high-resolution imaging of c-he and c-h2

1
High-resolution imaging of C-He and C-H2 collisions using a Zeeman decelerator V. Plomp1, X.-D. Wang1, F. Lique2, J. Kłos3, J. Onvlee1 and S. Y. T. van de Meerakker1 1Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands; 2Institut de Physique de Rennes, Université de Rennes, France; 3Department of Chemistry and Biochemistry, University of Maryland, U.S.A. E-mail: [email protected], [email protected] Technical support: N. Janssen, E. Sweers, A. van Roij, G. Wulterkens Acknowledgements & References Testing models of molecular interactions with high-resolution crossed beam scattering experiments. Extend the diversity of these scattering experiments to paramagnetic species, with the use of a Zeeman decelerator. 1. Goals 6. C-H 2 collisions ( 3P 1 3P 0 ) - Preliminary [1] Mol. Phys. 119, e1814437 (2020) [2] Phys. Rev. A 98, 033406 (2018) [3] Instrum. Sci. Technol. 28, 85 (2000) [4] Nat. Chem. 6, 216 (2014) 7. Conclusion & Outlook We developed an efficient recoil-free detection scheme for C 3P J atoms. Combined with Zeeman deceleration & VMI this allows for high-resolution imaging of C-He and C-H2 collisions, where we directly observe diffraction oscillations and rapid changes in the angular scattering distribution with changing energy. Excellent agreement is found with simulations based on ab initio calcula- tions of the cross sections. We aim to extend this experiment to investigate scattering reso- nances in low-energy C-He and C-H2 collisions and image reactive collisions of C with O2. 4. Recoil-free C-atom REMPI 2p2 3P J 2p3p 3P J 2p3s 3P J I.P. (2P0 J ) ~280nm ~165nm (VUV) ~212nm ~296nm ~329nm Four-wave mixing [3] of 212 nm and 296 nm in a Kr gas cell gener- ates 165 nm VUV. Subsequent threshold ionization by ~329 nm ena- bles efficient high-resolution detection. Rydberg resonances 2 P 0 1/2 step 2 P 0 3/2 step Ionizing laser wavelength (nm) Imaged decelerated C3P1 beam v =300 m/s 2+1 (280 nm) VUV + 212/296 VUV + 329 v (50 m/s) v (50 m/s) 0% 100% 3. Zeeman decelerator The Zeeman shift in paramagnetic species allows the use of strong, pulsed magnetic fields (>2.5 T) to state-selectively decelerate [2] providing high-state-purity beams with narrow velocity spreads. Alternating array of: Pulsed solenoids a - Used to guide/decelerate - Longitudinal ( ) focussing Permanent hexapoles b - Transverse ( ) focussing independent of solenoids Zeeman shift Longitudinal position a a b Computer controlled C-atom 3P1 state longitudinal velocity (v ) Simulation Experiment Guiding Hybrid Deceleration v =700 m/s 600 500 450 v =400 m/s 350 300 250 Coils off 2. Crossed beam setup VMI [1]: maps the velocity of scattered C 3P J revealing its angular & radial distribution 5. C-He collisions ( 3P 1 3P 0 ) Diffraction oscillations [4] 45° COM He velocity C 3P1 velocity Relative velocity 3P1 3P0 3P2 3P0 0% 100% E col =31.7 cm -1 52.4 cm -1 86.4 cm -1 (deg.) V (m/s) FWHM V (m/s) FWHM V (m/s) Exp. Sim. Exp. Sim. 700 15.6 13.8 10.0 7.3 600 13.5 13.1 9.7 7.4 500 12.2 11.9 11.5 10.4 450 9.2 8.8 10.9 11.7 400 11.7 11.8 7.7 8.6 350 6.7 6.6 8.9 7.3 300 4.8 3.9 7.8 9.9 250 4.1 2.1 8.0 7.2 Simulations based on ab initio calculations of the cross sections 0% 100% E col =32.3 cm -1 33.1 cm -1 36.3 cm -1 40.2 cm -1 51.7 cm -1 J=2, +43.4 cm -1 J=1, +16.4 cm -1 J=0, 0 cm -1 (400 m/s) (400 m/s)

Upload: others

Post on 06-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

High-resolution imaging of C-He and C-H2collisions using a Zeeman decelerator

V. Plomp1, X.-D. Wang1, F. Lique2, J. Kłos3, J. Onvlee1 and S. Y. T. van de Meerakker11Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands;

2Institut de Physique de Rennes, Université de Rennes, France; 3Department of Chemistry and Biochemistry, University of Maryland, U.S.A.

E-mail: [email protected], [email protected]

Technical support: N. Janssen, E. Sweers, A. van Roij, G. WulterkensAcknowledgements & References

Testing models of molecular interactions with high-resolution crossed beam scattering experiments.

Extend the diversity of these scattering experiments to paramagnetic species, with the use of a Zeeman decelerator.

1. Goals

6. C-H2 collisions (3P1 3P0) - Preliminary

[1] Mol. Phys. 119, e1814437 (2020)[2] Phys. Rev. A 98, 033406 (2018)[3] Instrum. Sci. Technol. 28, 85 (2000)[4] Nat. Chem. 6, 216 (2014)

7. Conclusion & OutlookWe developed an e�cient recoil-free detection scheme for C 3PJ

atoms. Combined with Zeeman deceleration & VMI this allows for high-resolution imaging of C-He and C-H2 collisions, where we directly observe di�raction oscillations and rapid changes in the angular scattering distribution with changing energy. Excellent agreement is found with simulations based on ab initio calcula-tions of the cross sections.We aim to extend this experiment to investigate scattering reso-nances in low-energy C-He and C-H2 collisions and image reactive collisions of C with O2.

4. Recoil-free C-atom REMPI

2p2 3PJ

2p3p 3PJ 2p3s 3PJ

I.P. (2P0J)

~280

nm

~165

nm(V

UV

)

~212

nm

~296

nm

~329

nm

Four-wave mixing [3] of 212 nm and 296 nm in a Kr gas cell gener-ates 165 nm VUV. Subsequent threshold ionization by ~329 nm ena-bles e�cient high-resolution detection.

Rydbergresonances

2P01/2 step

2P03/2 step

Ionizing laser wavelength (nm)

Imaged decelerated C3P1 beam v║=300 m/s2+1 (280 nm) VUV + 212/296 VUV + 329

v║ (50 m/s)

v ┴ (5

0 m

/s)

0%

100%

3. Zeeman deceleratorThe Zeeman shift in paramagnetic species allows the use of strong, pulsed magnetic �elds (>2.5 T) to state-selectively decelerate [2] providing high-state-purity beams with narrow velocity spreads.

Alternating array of:

Pulsed solenoidsa

- Used to guide/decelerate - Longitudinal (║) focussing

Permanent hexapolesb

- Transverse (┴) focussing independent of solenoidsZe

eman

shi

ft

Longitudinal position

a ab

Computer controlledC-atom 3P1 state

longitudinal velocity (v║)Simulation

Experiment

Guiding

Hybrid

Deceleration

v║=700 m/s

600 500450

v║=400 m/s

350300

250

Coils off

2. Crossed beam setup

VMI [1]: maps the velocityof scattered C 3PJ revealing itsangular & radial distribution

5. C-He collisions (3P1 3P0)

Di�raction oscillations [4]

45°

COM

He velocity C 3P1velocity

Relative velocity

3P1 3P03P2 3P0

0%

100%Ecol=31.7 cm-1 52.4 cm-1 86.4 cm-1

(deg.)

V∥(m/s)

FWHM V∥

(m/s)FWHM V⟂

(m/s)

Exp. Sim. Exp. Sim.

700 15.6 13.8 10.0 7.3

600 13.5 13.1 9.7 7.4

500 12.2 11.9 11.5 10.4

450 9.2 8.8 10.9 11.7

400 11.7 11.8 7.7 8.6

350 6.7 6.6 8.9 7.3

300 4.8 3.9 7.8 9.9

250 4.1 2.1 8.0 7.2

Simulations based on ab initiocalculations of the cross sections

0%

100%

Ecol=32.3 cm-1 33.1 cm-1 36.3 cm-1

40.2 cm-1 51.7 cm-1

J=2, +43.4 cm-1

J=1, +16.4 cm-1

J=0, 0 cm-1

(400 m/s)

(400 m/s)