λ

(xb)

|B| M

We

now

wis

h to

cho

ose

Mb

qua

ntiz

atio

n po

ints

/cel

ls in

the

neig

hbor

hood

of

x g.

Let

G b

e a

regi

on s

urro

undi

ng x

g th

at is

con

grue

nt to

B a

nd th

at c

on-

tain

s M

b p

oint

s/ce

lls.

We

will

ass

ume

that

G i

s so

sm

all t

hat

m'(x

) ≅

m* k

for

x ∈

G.

We

can

assu

me

this

bec

ause

we

coul

d ha

ve c

hose

n B

ver

y sm

all a

ndM

ver

y, v

ery

larg

e.

We

now

"co

py"

the

poin

ts a

nd c

ells

in G

and

tran

slat

e an

d sc

ale

them

so

they

just

fit i

nto

B,

repl

acin

g th

e or

igin

al p

oint

s an

d ce

lls in

B.

(We

don'

t wor

ryab

out c

ells

on

the

boun

dary

of

G b

ecau

se th

ese

cons

titut

e a

negl

igib

lefr

actio

n.)

The

res

ult i

s th

at w

ithin

B,

we

now

hav

e th

e sa

me

num

ber

of p

oint

sas

orig

inal

ly (

and

cons

eque

ntly

the

sam

e qu

antiz

atio

n de

nsity

), b

ut w

e ha

vece

lls w

ith n

orm

aliz

ed m

omen

t of i

nert

ia a

ppro

xim

atel

y m

* k, w

hich

is s

mal

ler

than

bef

ore.

To

see

that

this

has

the

desi

red

effe

ct, c

onsi

der

the

dist

ortio

n, w

hich

isaf

fect

ed o

nly

in th

e re

gion

B.

Orig

inal

ly, t

he d

isto

rtio

n in

B w

as

⌡⌠ B

||x-Q

(x)|

|2 fX(x

) dx

⌡⌠ B

m

(x)

M2/

k λ2/k (x

) f X(x

) dx

m(x

b)M

2/k λ2/

k (xb)

fX(x

b)

Afte

r th

e ch

ange

, the

dis

tort

ion

in B

is

⌡⌠ B

||x-Q

(x)|

|2 fX(x

) dx

⌡⌠ B

m

* kM

2/k λ2/

k (x) f X

(x) d

x ≅

m

* kM

2/k λ2/

k (xb)

fX(x

b)

Page 5: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-9

Sin

ce m

( xb)

> m

* k, t

he n

ew q

uant

izer

has

less

dis

tort

ion.

The

refo

re, t

heor

igin

al q

uant

izer

cou

ld n

ot h

ave

been

opt

imal

, whi

ch is

the

cont

rapo

sitiv

e of

the

desi

red

fact

.

Z-1

0

Bes

t Poi

nt D

ensi

ty

Hav

ing

foun

d th

at th

e be

st in

ertia

l pro

file

is a

con

stan

t, th

e be

st p

oint

den

sity

is th

atw

hich

min

imiz

es th

e re

mai

ning

term

s of

Ben

nett'

s in

tegr

al.

⌡⌠

f X(x

)λ2/

k (x

) dx

(*)

It co

uld

be fo

und

with

cal

culu

s of

var

iatio

ns, b

ut w

e w

ill u

se H

olde

r's in

equa

lity.

Page 6: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-1

1

Hol

der's

ineq

ualit

y:

Giv

en fu

nctio

n's

f a

nd g

, th

en fo

r an

y q

,r >

0 s

uch

that

1 q +

1 r =

1,

⌡⌠

|f(x)

g(x

)| dx

⌡⌠

|f(x

)|q d

x1/

q

⌡⌠

|g(x

)|r d

x1

/r

with

equ

ality

iff

for

som

e c

, |f

(x)|q =

c |g

(x)|

r , a

ll x

Our

Str

ateg

y: C

hoos

e f,

g, q

and

r s

o th

at

|f(x)

|q =

f X(x

)λ(

x)2/

k

an

d ⌡⌠

|g(x)

|r dx

= 1

.

The

n ⌡⌠

f X(x

)λ(

x)2/

k

dx

=

⌡⌠

|f(x)|

q dx

⌡⌠

|f(x

) g(x

)| dx

q

⌡⌠

|g(x

)|r d

x-q

/r =

|f(x

) g(x

)| d

xq

with

equ

ality

hap

pens

if a

nd o

nly

if th

ere

is c

onst

ant

c s

uch

that

|f(

x)|q =

c |g

(x)|

r .

If it

turn

s ou

t tha

t the

inte

gral

on

the

far

right

doe

s no

t dep

end

on λ

, th

en w

e ha

ve a

low

er b

ound

to th

e in

tegr

al w

e ar

e m

inim

izin

g. A

nd w

e ca

n m

inim

ize

the

inte

gral

by

choo

sing

λ t

o sa

tisfy

the

cond

ition

that

giv

es e

qual

ity in

the

low

er b

ound

.

Z-1

2

Our

cho

ices

: q =

k+2 k,

r = k+

22

1 q + 1 r

=

k k+2 +

2 k+

2 = 1

f( x) =

f X

(x)

λ2/k

(

x)k/

(k+

2)an

d

g(x

) =

λ2/(k

+2)

(x

)

The

n as

des

ired,

|

f(x)

|q =

f X(x

)λ2/

k

(x)

and

⌡⌠

|g(x

)|r d

xq/

r =

⌡⌠

λ(x

) dx

q/r =

1

The

refo

re,

⌡⌠

f X(x

)λ2/

k

(x)

dx

⌡⌠

|f(x

) g(x

)| d

xq =

⌡⌠

fk/(k

+2)

X(x

) d

x(k

+2)

/k

whe

re, f

ortu

nate

ly, t

he r

ight

-han

d si

de d

oes

not d

epen

d on

λ, a

nd w

here

equ

ality

hold

s iff

ther

e is

a c

onst

ant c

suc

h th

at

f X(x

)λ2/

k

(x) =

c λ

(x)

, i.e

. λ(

x) =

c' f

k/(k

+2)

X(x

)

whe

re c

' is

cho

sen

to m

ake

λ(x

) in

tegr

ate

to o

ne.

We

conc

lude

that

the

inte

gral

(*)

is m

inim

ized

by

the

poin

t den

sity

λ* k(x)

=

fk/(k

+2)

X(x

)

⌡⌠

fk/(k

+2)

X(x

') dx

'

and

the

resu

lting

min

imum

val

ue is

⌡⌠

fk/(k

+2)

X(x

) dx

(k+

2)/k

Page 7: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-1

3

Hav

ing

that

the

optim

al q

uant

izer

s w

ith d

imen

sion

k h

ave

iner

tial p

rofil

e m

( x)

≅ m

* k a

nd q

uant

izat

ion

dens

ity λ

(x)

≅ λ

* k, w

e m

ay s

ubst

itute

thes

e in

toB

enne

tt's

inte

gral

to o

btai

n th

e di

stor

tion

of a

n op

timal

qua

ntiz

er w

ithdi

men

sion

k a

nd la

rge

size

M fo

r a

rand

om v

ecto

r X

with

pdf

fX(x

). T

hat i

s,w

e fin

d th

e fo

llow

ing

appr

oxim

ate

form

ula

for

the

opta

func

tion:

δ(k,

M)

1

M2/

k

⌡⌠

m

* kλ* k

2/k

(x

) fX(x

) dx

=

1M

2/k

m

* k ⌡⌠

1

(fk/

(k+

2)X

(x)/

c)2/

k

fX(x

) dx

,

w

here

c =

⌡⌠

fk/(k

+2)

X(x

) dx

=

1M

2/k

m

* k c2/

k

⌡⌠

fk/(k

+2)

X(x

) dx

=

1

M2/

k

m* k

c1+2/

k

=

1M

2/k

m

* k ( ⌡⌠

f X(x

)k/(k

+2)

d

x )(k

+2)

/k

Z-1

4

We

sum

mar

ize

in th

e fo

llow

ing.

Zad

or'

s T

heo

rem

4

Whe

n M

is

larg

e, th

e le

ast d

isto

rtio

n of

fixe

d-ra

te, k

-dim

'l V

Q w

ith M

poi

nts

is

δ(k,

M)

Z(k

,M)

whe

re

Z(k

,M)

∆ = σ

2 β k

m* k

1M

2/k

is c

alle

d Z

ador

's fu

nctio

n

σ2 =

so

urce

var

ianc

e =

1 k ∑ i=1k v

ari

an

ce(X

i)

β k

=

1 σ2 ( ⌡⌠

f X(x

)k/(k

+2)

d

x )(k

+2)/

k =

"Z

ador

's fa

ctor

"

(dep

ends

on

"sha

pe"

of f

X(x

); i

nvar

iant

to a

sca

ling)

m* k

=

smal

lest

val

ue a

ttain

ed b

y an

y va

lid in

ertia

l pro

file

4 P. L

. Zad

or, "

Dev

elop

men

t and

eva

luat

ion

of p

roce

dure

s fo

r qu

antiz

ing

mul

tivar

iate

dis

trib

utio

ns,"

Ph.

D. D

isse

rtat

ion,

Sta

nfor

d, 1

963.

Als

o, P

.L. Z

ador

,"T

opic

s in

asy

mpt

otic

qua

ntiz

atio

n of

con

tinuo

us r

ando

m v

aria

bles

," B

ell L

ab. T

ech.

Mem

o, 1

966.

Page 8: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-1

5

Eq

uiv

alen

t S

tate

men

ts o

f Z

ado

r's

Th

eore

m

In te

rms

of r

ate:

Whe

n R

is

larg

e, th

e be

st fi

xed-

rate

, k-d

imen

sion

al V

Q's

with

rat

e R

hav

e M

SE

δ(k,

R)

≅ σ

2 βk

m* k

2-2R

∆ = Z

(k,R

)

In te

rms

of S

NR

:

Whe

n R

is

larg

e, th

e be

st fi

xed-

rate

, k-d

imen

sion

al V

Q's

with

rat

e R

hav

e S

NR

S(k

,R)

≅ 1

0 lo

g 10

σ2

Zk(

R)

= 6

.02

R -

10 lo

g 10

m* k

βk

Not

e:

SN

R in

crea

ses

at 6

dB

per

bit

for

optim

al q

uant

izer

s.

Rat

e in

term

s of

dis

tort

ion:

Whe

n D

is

smal

l, th

e be

st fi

xed-

rate

, k-d

imen

sion

al V

Q's

with

MS

E D

has

rat

e

γ (k,

R)

≅ 1 2 l

og (

m* k σ

2 βk)

- 1 2 lo

g 2(D

)

Z-1

6

Zad

or d

id n

ot d

eriv

e hi

s th

eore

m fr

om B

enne

tt's

inte

gral

. R

athe

r he

foun

d a

dire

ct p

roof

of t

he fa

ct th

at fo

r an

y di

men

sion

k,

ther

e is

a c

onst

ant

α k s

uch

that

for

any

prob

abili

ty d

ensi

ty f

X(x

)

lim M→

∞ M

2/k

δ

(k,M

) =

αk ( ⌡⌠

f X(x

)k/(k

+2)

d

x )(k

+2)

/k

Zad

or d

id n

ot e

quat

e α

k w

ith m

* k a

s w

e ha

ve d

efin

ed it

. B

ut h

e di

d gi

ve s

ome

boun

ds to

it.

Page 9: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-1

7

How

larg

e m

ust

M o

r R

be

in o

rder

for

the

form

ulas

to b

e ac

cura

te?

Exa

mpl

e: G

auss

-Mar

kov

Sou

rce,

cor

r. c

oeff.

ρ =

.9

0510152025

01

23

4R

ate

SNR, dBk=

2

k=4

k=1

VQ

's d

esig

ned

byLB

G a

lgor

ithm

.

Str

aigh

t lin

es a

reZ

ador

's fu

ntio

nZ

(k,R

).

m* 4

is e

stim

ated

. Z-1

8

Dat

a fo

r th

e pr

evio

us p

lot

Gau

ss-M

arko

v S

ourc

e, ρ

= .9

, S

NR

's in

dB

k =

1k

= 2

k =

4R

ate

Act

'lP

red' d

Diff

.A

ct'l

Pre

d'd

Diff

.A

ct'l

Pre

d'd

Diff

.

0.0

0.0

-4.3

54.

350.

00.

6-0

.56

0.00

3.33

-3.3

3

0.5

4.0

3.6

0.47

6.55

6.34

0.21

1.0

1.68

4.4

2.72

7.9

6.6

1.35

10.2

29.

350.

87

1.5

10.8

9.6

1.21

13.0

412

.36

0.68

2.0

7.70

9.3

1.60

13.5

12.6

0.92

15.8

115

.37

0.44

2.5

16.3

15.6

0.65

18.6

618

.38

0.27

3.0

13.7

214

.62

0.90

19.0

18.6

0.41

3.5

21.9

21.6

0.26

4.0

19.7

420

.22

0.48

24.8

24.6

0.16

The

pre

dict

ed v

alue

at

R =

0 i

s -

10 lo

g 10

m* k

β k

Page 10: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-1

9

05101520

01

23

4R

ate

SNR, dBk=

2

k=4

k=1

Exa

mpl

e 2:

IID

Gau

ssia

n S

ourc

e

VQ

's d

esig

ned

by L

BG

algo

rithm

.

Str

aigh

t lin

es a

re fr

omZ

ador

's fu

nctio

nZ

(k,R

).

m* 4

is e

stim

ated

.

Z-2

0

Dat

a fo

r th

e pr

evio

us p

lot

IID G

auss

ian

Sou

rce,

SN

R's

in d

B

k =

1k

= 2

k =

4R

ate

Act

'lP

red' d

Diff

.A

ct'l

Pre

d' dD

iff.

Act

'lP

red' d

Diff

.

0.0

0.0

-4.3

54.

350.

00-2

.95

2.95

0.00

-2.0

12.

01

0.5

1.66

0.06

1.60

1.89

1.00

0.89

1.0

1.68

4.4

2.72

4.39

3.07

1.32

4.60

4.01

0.60

1.5

6.96

6.08

0.88

7.34

7.02

0.32

2.0

7.70

9.3

1.60

9.64

9.09

0.55

10.1

810

.03

0.15

2.5

12.4

212

.10

0.32

13.2

113

.04

0.17

3.0

13.7

214

.62

0.90

15.2

715

.11

0.16

16.1

816

.05

0.14

3.5

18.1

718

.12

0.05

4.0

19.7

420

.22

0.48

21.1

221

.13

-0.0

1

The

pre

dict

ed v

alue

at

R =

0 is

-10

log 1

0 m

* k β k

Page 11: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-2

1

Rul

es o

f Thu

mb:

•Z

-G is

acc

urat

e fo

r R

~ ≥ 3

( M

~ ≥ 2

3k ).

•F

or a

giv

en R

, ac

cura

cy in

crea

ses

with

dim

ensi

on k

.

Z-2

2

Th

e V

alu

es o

f m

* k

How

to fi

nd th

e va

lue

of m

* k? S

uppo

se b

y so

me

mea

ns, w

e ca

n fin

d th

e O

PT

Afu

nctio

n δ(

k,M

) fo

r so

me

part

icul

ar p

df f

X(x

).

The

n by

Zad

or's

theo

rem

δ(k

,M)

≅ σ

2 β k

m* k

1M

2/k

whi

ch c

an b

e so

lved

for

m* k:

m* k

≅ M

2/k

δ

(k,M

) 1

σ2 βk

Mor

e pr

ecis

ely,

sup

pose

we

can

find

lim M→

∞ M

2/k

δ(

k,M

). T

hen,

m* k

=

lim M→

∞ M

2/k

δ(

k,M

)

1σ2 β

k

If w

e w

ish

to u

se th

is a

ppro

ach,

wha

t pdf

sho

uld

we

cons

ider

? B

y fa

r th

eea

sies

t typ

e of

pdf

to w

ork

with

is a

uni

form

pdf

. T

hat i

s, w

e ta

ke f

X(x

) to

be

aco

nsta

nt o

n so

me

regi

on, e

.g. a

cub

e, a

nd z

ero

else

whe

re.

Her

e's

wha

t's b

een

foun

d w

ith th

is a

ppro

ach:

Page 12: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-2

3

•k

= 1:

F

or s

cala

r qu

antiz

ers,

m* 1

= m

(inte

rval

) =

1 12 =

.08

33

•k

= 2:

For

two-

dim

ensi

onal

qua

ntiz

ers

m* 2

= m

(hex

agon

) =

5√3

/108

= .

0802

Thi

s is

bas

ed o

n th

e w

ork

L. F

ejes

Tot

h5 , w

hich

was

red

eriv

edin

depe

nden

tly b

y D

. New

man

6 in

a si

mpl

er fa

shio

n.

•k

≥ 3:

F

or k

≥ 3

, th

is a

ppro

ach

has

not y

ield

ed a

n an

swer

. T

hus

for

k ≥

3,th

e va

lue

of m

* k is

not

kno

wn.

How

ever

, the

re a

re s

ever

al b

ound

s, b

oth

uppe

r an

d lo

wer

. S

ince

the

uppe

r an

d lo

wer

bou

nds

are

fairl

y cl

ose,

we

get

a pr

etty

goo

d ap

prox

imat

ion

to m

* k .

5 L. F

ejes

Tot

h, "

Sur

la r

epre

sent

atio

n d'

une

popu

latio

n in

finie

par

un

nom

bre

fini d

'ele

men

ts,"

Act

a M

ath.

Aca

d. S

ci. H

ung.

, vol

. 10,

pp.

76-

81, 1

959.

6 D

.J. N

ewm

an, "

The

hex

agon

theo

rem

," B

ell L

ab. T

ech.

Mem

o, 1

964.

Als

o pu

blis

hed

late

r in

IEE

E T

rans

. Inf

orm

. The

ory,

vol

. 28,

pp.

137

-139

, Mar

.1

98

2.

Z-2

4

•Lo

wer

bou

nd to

m* k

m* k

≥ m

(k-d

imen

sion

al s

pher

e)

By

defin

ition

, m

* k is

the

leas

t nm

i of a

ny v

alid

iner

tial p

rofil

e. S

ince

no

k-di

men

sion

al p

artit

ion

can

have

any

cel

l with

nm

i les

s th

an th

at o

f a k

-dim

en-

sion

al s

pher

e, a

ny v

alid

iner

tial p

rofil

e is

low

er b

ound

ed b

y th

e nm

i of a

k-

dim

ensi

onal

sph

ere.

•A

noth

er lo

wer

bou

nd is

con

ject

ured

in th

e bo

ok S

pher

e P

acki

ngs,

Lat

tices

and

Gro

ups,

by

J.H

. Con

way

and

N.J

.A. S

loan

e', p

. 59-

62.

It is

tigh

ter

than

the

sphe

re lo

wer

bou

nd.

Page 13: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-2

5

•U

pper

bou

nds

to m

* k

We

find

uppe

r bo

unds

to m

* k b

y fin

ding

upp

er b

ound

s to

the

OP

TA

func

tion

δ(k,

M)

of a

uni

form

pdf

. (

Mor

e pr

ecis

ely,

we

find

uppe

r bo

unds

tolim M→

∞ M

2/k

δ c

(k,M

).)

How

do

we

find

uppe

r bo

unds

to th

e O

PT

A fu

nctio

n?

We

do th

is b

y fin

ding

the

dist

ortio

n of

the

best

qua

ntiz

ers

that

we

can

thin

kof

for

the

unifo

rm p

df.

The

OP

TA

func

tion

will

be

less

than

the

dist

ortio

n of

any

actu

al q

uant

izer

.

Z-2

6

•T

esse

latio

n up

per

boun

d.

A s

ubse

t G

of

ℜ2/

k

is

said

to te

ssel

ate

if th

ere

is a

par

titio

n S

of

ℜ2/

k

, al

lof

who

se c

ells

are

tran

slat

ions

and

or

rota

tions

of

G.

The

par

titio

n S

is

said

to b

e a

tess

elat

ion.

Som

e ex

ampl

es o

f tes

sela

tions

are

sho

wn

belo

w.

a.b.

c.d.

Con

side

r a

k-di

men

sion

al p

df th

at is

con

stan

t on

a se

t H

, i.e

.

f X(x

) = 1

/|H

|,

x∈H

0, el

se

and

cons

ider

the

quan

tizer

who

se p

artit

ion

S i

s a

tess

elat

ion

base

d on

the

set

G.

Thi

s qu

antiz

er h

as q

uant

izat

ion

dens

ity

λ(x)

= 1

/|H

|,

x∈H

0, el

se

and

iner

tial p

rofil

e m

(x)

= m

(G).

(W

e as

sum

e th

e qu

antiz

atio

n po

ints

are

inth

e sa

me

rela

tive

posi

tion

in e

ach

cell,

and

we

supp

ress

the

nota

tion

for

such

poi

nts.

)

Page 14: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-2

7

Fro

m B

enne

tt's

inte

gral

, we

have

D ≅≅≅≅

1M

2/k

⌡⌠

m(x

)λ2/

k

(x) f

X(x)

dx

=

1

M2/

k

⌡⌠ H

m

(G)

(1/|H

|)2/

k

(x)

1 |H| d

x

=

1M

2/k

m

(G)

|H|2/

k

= m

(G)

|G|2/

k

,

s

ince

|H

| ≅ M

|G|

Sin

ce th

e di

stor

tion

of th

is q

uant

izer

is a

t lea

st la

rge

as th

e O

PT

A fu

nctio

n,fo

r an

y te

ssel

atin

g ce

ll G

,

δ(k,

M)

≤ m

(G)

|G|2/

k

.

For

this

uni

form

sou

rce

σ2 βk

=

⌡⌠

f X(x

)k/(k

+2)

d

x (k

+2)/k

=

⌡⌠ H

1 |H

|k/(k

+2)

dx

(k+2

)/k =

|H

|2/k

Now

sub

stitu

ting

the

valu

e of

σ2 β

k a

nd th

e up

per

boun

d to

δ(k

,M),

we

find

m* k

=

lim M→

∞ M

2/k

δ(

k,M

)

1σ2 β

k

lim M→

∞ M

2/k

m

(G)

|G|2/

k

1

|H|2

/k

= m

(G)

si

nce

|H

| ≅ M

|G|

Z-2

8

We

now

con

clud

e th

at m

* k is

upp

er b

ound

by

the

nmi o

f the

tess

elat

ing

set

G w

ith le

ast n

mi,

i.e.

m* k

≤ m

* T,k =∆

m

inte

ssel

atin

g G

m(G

)

Ger

sho

has

conj

ectu

red

that

this

bou

nd is

tigh

t for

k≥3

. B

ut it

is n

ot k

now

n if

this

true

.

In fa

ct, h

e co

njec

ture

d th

at th

e ce

lls o

fan

opt

imal

qua

ntiz

er w

ith m

any

poin

tsar

e, lo

cally

, tes

sela

tions

. T

his

cert

ainl

yse

ems

to b

e th

e ca

se fo

r k

= 1

,2.

For

exam

ple,

an

LBG

des

igne

d op

timal

k=2

,M

=256

qua

ntiz

er fo

r an

IID

pai

r of

Gau

ssia

n va

riabl

es is

sho

wn

to th

e rig

ht.

Not

e th

at s

ince

the

optim

al q

uant

izer

for

a no

nuni

form

pdf

will

ord

inar

ily h

ave

cells

of d

iffer

ent s

izes

, its

par

titio

n w

illno

t be

a te

ssel

atio

n. H

owev

er, i

n sm

all

regi

ons

the

tess

elat

ion

will

be

appa

rent

,i.e

. loc

ally

it is

app

roxi

mat

ely

ate

ssel

atio

n.

Page 15: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-2

9

•La

ttice

upp

er b

ound

.

A p

artit

ion

S i

s sa

id to

be

a la

ttice

tess

elat

ion

if it

is a

tess

elat

ion

such

that

all c

ells

are

tran

slat

ions

of e

ach

othe

r. (

Rot

atio

ns a

re n

ot a

llow

ed.

All

latti

ces

are

tess

elat

ions

, but

not

vic

e ve

rsa.

) E

xam

ples

c.

and

d.

give

npr

evio

usly

are

latti

ces.

The

oth

ers

are

not.

Man

y ex

ampl

es o

f lat

tice

are

know

n. F

or e

xam

ple,

see

the

book

by

Con

way

and

Slo

ane.

Ind

eed

ther

e m

ost k

now

n te

ssel

atio

ns a

re la

ttice

. B

yth

e sa

me

argu

men

t as

for

tess

elat

ions

,

m* k

m* L,k

=∆

min

latt

ice

s S

ba

sed

on

Gm

(G)

Of c

ours

e m

* T,k ≤

m* L,k .

In

fact

, the

se m

ight

be

equa

l, bu

t for

k ≥

3 n

o on

ekn

ows.

(F

or k

=1 o

r 2,

the

y ar

e eq

ual.)

Z-3

0

•P

erio

dic

latti

ce u

pper

bou

nd

A p

artit

ion

S i

s sa

id to

be

a pe

riodi

c la

ttice

if th

ere

is a

fini

te c

olle

ctio

n of

cells

Mo

cel

ls G

1,...

,G M

o s

uch

that

the

rem

aini

ng c

ells

of t

he p

artit

ion

are

otai

ned

by tr

ansl

atin

g th

is g

roup

of c

ells

(as

a g

roup

). A

ll of

the

exam

ples

give

n pr

evio

usly

(a.

-d.)

are

per

iodi

c la

ttice

s. T

he fo

llow

ing

are

exam

ples

of

perio

dic

tess

elat

ions

that

are

not

latti

ces

nor

an o

rdin

ary

tess

elat

ions

.

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

7

We

may

con

stru

ct a

qua

ntiz

er fo

r a

unifo

rm p

df in

ess

entia

lly th

e sa

me

way

as fo

r a

tess

elat

ion.

Thi

s le

ads

to th

e up

per

boun

d

m* k

≤ m

*P

L,k

=∆

min

pe

rio

dic

latt

ice

s

~ m(G

1,.

..,G

Mo)

7 Thi

s is

a 3

-dim

ensi

onal

per

iodi

c la

ttice

with

2 ty

pes

of c

ells

, cal

led

the

Wea

ire-P

hela

n pa

rtiti

on.

It is

form

ed b

y te

ssel

atin

g a

fund

amen

tal g

roup

con

sist

ing

of t

wo

pent

agon

al d

odec

ahed

ra (

12 fa

ces,

eac

h is

5-s

ided

) an

d si

x 14

-hed

ra (

2 he

xago

nal f

aces

, 4 p

enta

gona

l fac

es o

f one

kin

d an

d 6

pent

agon

al fa

ces

ofan

othe

r ki

nd).

Page 16: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-3

1

whe

re

~ m i

s th

e av

erag

e no

rmal

ized

mom

ent o

f ine

rtia

of a

gro

up o

f cel

ls,

as d

efin

ed a

t the

end

of t

he le

ctur

e no

tes

on B

enne

tt's

inte

gral

.

Of c

ours

e m

*P

L,k

≤ m

* T,k ≤

m* L,k .

In

fact

, the

se m

ight

be

equa

l, bu

t for

k ≥

3no

one

kno

ws.

(F

or k

=1 o

r 2,

the

y ar

e eq

ual.)

Tho

ugh

it ha

s no

t bee

n pr

oven

, it s

eem

s qu

ite li

kely

to m

e th

at th

is b

ound

istig

ht.

Thu

s, fo

r th

e re

mai

nder

of t

his

cour

se w

e w

ill a

ssum

e

m* k

= m

*P

L,k

Z-3

2

•k

= 3

: T

he b

est k

now

n pe

riodi

c te

ssel

atio

n in

thre

e di

men

sion

s is

the

latti

ce g

ener

ated

by

the

trun

cate

d oc

tahe

dron

, tw

o of

whi

ch a

re il

lust

rate

dbe

low

. It

is k

now

n th

at th

is is

the

best

latti

ce.

But

it is

not

bee

n pr

oven

that

this

is th

e be

st te

ssel

atio

n or

per

iodi

c te

ssel

atio

n. H

owev

er, i

t see

ms

likel

yth

at it

is.

The

nm

i of t

he tr

unca

ted

octa

hedr

on is

m =

.078

543.

The

nm

i of a

3-

dim

ensi

onal

sph

ere

is .

0770

. T

here

fore

,

.077

0 ≤

m* 3 ≤

.07

85

It is

inte

rest

ing

that

the

basi

c gr

oup

of th

e W

eaire

-Phe

lan

part

ition

(sh

own

earli

er)

has

nmi .

0787

35 w

hich

is v

ery

near

ly a

s sm

all a

s th

at o

f the

trun

cate

d oc

tade

hedr

on.

Page 17: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-3

3

Pro

perti

es o

f m

* T,k

•It

is n

ot k

now

n if

m* k+

1 ≤

m* k

for

all

k.

The

re is

no

know

n pr

oof n

or c

ount

er e

xam

ple.

•T

houg

h m

* k m

ight

not

be

decr

easi

ng w

ith k

, as

sum

ing

Ger

sho'

s co

njec

ture

, it

can

be s

how

n to

hav

e a

kind

of d

ecre

asin

g tr

end

calle

d "s

ubad

ditiv

ity",

mea

ning

that

for

any

k,l

m* k+

l ≤

k k+

l m* k

+ l k+

l m* l

whi

ch im

plie

s (w

ith a

ppro

pria

te u

se o

f the

abo

ve)

m* 1

≥ m

* k ≥

m* 2k

It al

so c

an b

e sh

own

that

sub

addi

tivity

impl

ies

m* ∞ =∆

lim k→

∞ m

* k =

inf

k m

* k

•A

pro

of th

at s

ubad

ditiv

ity im

plie

s li

m =

inf

can

be fo

und

inG

alla

ger's

info

rmat

ion

theo

ry b

ook,

Lem

ma

2, p

p. 1

12,1

13.

The

pro

of o

f sub

addi

tivity

dep

ends

on

the

next

fact

:

Z-3

4

•F

act:

If

S ⊂

Rk

and

T ⊂

Rl ,

the

n

M(S

×T)

= v

ol(S

) M

(T)

+ v

ol(T

) M

(S)

whe

re M

(S)

= ∫ S |

|x||

2 dx

= M

I

•P

roo

f o

f F

act:

M(S

×T)

=

⌡⌠

S×T

||x

||2 d

x =

⌡⌠ S

⌡⌠ T

(||x

||2 +||

y||2 d

x dy

=

⌡⌠ S

(M(T

) +

||y|

|2 vol

(T))

dy

= M

(T)

vol(S

) +

M(S

) vo

l(T)

Pro

of

of

Su

bad

dit

ivit

y:

Ass

umin

g G

ersh

o's

conj

ectu

re, l

et S

and

T b

e te

ssel

atin

g po

lyhe

dra

with

unit

volu

mes

that

ach

ieve

m* k

and

m* l,

res

pect

ivel

y. T

hen

S×T

is

also

ate

ssel

atin

g po

lyhe

dron

. A

nd v

ol(S

×T)

= 1.

The

refo

re, a

pply

ing

the

Fac

t,

m* k

≤ m

(S×T

) =

M

(S×T

)

(k+

l)vol

(S×T

)(k+

l+2)

/(k+

l)

=

M(T

) vol

(S)

+ M

(S) v

ol(

T)

k+l

=

1 k+

l (M(T

) +

M(S

))

=

1 k+l (

l m(T

) + k

m(S

) + ))

=

k k+

l m* k

+ l k+

l m* l

Page 18: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-3

5

I bel

ieve

that

a p

roof

of s

ubad

ditiv

ity th

is s

ort c

ould

be

writ

ten

assu

min

g th

ew

eake

r co

njec

ture

that

the

smal

lest

iner

tial p

rofil

e co

rres

pond

s to

a p

erio

dic

tess

elat

ion.

•S

pher

e Lo

wer

bou

nd:

m* k

≥ m

(k-d

im s

pher

e) =

(Vk)

-2/k

k+2

1 2πe =

.058

5 ≅

1 17

1 2πe

whe

re V

k =

vol

. of k

-dim

. sph

ere

w r

adiu

s 1

•m

* k →

1 2πe

= .0

585

≅ 1 17

a

s k

→∞.

Pro

ved

by Z

amir

and

Fed

er 1

996.

•U

pper

bou

nds:

m

* k ≤

m(S

) fo

r be

st k

now

n te

ssel

atio

n.

Suc

h bo

unds

may

con

tinue

to im

prov

e as

peo

ple

lear

n of

bet

ter

tess

elat

ing

poly

hedr

a.

•T

here

is a

con

ject

ured

low

er b

ound

in C

onw

ay a

nd S

loan

e's

book

, p. 5

9-62

. It

is ti

ghte

r th

an th

e sp

here

low

er b

ound

•S

umm

ary:

m

* k d

ecre

ases

with

k (

thou

gh n

ot n

ecce

ssar

ily m

onot

onic

ally

)fro

m 1

/12

= .0

833

at

k =

1 to

m* ∞

= 1/

2πe

= .0

585

≅ 1/

17,

whi

ch r

epre

sent

s a

gain

of

1.53

dB

.

•T

he b

ook

by C

onw

ay a

nd S

loan

e ha

s a

sum

mar

y of

wha

t is

know

n ab

out t

he Z-3

6

best

tess

elat

ing

poly

tope

s. S

loan

e al

so h

as a

web

site

that

may

con

tain

furt

her

upda

tes.

•W

e ne

ed a

goo

d na

me

for

m* k

. A

ny s

ugge

stio

ns?

Page 19: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-3

7

The

Bes

t Kno

wn

Tes

sela

ting

Pol

ytop

es

dim

ensi

on p

olyt

ope

m* k

best

know

n,(u

pp

er

boun

d)

conj

'dlo

wer

boun

d

sphe

relo

wer

boun

d

gain

(dB

)10

log

m* 1/

m* k

1in

terv

al.0

833'

.083

30

2he

xago

n.0

802'

.079

6.1

6

3un

know

n.0

785'

trun

cate

doc

tahe

dron

.077

875

.077

0.2

6

4"

.076

60.

0761

'.0

750

.39

5"

.075

60.

0747

'.0

735

.47

6"

.074

20.

0735

'.0

723

.55

7"

.073

10.

0725

'.0

713

.60

8"

.071

70.

0716

'.0

705

.66

12"

.070

10.

0692

'.0

691

.81

16"

.068

30.

0676

'.0

666

.91

24"

.065

80.

0656

'.0

647

1.10

50"

.062

3'1.

26

100

".0

608'

1.37

Z-3

8

200

".0

599'

1.43

300

".0

595'

1.46

very

larg

esp

here

.058

5'.0

585

1.53

Page 20: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-3

9

dim

ensi

on

gain dB

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

110

100

1000

SNR

gai

ns d

ue to

dec

reas

ing

M*k

know

n va

lues

of

M*k

sphe

res

low

er b

ound

bas

ed o

n

C&

S co

njec

ture

1.53

dB l

imit

know

n la

ttic

e te

ssel

atio

ns

uppe

r bo

und

base

d on

Z-4

0

Pro

perti

es o

f the

Zad

or F

acto

r β k

(1)

If Y

= a

X +

b,

whe

re a

≠ 0

, the

n β

Y,k

= β

X,k

. T

his

show

s β

k d

epen

ds o

n th

esh

ape

of th

e de

nsity

, and

is in

varia

nt to

sca

ling

or s

hifti

ng.

Der

ivat

ion:

Thi

s ca

n be

der

ived

dire

ctly

, or

from

Pro

pert

y (2

) w

ith A

bei

ng a

diag

onal

mat

rix w

ith a

's o

n th

e di

agon

al a

nd |

A| =

ak ,

and

with

σ2 Y =

a2 σ

2 X.

(2)

If Y

= A

X +

b,

whe

re A

is

a no

nsin

gula

r sq

uare

mat

rix, t

hen

β Y,k

= σ2 X σ2 Y

|A|2/

k

βX

,k

Not

e th

at β

is

not a

ffect

ed b

y th

e ad

ditio

n of

the

cons

tant

b.

Der

ivat

ion:

W

e ha

ve

f Y(y

) =

|A

|-1 f X

(A-1

(y-b

)).

The

refo

re,

β Y,k

= 1 σ2 Y

f Y(y

)k/k+

2

dy

(k+2

)/k =

1 σ2 Y

(|A

|-1 f

X(A

-1 (y

-b))

)k/k+

2

dy

(k+

2)/k

= 1 σ2 Y

(|A

|-1 f

X(A

-1 (y

-b))

)k/k+

2

dy

(k+

2)/k

= 1 σ2 Y

|A|-1

f X(x

)k/k+

2

|A| d

x(k

+2)/

k , w

ith x

= A

-1 (y

-b),

y=A

x+b,

dy

= |A

| dx

= 1 σ2 Y

|A|2/

k

f X(x

)k/k+

2

dx

(k+2

)/k

=

1 σ2 Y

|A|2/

k

σ2 X β

X,k

Page 21: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-4

1

(3)

If Y

= A

X +

b a

nd A

is

a k

×k o

rthog

onal

mat

rix (

i.e.

A-1

= A

t ),

then

β Y

,k =

βX

,k .

It sh

ould

be

intu

itive

that

the

opta

for

Y i

s th

e sa

me

as fo

r X

, be

caus

e on

e ca

nro

tate

and

tran

slat

e an

opt

imal

VQ

for

X t

o ge

t a V

Q w

ith th

e sa

me

perf

orm

ance

for

Y,

and

vice

ver

sa.

Der

ivat

ion:

For

an

orth

ogon

al m

atrix

||A

x||

= ||

x||

for

all

x. T

here

fore

,

σ2 Y =

1 k E||Y

-EY

||2 =

1 k E

||A(X

-EX

)||2

= 1 k E

||X-E

X||2

= σ

2 X

Nex

t |A

| = ∏ i=

1k λ

i =

1, w

here

the

λi's

are

the

eige

nval

ues,

whi

ch a

ll ha

ve

mag

nitu

de o

ne, b

ecau

se A

x =

λx i

mpl

ies

||x|

| = ||

Ax|

| = ||

λx||

⇒ |

λ| =

1.

(4)

If Y

= A

X +

b,

whe

re A

is a

k×k

dia

gona

l mat

rix w

ith d

iago

nal e

lem

ents

a1,

…,a

k,th

en

β Y,k =

∏ i=

1k a

2 i1/

k ∑ i=

1k σ

2 X,i

∑ i=1k a

2 iσ2 X

,i βX,k

=

∏ i=

1k a

2 i1/

k

1 k∑ i=

1k a

2 i

βX,k

if

the

σ2 X,i

's a

re a

ll th

e sm

ae

Z-4

2

(5)

If X

1,…

,Xk

are

inde

pend

ent,

then

β k =

1 σ2 X

∏ i=1k

f i(x

)k/(k

+2

)

dx

(k+

2)/k

Der

ivat

ion:

βX,k =

1 σ2 X

f 1(x

1)k/

k+2

f k(x

k)k/

k+2

d

x(k

+2)

/k

=

1 σ2 X

f 1(x

1)k/

k+2

dx

1…∫

f k(x

k)k/

k+2

dx

k(k

+2)

/k

=

1 σ2 X

∏ i=1k

f i(x

)k/k+

2

dx(k

+2)

/k

(6)

X1,

…,X

k in

depe

nden

t and

iden

tical

(IID

) w

ith v

aria

nce

σ2

β X,k

=

1 σ2

f 1(x

)k/k+

2

dxk+

2

(7)

If X

1,…

,Xk

and

Y1,

…,Y

k h

ave

the

sam

e m

argi

nal d

istr

ibut

ions

, but

Y1,

…,Y

kar

e in

depe

nden

t, th

en

β x,k

≤ β

Y,k

w

ith e

qual

ity if

f the

Xi's

are

inde

pend

ent.

Thi

s ill

ustr

ates

how

dep

ende

nce

amon

g th

e X

i's (

equi

vale

ntly

mem

ory

in th

eso

urce

) r

educ

es th

e va

lue

of β

k.

Page 22: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-4

3

(8)

Sup

pose

X1,

...,X

k a

re G

auss

ian

(a)

Inde

pend

ent c

ase

β X,k

= 2

π (k+

2 k)(

k+2)

/2

∏ i=

1k σ

2 i 1/

k

σ2 X

Der

ivat

ion:

Fro

m (

5)

β X,k

=

1 σ2 X

∏ i=1k

⌡⌠

1 √2π

σ2 i

exp

-

x2 2σ2 i

k/(k

+2)

dx

(k+

2)/k

= 1 σ2 X

∏ i=1k

⌡⌠

1

√2πσ

2 i k

+2 k

exp

{-

x2

2σ2 i

k+

2 k}k

(2

πσ2 i

k+

2 k)1

/2

(2π

σ2 i)k/

(2(k

+2)

)

dx

(k+

2)/k

=

1 σ2 X

∏ i=

1k

σ2 i1

/(k+

2) (

k+2 k)1/

2(k

+2)

/k

= 2

π (k+

2 k)( k

+2)

/2

∏ i=

1k σ

2 i 1/

k

σ2 X

Z-4

4

(b)

IID

Gau

ssia

n ca

se

β k =

k+2 k

(k+2

)/2 →

β ∞

= 2

πe =

17.

1 as

k→

In fa

ct, t

he β

k's d

ecre

ase

mon

oton

ical

ly u

p to

β∞

Not

e:

k+2 k

(k+

2)/2

= e

xp{k+

22

ln k+

2 k}

= e

xp{k+

22

ln (

1+ 2 k)

}

ex

p{k+

22

2 k} =

exp

{k+2 k} →

e

Page 23: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-4

5

(c)

Cor

rela

ted

Gau

ssia

n ra

ndom

vec

tor

with

cov

aria

nce

mat

rix K

β k =

k+2 k

(k+

2)/2

|K|1

/k

σ2

Der

ivat

ion:

We

assu

me

E X

= 0

bec

ause

the

mea

n do

es n

ot a

ffect

β.

We

find

βk

by

tran

sfor

min

g X

to

an in

depe

nden

t vec

tor

U v

ia a

n or

thog

onal

tran

sfor

m.

Fro

m (

3),

β k =

βU

,k;

β U,k

can

be

foun

d fr

om (

a) a

bove

.

Acc

ordi

ngly

, let

U =

A X

, w

here

A is

the

Kar

hune

n-Lo

eve

tran

sfor

m, i

.e. i

tsro

ws

z1,

…,z

k a

re a

n or

thon

orm

al s

et o

f eig

enve

ctor

s fo

r K

. Le

t λ 1

,…,λ

k b

eth

e co

rres

pond

ing

eige

nval

ues.

The

n

KU =

E U

Ut

= E

AX

Xt A

t =

A E

X X

t At

= A

KX A

t

= A

[λ1

z 1 …

λk

z k]

=

λ

1

.

.

λk

from

whi

ch w

e se

e th

at U

is

unco

rrel

ated

and

, als

o, in

depe

nden

t sin

ce it

isG

auss

ian.

Usi

ng th

e fa

ct th

at A

is

orth

onor

mal

and

(a)

abo

ve, w

e ha

ve

β X,k

= β

U,k

= 2

π (k+

2 k)(

k+2)

/2

∏ i=

1k σ

2 i 1/

k

σ2 X

= 2

π

k+

2 k ( k

+2)

/2 |Κ

|1/k

σ2

Z-4

6

(9)

Uni

form

den

sity

(a)

Inde

pend

ent

(eac

h X

i un

iform

on

som

e in

terv

al)

β k =

12

( ∏ i=1k σ

2 i)1/

k

σ2

(b)

IID

uni

form

on

an in

terv

al

β k =

12

Not

ice

that

it is

the

sam

e fo

r al

l k.

(c)

Uni

form

on

an a

rbitr

ary

k-di

men

sion

al s

et B

β k =

vol(B

)2/k

σ2

(10)

Lapl

acia

n de

nsity

(

f X(x

) =

1 √2 e

- √2|

x|

, σ2

= 1

)

(a)

Inde

pend

ent

(b)

IID β k

= 2

k+2 k

k+2 →

β ∞

= 2

e2

= 14

.8

as

k →

Page 24: High-Resolution Analysis of the Least Distortion of Fixed ... · Least Distortion of Fixed-Rate Vector Quantizers: Zador's Formula We wish to use high-resolution analysis to determine

Z-4

7

Asy

mpt

otic

Pro

pert

ies

of O

ptim

al Q

uant

izer

s

Let

Sx

den

ote

the

cell

cont

aini

ng x

.

•C

ell

volu

me

|Sx|

1M

λ* k(

x) =

c

M f X

(x)k/

(k+

2)

Sm

alle

r w

here

f i

s la

rger

, whi

ch is

not

sur

pris

ing.

•C

ell

pro

bab

ility

Pr(

Sx)

f X(x

) |S

x| ≅

fX(x

) c M

fX(x

)-k/(

k+2)

=

c M f

X(x

)2/(k

+2)

Larg

er w

here

f i

s la

rger

Z-4

8

•C

ell

dis

tort

ion

1 k ⌡⌠ Sx ||

x-Q

(x')|

|2 f X

(x')

dx'

≅ 1 k

f X(x

) ⌡⌠ Sx ||

x'-Q

(x')|

|2 d

x'

= 1 k

f X(x

) k m

* k |S

x|(k

+2)

/k

=

f X(x

) m* k

c M f X

(x)(-

k/k+

2)

(k+

2)/k

= m

* k c M

Sam

e fo

r al

l x;

i.e

. all

cells

con

trib

ute

the

sam

e to

the

dist

ortio

n.

•C

on

dit

ion

al c

ell

dis

tort

ion

1 k ⌡⌠ Sx ||

x-Q

(x')|

|2 f X

(x'|X

∈S

x) d

x' =

1 k ⌡⌠ Sx ||

x-Q

(x')|

|2

f X(x

')P

r(S

x) d

x'

=

1P

r(S

x) m

* k c M

= M c

f X(x

)-2/(

k+2)

m* k

c M

Inve

rsel

y pr

opor

tiona

l to

cell

prob

abili

ty.

Sm

alle

r w

here

f i

s la

rger

.