high-resolution enantiomeric separations on a slim im-ms … · 2018. 7. 16. · traveling wave ion...

34
High-Resolution Enantiomeric Separations on a SLIM IM-MS Platform Gabe Nagy Pacific Northwest National Laboratory 1

Upload: others

Post on 25-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • High-Resolution Enantiomeric Separations on a SLIM IM-MS Platform

    Gabe NagyPacific Northwest National Laboratory

    1

  • Goal: development of a fast, sensitive, and high-resolution technique for enantiomeric separations

    2

  • Current Toolbox for Enantiomeric Separations

    What are enantiomers?

    Capillary electrophoresis or liquid chromatography-based methods most commonly used

    Chiral derivatization: turns enantiomers into potentially resolvable diastereomers

    Chiral stationary phases: rely on chiral interactions between enantiomeric analyte and stationary phase

    3Ward, T. J.; Ward, K. D. Anal. Chem. 2012, 84, 626−635.

    D-aspartic acid L-aspartic acid L-threonine L-serineD-threonine D-serine

  • Ion Mobility-Mass Spectrometry (IM-MS)-Based Approaches

    Attractive alternative: faster than chromatographic methods

    No chiral stationary phase supports in IM separations and enantiomers have identical collision cross sections, so need other chiral interactions

    Chiral drift gas of S-(+)-2-butanol at atmospheric pressure (limited follow-up work)

    Formation of chiral non-covalent gas-phase complexes: poor resolution and resolving power (limited by path length) and sensitivity (limited charge capacity for ion introduction in existing platforms)

    4

    Dwivedi, P.; Wu, C.; Matz, L. M.; Clowers, B. H.; Siems, W. F.; Hill Jr., H. H. Anal. Chem. 2006, 78, 8200−8206.Dodds J. N.; May, J. C.; McLean, J. A. Anal. Chem. 2017, 89, 952−959.Gaye, M. M.; Nagy, G.; Clemmer, D. E.; Pohl, N. L. B. Anal. Chem. 2016, 88, 2335−2344.

  • Could Structures for Lossless Ion Manipulations (SLIM) help overcome these limitations of existing

    IM-MS-based enantioseparations?

    5

  • SLIM IM-MS Overview

    SLIM enables traveling wave ion mobility (TW IM) separations through the use of electric fields generated by arrays of electrodes (RF and DC potentials) on evenly spaced planar surfaces fabricated with photolithography

    6Deng, L.; Ibrahim, Y. M.; Hamid, A. M.; Garimella, S. V. B.; Webb, I. K.; Zheng, X.; Prost, S. A.; Sandoval, J. A.; Norheim, R. V.; Anderson, G. A.; Tolmachev, A. V.; Baker, E. S.; Smith, R. D. Anal. Chem. 2016, 88, 8957−8964.

  • Ultralong Path Length Separations in SLIM Traveling wave ion mobility (TW IM) separations permit much longer path lengths than drift

    tube (DT) IM separations due to their higher voltage constraints

    Switch region routes ions either to time-of-flight (TOF) detector or to do another “pass” permitting much longer path length separations than with existing IM platforms (>500 m)

    7Deng, L.; Webb, I. K.; Garimella, S. V. B.; Hamid, A. M.; Zheng, X.; Norheim, R. V.; Prost, S. A.; Anderson, G. A.; Sandoval, J. A.; Baker, E. S.; Ibrahim, Y. M.; Smith, R. D. Anal. Chem. 2017, 89, 4628−4634.

  • Compression Ratio Ion Mobility Programming (CRIMP)

    Stuttering or intermittently applied traveling waves in stuttering trap (ST) section allows for ions from traveling trap (TT) bins to be redistributed into smaller number of bins in ST section and thereby compressed

    8Deng, L.; Garimella, S. V. B.; Hamid, A. M.; Webb, I. K.; Attah, I. K.; Norheim, R. V.; Prost, S. A.; Zheng, X.; Sandoval, J. A.; Baker, E. S.; Ibrahim, Y. M.; Smith, R. D. Anal. Chem. 2017, 89, 6432−6439.

  • Peak shape and peak height as a function of compression ratio

    CRIMP can successfully “compress” broad initial ion packets

    Compression Ratio Ion Mobility Programming (CRIMP)

    9Deng, L.; Garimella, S. V. B.; Hamid, A. M.; Webb, I. K.; Attah, I. K.; Norheim, R. V.; Prost, S. A.; Zheng, X.; Sandoval, J. A.; Baker, E. S.; Ibrahim, Y. M.; Smith, R. D. Anal. Chem. 2017, 89, 6432−6439.

    Liulin Deng

  • Ion Accumulation in SLIM Module Ion accumulation can be achieved by blocking ions at the interface between the two

    TW regions to permit accumulation of >109 ions

    10Deng, L.; Garimella, S. V. B.; Hamid, A. M.; Webb, I. K.; Attah, I. K.; Norheim, R. V.; Prost, S. A.; Zheng, X.; Sandoval, J. A.; Baker, E. S.; Ibrahim, Y. M.; Smith, R. D. Anal. Chem. 2017, 89, 6432−6439.

  • What is a potentially suitable chiral modifier to form such non-covalent gas-phase complexes with D/L enantiomer pairs

    to permit chiral separation on a SLIM IM-MS platform?

    11

  • Cyclodextrins? Previous work has shown their potential as both mobile phase modifiers and LC stationary

    phase supports for isomeric and enantiomeric separations

    Ability to form host-guest inclusion complexes based on their hydrophobic cavity and hydrophilic exterior

    Choice of amino-substituted CDs to have preferred protonation site for positive mode MS and potentially limit number of ion conformations in IM separations that might convolute analyses

    12Zhou, J.; Tang, J.; Tang, W. Trends Anal. Chem. 2015, 66, 22−299.

    3-amino 3-deoxy α-cyclodextrin (α) 3-amino 3-deoxy β-cyclodextrin (β)

  • Potential Challenges/Questions for SLIM IM-MS Approach?

    Will these complexes form in solution and survive ESI?

    Will our traveling wave conditions be gentle enough not to fragment these non-covalent complexes?

    Will these complexes survive multiple SLIM passes?

    How can a large accumulation region and subsequent CRIMP step be combined to maximize both resolution and sensitivity?

    13

  • Complex Formation? Analytically relevant formation efficiency of desired chiral non-covalent complex

    Only 2:1 CD:AA host-guest inclusion complexes observed (no 1:1)

    14

    1100 1200 13000

    1

    m/z

    Rel

    ativ

    e in

    tens

    ity

    1134.3 m/z[β + H]+ and [2β + 2H]2+

    1205.8 m/z[2β + Thr + Li + H + H2O]2+

    Other peaks:1146.3 m/z: [2β + Li + H + H2O]2+ 1153.3 m/z: [2β + K + H]2+1156.3 m/z: [β + Na]+

  • Can IM-MS provide any insight into complex formation (i.e. the host-guest inclusion complex)?

    15

  • Host-Guest Inclusion Complex Shape? Cyclodextrin dimer more rigid in structure than monomer

    Potential insight as to why observed host-guest inclusion complexes exist as 2:1 CD:AA

    [2β + 2H]2+ [β + H]+

    16

  • Host-Guest Inclusion Complex Shape? Previous literature has shown ‘head-head’ as most stable dimer arrangement due to

    intermolecular hydrogen bonding network

    Working hypothesis: cyclodextrin dimer encapsulates the amino acid analyte?

    17

    ββ

    ββ

    β

    β

    Bonnet, P.; Jaime, C.; Morin-Allory, L. J. Org. Chem. 2001, 66, 689−692.

    Tail-Tail Head-Tail Head-Head

  • Effect of CRIMP on Complexation and Eventual Resolution?

    [D/L-Asp + 2α + Na + K]2+

    18

    3-amino 3-deoxy α-cyclodextrin (α)

    D-aspartic acid L-aspartic acid

    2 sec on-board accumulation followed by 4.5 m separation

    Broad initial ion packet

  • WITHOUT CRIMPExperimental step # Passes Total path length (m)2 sec on-board accumulation 0 4.5Separation 1 18Separation 4 58.5

    WITH CRIMPExperimental step # Passes Total path length (m)2 sec on-board accumulation 0 4.5CRIMP 1 18Separation 4 58.5

    Effect of CRIMP on Eventual Resolution?

    19

    [D/L-Asp + 2α + Na + K]2+

  • Effect of CRIMP on Eventual Resolution?

    20

    WITHOUT CRIMPExperimental step # Passes Total path length (m)2 sec on-board accumulation 0 4.5Separation 1 18Separation 4 58.5

    WITH CRIMPExperimental step # Passes Total path length (m)2 sec on-board accumulation 0 4.5CRIMP 1 18Separation 4 58.5

    [D/L-Asp + 2α + Na + K]2+

  • Benefit of Initial CRIMP Step for Eventual Resolution

    Increased sensitivity from accumulation of large ion population (2 sec)

    Overcome initially broad ion distribution by compression of initial ion packet (via CRIMP) prior to long path separation results in higher resolution than when no initial CRIMP step is performed 21

    − D-Asp− L-Asp

  • Will this same approach hold up for other D/L pairs?

    22

  • − D-Ser

    [Ser + 2α + Li + H + H2O]2+

    23

    − D/L-Sermixture

    − L-Ser

    58.5 meter separation with 2 sec on-board accumulation and initial CRIMP step

  • − D/L-Thr mixture

    − D-Thr

    24

    [Thr + 2α + Li + H + H2O]2+

    − L-Thr

    58.5 meter separation with 2 sec on-board accumulation and initial CRIMP step

  • What effect does an increase in cyclodextrin cavity size (alpha vs. beta) have on enantiomeric separations?

    25

    3-amino 3-deoxy α-cyclodextrin (α) 3-amino 3-deoxy β-cyclodextrin (β)

  • 26

    [Asp + 2CD + K + H]2+

    58.5 meter separation with 2 sec on-board accumulation and initial CRIMP step

    Broader peaks and noisier signal for β-CD complexes versus α-CD ones

    − D-Asp− L-Asp − L-Asp − D-Asp

    α-CD β-CD

  • 27

    [Ser + 2CD + Li + H + H2O]2+

    58.5 meter separation with 2 sec on-board accumulation and initial CRIMP step

    Poorer resolution as compared to when α-CD was used for D/L-Ser

    − L-Ser− D-Ser − L-Ser− D-Ser

    α-CD β-CD

  • 28

    [Thr + 2CD + Li + H + H2O]2+

    58.5 meter separation with 2 sec on-board accumulation and initial CRIMP step

    Poorer resolution as compared to when α-CD was used for D/L-Thr

    α-CD β-CD

    − D-Thr − L-Thr − D-Thr − L-Thr

  • Could other isomeric analytes be separated through this cyclodextrin-based complexation strategy?

    29

  • 72 meter separation of bile acid mixture with on-board accumulation and CRIMP step

    Bile Acid Isomer Separations

    30

    [M + K]+

    [M − H]−

  • 72 meter separation of bile acid mixture with on-board accumulation and CRIMP step[M + α + H + K]2+ with peak assignments based on individual runs

    α-Cyclodextrin-Based Bile Acid Isomer Separations

    31

    TUDCA

    TCDCA THDCA

    TDCA

  • 72 meter separation of bile acid mixture with on-board accumulation and CRIMP step[M + α + H + K]2+ with peak assignments based on individual runs

    Larger analyte (bile acid) causes inclusion complex to be a 1:1 ratio (CD:BA) rather than 2:1 as observed for smaller amino acids 32

    α-Cyclodextrin-Based Bile Acid Isomer Separations

    GCDCAGUDCA

    GDCA

  • Conclusions

    Cyclodextrins are suitable chiral modifiers and have potential for broader utility in IM-based enantioseparations

    α-cyclodextrin-based complexes provides higher resolution than β-complexes for both amino acid enantiomers and bile acid isomers

    SLIM IM-MS separation does not perturb or fragment these non-covalent complexes

    SLIM IM-MS enables higher sensitivity and higher resolution enantiomeric separations compared to existing IM-MS platforms

    33

  • AcknowledgementsSoftware/HardwareSpencer Prost Randy NorheimGordon Anderson

    SLIM TeamRichard D. SmithErin BakerYehia IbrahimChris ChouinardIan WebbSandilya GarimellaRoza WojcikAilin LiKwame AttahAneesh Prabhakaran

    FundingDOE Office of Biological and Environmental Research

    NIGMS P41 Biomedical Technology Proteomics Research ResourceMOBILion Systems, Inc.

    High-Resolution Enantiomeric Separations on a SLIM IM-MS PlatformSlide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34