high resolution measurements - intranet deibhome.deib.polimi.it/sampietr/nano/ferrari - high...

21
1 High resolution measurements The differential approach Giorgio Ferrari Dipartimento di elettronica, informazione e bioingegneria Politecnico di Milano Milano, November 23 2016 Electrical characterisation of nanoscale samples & biochemical interfaces: methods and electronic instrumentation High resolution measurements - G. Ferrari 2 OUTLOOK of the LESSON Difficulties of high resolution measurements Linear noise sources Non-linear noise sources Differential approach Examples

Upload: doanphuc

Post on 15-Apr-2018

226 views

Category:

Documents


4 download

TRANSCRIPT

1

High resolution measurements

The differential approach

Giorgio FerrariDipartimento di elettronica, informazione e bioingegneria

Politecnico di Milano

Milano, November 23 2016

Electrical characterisation of nanoscale samples & biochemical interfaces: methods and electronic instrumentation

High resolution measurements - G. Ferrari2

OUTLOOK of the LESSON

Difficulties of high resolution measurements• Linear noise sources• Non-linear noise sources

Differential approach Examples

2

High resolution measurements - G. Ferrari3

Definitions

Minimum detectable signal (limit of detection): Smin

Maximum signal (saturation sensor or electronics) : Smax

Dynamic range: Smax/Smin

Sensor + electronics response:

SSmax

Vmax

Smin

Vnoise

Vout

A. D

’Am

ico

and

C. D

i Nat

ale,

“A

con

trib

utio

n on

som

e ba

sic

defin

ition

s of

sen

sors

pro

pert

ies,

” IE

EE

Sen

s. J

., vo

l. 1,

no.

3, p

p. 1

83–1

90, 2

001.

SensorInterface

electronics

Given by sensor and electronics

High resolution measurements - G. Ferrari4

Definitions

Resolution: minimum measurable ∆Sx

Relative resolution: ∆Sx/Sx

(sensitivity: ∆Vx/∆Sx )

SSmax

Vmax

Smin

Vnoise

Vout

Sx

Vx

∆Sx

∆Vx

3

High resolution measurements - G. Ferrari5

The problem of the lesson

Assuming an ideal sensor (linear, no noise)

Sensor

Is ∆Sx = Smin for any Sx ? (resolution indep. of Sx)Is relative resolution = Smin/Smax (1/ dynamic range)?

Interface electronics

SSmax

Vmax

Smin

Vnoise

Vout

Sx

Vx

∆Sx

∆Vx

High resolution measurements - G. Ferrari6

Ex.: LIA-based capacitance meas.

Ex. : VAC = 1V, Cp=1pF, CF=0.1pF, BW= 1Hz

2 ⁄ , Vout,MAX= 2V

Cx,min = 2 zF, Cx,max= 0.2pF → DR= 108, resolution = 10 ppb

CF

VAC

CxCp

en

LIA

Main noise source

sensor

4

High resolution measurements - G. Ferrari7

High resolution meas. require:

• Low-noise, wide-bandwidth circuits

… and a full control of the setup, for example:

- Noise of the waveform generator

- Gain fluctuations

- Temperature effects

- 1/f noise

- Dielectric noise

- …

High resolution measurements - G. Ferrari8

Noise of the stimulus signal

Example: sine waveform

frequency

Power spectraldensity

f0

Additive noise

Amplitude and phase noise

5

High resolution measurements - G. Ferrari9

Stimulus: additive noiseCF

VAC

CxCp

en

LIAewg

ewg >> en (x 10) but Cp could be >> Cx

Set the maximum resolution

Resolution still better than 1 ppm

Minimize ewg at the frequency of the measurement

A voltage divider can be beneficial if ewg is independent of VAC

High resolution measurements - G. Ferrari10

Stimulus: additive noiseCF

VAC

CxCp

en

LIAewg

ewg >> en (x10) but Cp could be >> Cx

Set the maximum resolution

Cpp

Pay attention to the stray parallel capacitance Cpp:

Increase the total noise

Limit max VAC (saturation of the amplifiers)

6

High resolution measurements - G. Ferrari11

Stimulus: amplitude and phase noise

frequency

Power spectraldensity

f0

Additive noise

Amplitude and phase noise

⋅ 1 ⋅ sin 2

High resolution measurements - G. Ferrari12

Phase noise modulation

It is NOT important for high resolution meas.:

Phasor notation: VAC

ϕrms

The measured amplitude is not affected 1

x

y

7

High resolution measurements - G. Ferrari13

Phase noise modulation

It is IMPORTANT in the case of

signal + large spurious shifted of 90°:Phasor notation: Vspurious

ϕrms Smin ≈ Vspurious ⋅ sin(ϕ rms)Smin ≈ Vspurious ⋅ ϕ rms

Vgood signal

Example: -100dBc/Hz at 100Hz offset→ 2 ⋅ 10 ⋅ 100 0.1 (BW=100Hz)Smin/Vspurious > 100 ppm

x

High resolution measurements - G. Ferrari14

Amplitude noise modulation

It is IMPORTANT for high resolution meas.

DAC

VREF

f

SVref

Power spectral density of VREF

sin(nT)VREF⋅ sin(t)

digital sine

The demodulated amplitude has the SAME noise of VREF

1/f noise at the output of the LIA!

LIAVREF⋅ sin(t) VREF

8

High resolution measurements - G. Ferrari15

Amplitude noise modulation

Example:

White noise: 5 / , noise corner: 100Hz

100m 1 10 100 1k 10k0

100n

200n

300n

400n

500n

600n

white + 1/f noise white noise

rms

nois

e [V

]

Bandwidth [Hz]

1 10 100 1k 10k10-18

10-17

10-16

10-15

10-14

Noi

se s

pect

ral d

ensi

ty [V

2 /Hz]

Frequency [Hz]

(fmin= 0.1mHz)

High resolution requires narrow BW 1/f noise of AM set a limit!

High resolution measurements - G. Ferrari16

Ex.: LIA-based capacitance meas.

CF

VAC

CxCp

en

LIA

Front end amplifier and conditioning stages:en … other?

9

High resolution measurements - G. Ferrari17

Temperature fluctuations

Temperature coeff. of a C0G cap. («0 drift») is up ∆C/C= 30 ppm/°C

CF

VAC

CxCp

LIAVout = VAC Cx/CF

A fluctuation of the gain changes the LIA output (as AM)

1 ppm requires a temperature stability better than 0.03 °C (worst case)

High resolution measurements - G. Ferrari18

Gain set by a resistor

Temperature coeff. of standard R is 50 ppm/°C ( 100ppm/°C for high value resistors)

RF

VAC

CxCp

LIAVout = VAC Cx RF

1 ppm requires a temperature stability better than 0.02 °Cor resistors with low temp. coef. (down to 1 ppm/°C)

1/f noise of a resistor is often a resistivity fluctuation

1 ppm requires low 1/f noise resistors (metal thin film)

10

High resolution measurements - G. Ferrari19

Temperature effectO

utpu

t [V

]

SR830 lock-in: 840nV rmsCustom lock-in, standard R (50 ppm/°C): 240nV rms (4 ppm)Custom lock-in, LTC R (5 ppm/°C): 45 nV rms (0.7 ppm)

Low temp. coef. components along the signal path!

High resolution measurements - G. Ferrari20

Noise from the input capacitance

R

Vac

Cx Cp1

en

Is the capacitance a true noiseless component?What is the role of the substrate?

M. Sampietro “Conductive or insulating substrate”

11

High resolution measurements - G. Ferrari21

Ex.: LIA-based capacitance meas.CF

VAC

CxCp

LIA

Digital LIA:

A.A. filter

Filters

ADC

DAC

VIN

VAC

-sin

cos

jy

x

LIADigital

processingcos

-sin DDS

Outputs

Analogstages

Analogstages

High resolution measurements - G. Ferrari22

ADC: amplitude noise modulation

ADC

VR,ADC[1+nR,ADC(t)]

,, 1 ,

Unavoidable slow fluctuations of the ADC gain

Unavoidable fluctuations of the LIA output!

f

SVr,adc

Power spectral density of VR,ADC

12

High resolution measurements - G. Ferrari23

1 10 100 1k 10k 100k

100n

10µ

100µ

VIN

= 1 V

VIN

= 300 mV

VIN

= 100 mV

VIN

= 30 mV

VIN

= 0 V

VIN

= 1 V (quad: 40 mV)

Ou

tpu

t noi

se s

pec

tra

l de

nsity

[Hz]

Frequency [Hz]

Zurich Instruments, HF2LI

Spectral analysisf = 1 MHz

out in LIALIA Output

1m 10m 100m 1100m

1

10

100

1k

Res

olut

ion

[pp

m]

Signal amplitude [V]

1 kHz BW (ideal) 1 kHz BW 10 Hz BW (ideal) 10 Hz BW

×140

Resolution limits of LIAsO

utpu

t noi

sesp

ectr

alde

nsity

High resolution measurements - G. Ferrari24

How to improve the resolution ?

The limiting factor is the gain fluctuations of voltage source, amplifiers, ADC

OUT = (G+δG(t)) ⋅ S → δOUT(t) = δG(t)⋅S

The additional noise is proportional to the signal

only keep the useful signal!

13

High resolution measurements - G. Ferrari25

The differential approach

t

S

baseline

t

Ref

baseline

S = baseline + ∆S

t

S-Ref

• Gain fluctuations prop. to ∆S ≪ S

High resolution measurements - G. Ferrari26

The differential approach

t

S

baseline

t

Ref

baseline

S = baseline + ∆S

t

S-Ref

• Gain fluctuations prop. to ∆S ≪ S

• Ref must share the gain fluctuations of the stimulus

• The subtraction should be implemented as soon as possible (no digital domain!)

14

High resolution measurements - G. Ferrari27

Ex 1: Wheastone bridge

• VAC fluctuations reduced by the CMRR (balanced case)

• Amplifier and LIA input operate on ADIFF

• Z1,Z2,Z3,ZDUT should be placed near to experience the same temperature fluctuations

LIA

VOUT

VIN

+

-ADIFF

ADUT AREF

VAC

High resolution measurements - G. Ferrari28

Ex 1: Wheastone bridge

MEMS piezoresistive sensors (pressures, acceleration,…)

Sensors 2009, 9(8), 6200‐6218; doi:10.3390/s90806200

Proceedings of the IEEE 2009, 513-552, DOI: 10.1109/JPROC.2009.2013612

15

High resolution measurements - G. Ferrari29

Ex 2: Ratiometric – Half bridge

• No compensation of VAC fluctuations

• Large signal processed by amplifiers and LIA

LIA

VOUT

VIN

ZR

EF

-+

ZD

UT

VAC

VAC/2

High resolution measurements - G. Ferrari30

Ex 2: Ratiometric – Half bridge

• Balanced structure

• Balun or inverting amplifier (requires a stable gain!)

• ZREF adjacent to ZDUT

LIA

VOUT

VIN

ZR

EF

-+Balun

ZD

UT

VAC

ADIFF

-VAC

16

High resolution measurements - G. Ferrari31

Ex 2: Ratiometric – Half bridge

http://www.microsystems.metu.edu.tr/gyroscope/gyroscope.html

Microsystem Technologies, 2013, pp 713–720, DOI: 10.1007/s00542-013-1741-z

MEMS capacitive sensors (pressures, acceleration,…)

High resolution measurements - G. Ferrari32

Ex 3: Current sensing

• Balanced structure

• Balun or inverting amplifier (requires a stable gain!)

• ZREF adjacent to ZDUT

LIA

VOUT

VIN

ZR

EF

+

-Balun

ZD

UT

VAC

0V

-VAC

17

High resolution measurements - G. Ferrari33

Cap. detection of the surface coverage

dust deposition, cell growth, …

M. Carminati, Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors, Sensors Actuators A 219, 2014.

Cel(t)

Cel

time

High resolution measurements - G. Ferrari34

Interdigitated Electrodes

Ex.: area 1 mm2

gap 1 mlength 500 mLIA resolution: 30 ppm

Large sensitive area implies large total capacitance

Ctotal = 15pF

∆Cmin = 450 aF

Minimum particle size > 50 m

18

High resolution measurements - G. Ferrari35

Differential structure • Common mode

rejection• Generator• Environment

Differential electrodes architecture

High resolution measurements - G. Ferrari36

Realized Chip Prototype

2mm

1 mm2

collection area

Cel = 1.7aF

5µm

Noise: 65 zF(differential structure)

Noise: 450 aF(single structure)

19

High resolution measurements - G. Ferrari37

Ex 4: Current-Sensing AFM (CS-AFM)

X,Y,Z piezo

conductive probe

current detector

topography

IDC

VDC

IDC

sample

force feedback

A voltage bias is applied between a conductive tip and the sample on a conductive substrate. Thecurrent flowing through the sample is measured while the tip is maintained in contact under forcefeedback control.

R

Advantages compared to STM:

1) conducting and insulating samples

2) independent topography and electrical image

High resolution measurements - G. Ferrari38

Nanoscale Impedance Microscopy

piezo

topography

AFMcontroller

sampleVDC

Conductiveprobe

I-V

Lock-in amplifier

Z( f )

+ vAC(t)

IDC+iAC(t)

Topography controls

C RAC

IDC

C RAC Noise

Current amplifier with BW=1MHz:

• Capacitance and dielectric maps

• Impedance measurements (100Hz – 1MHz)

• Noise spectroscopy(proof of the concept, ICNF 2005)

• Current transient on a s scale

G. Gomila (IBEC), L. Fumagalli(University of Manchester)

Fumagalli L et al, Nanotechnology 2006

Fumagalli L., Ph. D. Thesis

20

High resolution measurements - G. Ferrari39

L. Fumagalli et al. Nanotechnology 2006

L. Fumagalli et al. Nano Letters 2009

L. Fumagalli et. al. Nature Mater. 2012

• εr is an intrinsic property of matter given by chemical composition, structure, density,…

• Measured by capacitance meas. + theoretical interpretation– avoiding topography artifacts– analytical formula and/or simulations

• long-range contributions from the full tip and probe

• extremely small signal to detect

~ 1:1 million ratio

stray contribution~ 1picoFarad~ 1 attoFarad

apex

r

R

hz

Dielectric measurements

High resolution measurements - G. Ferrari40

Compensation path

No (reasonable) differential setup

CF

VAC

Cc

LIA

Cstray

Cc = Cstray

-1

Istray

Cstray is not fixed,a calibration is required

21

High resolution measurements - G. Ferrari41

Compensation path

A more practical configuration

CF

VAC

Cc

LIA

Cstray

nCc/214= Cstray

DAC -VAC n/214

AD5446: 14-bit multiplying DAC, BW= 12MHz, gain temp. coef. <20 ppm /°C

14 bit

High resolution measurements - G. Ferrari42

Summary

• Resolution could be limited by gain fluctuations:• Signal source (DAC, optical source,…)

• Amplifiers (C, R,…)

• A/D converters

• Differential approach• Remove large baseline: gain fluctuations prop. to the signal

• Reference path generated from the same signal source• Differential sensor

• Circuit with a calibrated component (+ variable gain and/or phase shifter)

• Reference path with –∆S whenever possible (e.g. MEMS)