highway vehicle object simulation model user's manual · hayes e. ross, jr. 9. performing...

166
1. Report No. 4. Title and Subtitle HVOSM USER'S MANUAL 7. Author's) Mike E. James, Jr. Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. Government Accession No. TECHNICAL REPORT STANDARD TITLf 3. Recipient' 1 Catalog No. 5. Report Date Auomof" 1 Q76. 6. Performing Organi zatian Code 8. Performing Organization Report No. Research Report 140-9 10. Work Unit No. Texas Transportation Institute Texas A&M University II. Contract or Grant No. College Station, Texas 77843 "R.,.,.,, ... ,..l-t Stnrlv 2-10-6Q. ·16.0 Type of Report and Period Covered 12. Sponsoring 'Agency Name and Address Texas Highway Department 11th and Brazos Austin, Texas 78701 Interim - September August 1974 14. Sponsoring Agency Code IS. Supplementary Notes Research performed in cooperation with DOT, FHWA Research Study Title: "Evaluation of the Roadway Environment by Dynamic Analysis of the Interaction Between the Vehicle, Passenger and 16. Abstract Research Report 140-1, "Documentation of Input for Single Vehicle Accident Computer Program," Young, R. D., et al., was written in 1969 to document the input requirements of the Texas Transportation Institute's version (V-3 modified slightly) of the Highway-Vehicle-Object-Simulation-Model. Since that time, several additional changes have been incorporated in the model by TTl researchers. This document was therefore written to amplify the information contained in Research Report 140-1. This report will supersede Research Report 140-1. Values of vehicle parameters are included where available. Comments regarding some of the input parameters are included to help reduce the time needed for setting up the data. Sample problems are given which illustrate how the input is determined and how the corresponding output is ·presented. 17. Key Words Documentation, Computer Program HVOSM, Math Model, Automobile Dynamics, Highway Safety, User Manual. 18. Distribution Statement 19. Security Clauif. (of this report) 20. Security Claulf. (of this page) Unclassified Unclassified Form DOT F 1700.7 CB•Ul 21. No. of Pages 22. Price 152

Upload: others

Post on 27-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

1. Report No.

4. Title and Subtitle

HVOSM USER'S MANUAL

7. Author's)

Mike E. James, Jr. Hayes E. Ross, Jr. 9. Performing Organization Name and Address

2. Government Accession No.

TECHNICAL REPORT STANDARD TITLf

3. Recipient' 1 Catalog No.

5. Report Date

Auomof" 1 Q76. 1-,.---§?>J~.U:U.~il.../..:.:1.----,,--,--.--

6. Performing Organi zatian Code

8. Performing Organization Report No.

Research Report 140-9 10. Work Unit No.

Texas Transportation Institute Texas A&M University II. Contract or Grant No.

College Station, Texas 77843 "R.,.,.,, ... ,..l-t Stnrlv 2-10-6Q. ·16.0 l--;--;::--;:-----:-:-----:-:---:-:-:-:----~-------------ll3. Type of Report and Period Covered

12. Sponsoring 'Agency Name and Address

Texas Highway Department 11th and Brazos Austin, Texas 78701

Interim - September 196~ August 1974

14. Sponsoring Agency Code

IS. Supplementary Notes Research performed in cooperation with DOT, FHWA Research Study Title: "Evaluation of the Roadway Environment by Dynamic Analysis

of the Interaction Between the Vehicle, Passenger and Road~

16. Abstract

Research Report 140-1, "Documentation of Input for Single Vehicle Accident Computer Program," Young, R. D., et al., was written in 1969 to document the input requirements of the Texas Transportation Institute's version (V-3 modified slightly) of the Highway-Vehicle-Object-Simulation-Model. Since that time, several additional changes have been incorporated in the model by TTl researchers. This document was therefore written to amplify the information contained in Research Report 140-1. This report will supersede Research Report 140-1.

Values of vehicle parameters are included where available. Comments regarding some of the input parameters are included to help reduce the time needed for setting up the data. Sample problems are given which illustrate how the input is determined and how the corresponding output is ·presented.

17. Key Words

Documentation, Computer Program HVOSM, Math Model, Automobile Dynamics, Highway Safety, User Manual.

18. Distribution Statement

19. Security Clauif. (of this report) 20. Security Claulf. (of this page)

Unclassified Unclassified

Form DOT F 1700.7 CB•Ul

21. No. of Pages 22. Price

152

Page 2: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since
Page 3: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

HVOSM USER'S MANUAL

by

Mike E. James, Jr. Assistant Research Engineer

and

Hayes E. Ross, Jr. Associate Research Engineer

Research Report 140-9

Evaluation of the Roadway Environment by Dynamic Analysis of the Interaction

Between the Vehicle, Passenger, and the Roadway

Research Study No. 2-10-69-140

Sponsored by

The Texas Highway Department in cooperation with the

U.S. Department of Transportation, Federal Highway Administration

August 1974

TEXAS TRANSPORTATION INSTITUTE Texas A&M University

College Station, Texas

Page 4: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

DISCLAIMER

The contents of this report reflect the views of the authors who

are responsible for the facts and the accuracy of the data presented

herein. The contents do not necessarily reflect the official views or

policies of the Federal Highway Administration. This report does not

constitute a standard, specification, or regulation.

KEY WORDS

Documentation, Computer Program, HVOSM, Math Model, Automobile

Dynamics, Highway Safety, User Manual.

ii

Page 5: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

FOREWORD

The information contained herein was developed on Research Study

2-5-69-140 entitled "Evaluation of the Roadside Environment by Dynamic

Analys,is of the Interaction Between the Vehicle, Passenger, and Roadway."

It is a cooperative research study sponsored jointly by the Texas Highway

Department and the U.S. Department of Transportation, Federal Highway

Admin.istration.

The basic objective of the study is to develop criteria to aid in

the design of a safe highway. This is being accomplished through the ap-

plication· of mathematical simulation techniques and crash tests to

determine the dynamic behavior of automobiles and their occupants when in

collision with roadside objects or when traversing highway geometric

features such as ditches, sloping culvert grates, etc. The study began in

September, 1968.

Several significant findings have resulted from the study and these

are documented in the following reports:

1. "Documentation of Input for Single Vehicle Accident Computer Program," Young, R. D. , et al. , TTI Research Report 140-1, July 1969.

2. "A Three-'Oimensional Mathematical Model of an Automobile Passenger," Young, R. D., TTI Research Report 140-2, August 1970.

3. "Criteria for the Design of Safe Sloping Culvert Grates," Ross, H. E. , Jr. , and Post, E. R. , TTI Research Report 140-3, August 1971.

4. "Criteria for Guardrail Need and Location on Embankments," Ross, H. E., Jr., and Post, E. R., TTI Research Report 140-4, April 1972.

iii

Page 6: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

5. "Simulation of Vehicle Impact with the Texas Col'lcrete Median Barrier," Young, R. D., et al., TT! Res~arch Report 140-5, June 1972.

6. "Comparison of Full-Scale Embankment Tests with Computer Simulations," Ross, H. E., Jr., and Post, E. R., TTI Research Report 140-7, December 1972 •.

7. "Impact Performance and a Selection Criterion for Texas Median Barriers," Ross, H. E., Jr., TTl Research Report 140-8, April 1974.

iv

Page 7: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

SUMMARY

Research Report 140-1 was written in 1969 to document the input re­

quirements of the Texas Transportation Institute's version (V-3 modified

slightly) of the Highway-Vehicle-Object-Simulation-Model. Since that

time, several additional changes have been incorporated in the model by

TTl researchers. This document was therefore written to amplify the in­

formation contained in Report 140-1. This report will supersede Report

140-1.

Values of vehicle parameters are included where available. Comments

regarding some of the input parameters are included to help reduce the

time needed for setting up the data. Sample problems are given which il­

lustrate how the input is determined and how the corresponding output is

presented.

v

Page 8: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

IMPLEMENTATION STATEMENT

This report will facilitate the applicat~on of the HVOSM computer

program by both researchers and highway officials. The information in

the report on input requirements will minimize the time needed to set up

the program.

Several applications of the HVOSM in Study 140 have been made and

the results have been implemented. These have included studies related

to roadside, guardrail, median barriers, and sloping culvert grates.

vi

Page 9: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

TABLE OF CONTENTS

DISCLAIMER.

FOREWORD.

SUMMARY • •

IMPLEMENTATION STATEMENT ••

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . LIST OF TABLES.

I. INTRODUCTION. . . . . . . . . II. GENERAL INPUT REQUIREMENTS. .

A. 2.1 Primary Data.

B. 2.2 Plotting Data . . . . c. 2.3 Program Termination Data. . .

I! I. SAMPLE PROBLEMS . . . . A. 3.1 Sloping Culvert and Surrounding Terrain ••

B. 3.2 Highway Curb and Surrounding Terrain.

IV. REFERENCES.

V. APPENDICES.

A. General Abbreviations . . B. Definitions of Input Parameters Listed

Alphabetically ••••••••••

c. Definitions of Program Variables.

D. Derivation of Vehicle-Ground Interaction ••.

vii

ii

. iii

v

vi

vii

•. viii

X

1

7

7

66

71

72

89

• . 107

108

109

• 110

. 110

. 118

. 135

Page 10: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Figure

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

3-1

3-2

3-3

3--4

3-5

3-6

J-7

LIST OF FIGURES

Title

Median Crossover and Adj~c~nt Ditch SeGtions

Curb Coordinate System .. .. . .. . Vehicle Dimensions for Bqrrier Impact. .. . Barrier Dimensions and Positiot:} ••

Approximate Body Dimensions of the 1963 Ford, Part I . . . . . . . . . . •. . . . .. . . .. . . Approximate Body Dimensions. of the 19-63 Ford, Part II. . . . . . . . . •. . . . . . Logarithmic Spiral and Initial Vehicle Position.

Schematic of Steering Mechanism for Following Prescribed Path. • • • • • . .

Friction Factor Versus Vehicle Speed • • • •••

Speed Slope Versus Tire Load • • . . Friction Factor Versus Tire Load

Simulated Median Terrain Configuration and Auto­mobile Path, Example Problem 3.1 •••

Primary Input Data, Example Problem 3.1

Primary Input Data Reproduced as Card Image, Example Problem 3.1 ••••••••••••

Primary Input Data Reproduced in More Convenient Form, Example Problem 3.1 . • . . • • • . .

Program Output, Example Problem 3.1

Roadway Curb, Example Problem 3.2 . . .. •.

Primary Input Data, Example Problem 3.2

viii

Pa~e

34

39

45

46

52

53

55

56

58

59

.. . 60

73

74

75

76

79

90

91

Page 11: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Figure

3-8

3-9

3-10

C-1

D-1

D-2

D-3

D-4

LIST OF FIGURES (continued)

Title

Primary Input Data Reproduced as Card Image, Example Problem 3. 2 . . . . . . . . . . . .

Primary Input Data Reproduced in More Convenient Form, Example Problem 3.2 .....

Program Output, Example Problem 3.2

Steering System Elastic Resistance Versus Steer Angle

Coordinate Systems

Top View of Terrain

Tangent Plane, Normal Line •

Schematic of Components Normal and Tangent to Terrain of Velocity Vector of Vehicle-Point "I".·

ix

Page

92

93

97

133

137

139

141

146

Page 12: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Table

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

LIST OF TABLES

Title

Inertial Data • . • • .

Typical Dimensions

Typical Front Suspension Data •

Typical Rear Suspension Data . . . Typical ¢ c Versus of Values •••

Sample Input for 14th Series

Bumper Points in Vehicle Coordinates (Inches) . . . . . . . . . . . . .

Standard Plots

Alphameric Variable Names

X

12

15

17

19

29

29

51

67

68

Page 13: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

I. INTRODUCTION

To facilitate the design and evaluation of a roadway and its near

environment, it is beneficial to know the effects that various design

features have on the dynamic response of the vehicle and passenger.

Roadway alignment of horizontal curves, superelevation, and ramps are de­

termined, to a large degree, by the ability of a vehicle to negotiate

these features. This ability is dependent upon the dynamic interaction

between the vehicle and the roadway surface. Design of the roadway sub­

grade, pavement, and bridges is dependent upon static and dynamic loads

imposed by vehicular traffic. From the safety aspect it is advantageous

to know the effects of vehicle collisions with various roadside obstacles,

such as guardrails, bridge rails, median barriers, sign posts, and others.

In the areas adjacent to the traveled way it is import.ant to know the

effects that shoulders, side slopes, and back slopes have on a vehicle's

motion.

It is felt that the problems mentioned above can be studied and eval­

uated satisfactorily with the use of mathematical simulation techniques.

If these problems were studied using full-scale tests, the expense would

likely be prohibitive and the number of variables that could be studied

would be limited.

This research report was written to revise and amplify the information

contained in TTI Report 140-1. Sample problems are included which illustrate

how the input data is determined and h9w the output is presented.

1

Page 14: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

1.1 Purpose and Scope

Since Research Report 140-1 was written several additional changes

have been incorporated in TTl's version of the HVOSM program. These

changes along with more detailed input illustrations and sample problems

have been included as an aid to the researcher. This research report

supersedes Research Report 140-1.

1.2 Additions and Modifications to Research Report 140-1

a. In order to provide more flexibility to the curb impact section

(17th card series), the maximum permitted number of curb faces

was increased from two to six. The last curb face is extended

at the same slope without calling "CRIMBP", i.e. , without undue

expense.

b. The 24th series of cards was added to permit the researcher to

input a predetermined path (Logarithmic Spiral) for the vehicle

to follow. The steering angle is estimated by pointing the front

wheels in the direction of the "Target Point" on the desired path

some distance ahead of the vehicle. This is achieved using a

rod of constant length (called the "Steering Pointer"), one end of

which is fixed at a point midway between the front wheels. The

steering pointer, which has no physical restraint capabilities,

is rotated in a horizontal plane until its free and coincides

with the prescribed path of the vehicle. This method of estimating

the steering angle is similar to that employed by an actual driver

when he estimates the steering angle of his vehicle by looking some

distance down the roadway. The driver depends on his experience

2

Page 15: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

in handling his car to estimate the turn of the steering wheel,

whereas the success of this steering mechanism :is depf"ndent on

the length of the steering pointer. TTl has found that a steering

pointer length of 20 ft produces good tracking for curvatures

from 100 to 2,000 ft and speeds from 30 to 80 mph.

c. Additional comments and illustrative examples have been added to

the cards and card seri.es in order to clarify the input.

d. Two sawple problems, illustrating the total data input, are

contained in Chapter III. The first problem involves a vehicle

negotiating a sloping culvert grate and i.ts surrounding terrain,

while the second considers a vehicle impacting a highway curb and

its surrounding terrain.

1. 3 Gerteral Input Requirements

All input data needed to complete one. event, e.g. , a vehicle striking

a guardrail, is defined b.ere.in as a data group. As a matter of convenience,

the data group is divided into two sections. The first section pertains to

the computations and the second section provides the information necessary

for CAL-COMP plot generations. Any number of data groups may be submitted

together, and as such constitute a computer run.

Section 1. The first two CB.rds of this section are title cards, and

the.ir contents will be printed at the top of each output page. Both cards

must always be include.d in each data group. If the standard plot option

(described in Part 2.2 of this report) is chosen, the contents of the first

3

Page 16: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

card are also printed out on each plot. The 3rd card, 16th series of cards,

and the final card must always be included. in each d.ata group.

The remaining input cards in Section 1, needed for specific events,

are desc.ribed in Part 2.1 and Appendi.x B. Not all of this input is neces-

sarily required for a given event. The user should refer to References 1,

2, and 3 for the input needed for a particular event.

As mentioned in Part 1. 2, provisions have been made to reduce the

amouEt of input data. The t:haracteristics of a typi.aaZ veC.i.cle are avail-

able to the program (in Subroutine STAN) and will be used unless otherwise

specified. Input supplied are the contents of cards 4 through 9, 12, 13,

and ca.rd series 14, 19, and 23. If other data are required, the card (l)r

cards of this group 't\rhich are appropri.ate and their ICARD number should be

input. The ICARD number is used as an identification code by the progr·are.

in storing the data.

In some cases reconauended values are given in the re.port for certain

variables. lhe value of these variables supplied by STAN are in agreemer.t

with the recommended values.

Note that the input is referred to by card number u.p through Card

12 and by series of cards thereafter. This is done since the exact number

of input cards is variable after the first 13 and depends on the event

simulated. Also, note that the format listed for the input parameters can

a!'.cl in many cases must be overri.dden.

Section 2. In addition to the digital output, three options are

avalluble to the user for plotting the output. One may choose a standard

4

Page 17: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

set of plots, a specified number of plots, or no plots .. A description of

the input requirements for each of these options is given in Part 2.2.

Termination Card. Part 2.3 of this report describes the input needed

to terminate a computer run.

1.4 Typical Program Uses

The HVOSM program, at the state of development documented in this

report, can be used to investigate the following situations:

(a) Handling response, i.e., observing the vehicle's response for

lane change maneuvers or any such maneuver for which the

steering angle (tjJf) is known as a function of time (Part 2.1,

15th series of cards).

(b) Ride response, i.e., observing the vehicle's response while

traveling over arbitrary terrain (roadway, ditches, ramps,

side slopes, earth berms, etc.).

(c) Simultaneous handling and ride response which involves a

combination of (a) and (b) above.

It is noted that the mathematical model has the capa­

bility of allowing the steering angle of the tires to be

determined by the interactive forces between the tires and

the terrain. The condition, called a steer degree of freedom,

is used to simulate the case of a vehicle in which the driver

has lost contact with the steering wheel, thus having no

control over its direction. The steer degree of freedom is

activated by setting INDCRB = 1.0 on the 3rd card (Part 2.1).

5

Page 18: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

TTI has used the steer degree of freedom in studies of side

slopes and earth berms.

(d) Skid response, i.e., observing the vehicle's response during

a skid.

A skid can be generated by a proper combinat.ion of

steering angles and applied torques (Part 2.1, 15th series

of cards).

(e) Curb impac.t, i.e. , observing the vehicle's response during

interaction with a curb or bridge rail (Part 2.1, 17th series

of cards). During curb impact it is recomtttended that the

more accurate tire model (the radial-spring tire model) be

b.ctivated, which is accomplished by setting TNDCRF. ::: 1. 0 on

the third card of Part 2 .1.

(f) Barrier i.mpact, i.e., observing the vehicle's response during

collision with a barrier.

Four types of barriers can be studied:

1) rigid barrier with a finite vertical dimension,

2) rigid barrier with an infinite vertical dimensionl

3) deformable barrier "rith a finite vert1.cal dimensi.on,

a) deformable barrier with an infinite vertical dimension.

'Ihe input information for 8. vehicle-barrier c.ollision is

described in Part 1. 2 of this report (20th, 21st, and 22nd

series of cards).

These are just typical uses available to the roadway desi.gner. Any

coml:dnation of these could conceivab;ly be used in an effort to strnulate

the ciesigner's particular problem.

6

Page 19: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

II. GENERAL INPUT REQUIREMENTS

2.1 Primary Data

1st and 2nd Cards (always included)

Format (18A4)

As stated above, these are title cards containing alphameric

information in columns 1-72, for the purpose of identification.

-... 3rd Card

Program Control Parameters (always included)

Format (9F8.0,I8)

Col. Program *Report Nos. Variable Variable Definition Units

1-8 TO NONE Start time of event sec

9-16 Tl NONE End time of event sec

17-24 DTCOMP NONE Increment of integra-tion

25-32 DTCMPl NONE = 0.0, program computes initial position of vehicle to rest on ter-rain. = 1.0, user provides all initial vehicle position data.

33-40 DTPRNT NONE Output interval sec

41-48 THMAX NONE Value of THETA at which we shift planes usually = 70°

49-56 UVWMIN NONE See comments

57-64 PQRMIN NONE See comments

65-72 INDCRB NONE See comments

* "Report" is taken to mean either this report or any of the CAL reports referenced herein.

7

Page 20: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

80

Program Variable

ICARD

3rd Card (Continued)

*Report Variable

NONE

Comments on 3rd Card

Definition

=1

Units

TO - Usually 0. 0, however, an event can start at any desired time.·

DTCOMP - CAL uses 0.005-0.01 seconds depending on the character of the

run.. TTl has not used larger than 0. 005; and runs made with

0.001 produced essentially the same results as with 0.005.

DTC:MPl - See comments for lOth and 11th cards.

DTPRNT - TTl prints the output every other increment of integration;

for example, if DTCOMP = 0.005, DTPRNT = 0.01.

UVWMIN -Absolute value of the resultant translational velocity (in./sec.) &

and angular velocity (deg./sec.), respectively, of the vehicle PQRMIN

center of gravity at which the program will terminate computations.

Both the translational velocity and the angular velocity of the

vehicle must be equal to or less than these values before

termination occurs. TTl uses 0.0 for both values.

INDCRB - Three values are used and their function is as follows:·

(1) 0.0 - allows steering angles to be read in tabular form

(15th series of cards); or allows a specified path

(logarithmic spiral) to be used (24th series of cards);

or if neither of the previous two are used, the initial

steering angle (PSIFIO) of the lOth card is main-

tained throughout the computations, i.e., from the

start to the end of the event.

8

Page 21: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

(2) 1.0 - activates the steer degree of freedom and the

radial tire model. In this case the curb input

(17th series of cards) must be included.

(3) -1.0 - activates the steer degree of freedom only.

9

Page 22: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

1-8

9-16 17-24 25-32 33-40 41-48

49-72

80

Program Variable

MODE

EBAR EM AAA ID'AX HMIN

ICARD

* 4th Card

METHOD OF INTEGRATION

Format (9F8.0,I8)

Report Variable

NONE

NONE II

II

II

II

Definition

Mode of integration = 0.0 Variable Adams­

Moulton = 1.0 Runge-Kutta

2.0 Fixed Adams­Moulton

Applicable only if Mode = 0.0 See PINTl Subroutine

blank

= 2

Conn11.ent on 4th Card

MODE- TTl has used MODE= 1.0, exclusively (Runge-Kutta).

,~

Units

If the 4th card is omitted, the program will automatically select MODE = 1.0.

10.

Page 23: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

....

Col. Program Nos. Variable

* 5th Card

INERTIAL DATA

Format (9F8.0,I8)

Report Variable Definition Units

1-8 2 XMS Ms = sprung mass Lb-Sec /In.

9-16 front unsprung mass 2 XMUF ~F = Lb-Sec /In. (both sides,)

17-24 2 XMUR ~R = rear unsprung mass Lb-Sec /In.

2 25-32 G g = 386.4 In/Sec

33-40 XIX IX See below Lb-in.-sec 2 comments

41-48 XIY Iy See below Lb-in.-sec 2 comments

49-56 XIZ Iz See below Lb-in.-sec 2 comments

57-64 XIXZ Ixz See comments below Lb-in.-sec 2

65-72 XIR IR See below Lb-in.-sec 2 comments

80 ICARD = 3

Comment on 5th Card

IX, IY, I 2 , IXZ = moments and product of inertia of sprung mass, lb-sec2-in.

IR = rear unsprung mass moment of inertia about a line through its center of gravity and parallel to the X axis, lb-sec2-in.

Typical values of inertial data are shown in Table 2-1, (from reference 1).

* If the 5th card is omitted, the program will automatically select the inertial properties of a 1963 Ford Galaxie given in Table 2-1.

11

Page 24: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

TABLE 2-1. INERTIAL DATA

1963 Ford Typical Standard Typical 1958 Ga1axie Four-

·Size Sedan Production Car** 1953 Buick* door Sedan***

Ms 8.280-9.8450 10.2530 10.6720 10.8180

~F 0.540-0.5910 0.5000 0. 7240 0.6080

~R 0.8860-0.9700 0.8070 1.1720 0.9450

IX 4340.0-5160.0 6288.0 5592.0 6000.0

Iy 23800.0-28300.0 30492.00 33600.0 30000.0

rz 25500.0-30320.0 36600.00 37068.0 36000.0

1xz (-11.30)-(-13.40) -14.500 -14.760 -192.0

IR 613.00-670.00 508.00 733.00 600.0

* - See description on page 18, Fig. 3.2, Ref. 1

**-See description on page 27, Fig. 3.7, Ref. 1

*** - See reference 2 on page 64.

12

Page 25: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

6th Card*

PHYSICAL DIMENSIONS

Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition Units

, .. 1-8 A a See comments below Inches

9-16 B b See comments below Inches .~

17-24 TF TF See comments below Inches

25-32 TR TR See comments below Inches

33-40 ZF ZF See comments below Inches

41-48 ZR ZR See coiili!1.en ts below Inches

49-'56 RHO p See comments below Inches

57-64 RW ~ Undeflected radius Inches of wheels

65-72 AO Ao See cmnments below

80 ICARD = 4

Comments on 6th Card

a = distance along the vehicle-fixed X axis from the sprung mass center of gravity to the centerline of the front wheels.

b distance along the vehicle-fixed X axis from the sprung mass center of gravity to the centerline of the rear wheels.

* If the 6th card is omitted, the program will automatically select the physical dimensions of a 1963 Ford Galaxie given in Table 2-2.

13

Page 26: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

p

Comments on 6th Card (continued)

= tread at front and rear s·uspensions, respectively.

= static distance along the Z axis between the center of gravity (C.G.) of the sprung mass and the e.G. of the front unsprung masses (C .G. of the individual .front masses assumed to coincide with the wheel centers).

static distance along the Z axis between the C.G. of the sprung mass and the roll center of the rear axle.

distance between center of gravity of rear axle and rear axle roll center, positive for roll center above C.G.

coefficients in the functional relationships fitted to tire side­force data (see Ref. 2).

(1) A0 = 4400.0 (recommended value, see Reference 2).

(2) Vehicle dimensions shown in Table 2-2 (from References 1 & 2).

14

Page 27: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

TABLE 2-2. TYPICAL DIMENSIONS

1963 Ford Typical Standard Typical 1958 Galaxie Four-

Size Sedan Production Car 1953 Buick door Sedan

a 51.600 50.04 62.610 54.517

b 66.400 67.44 62.890 64.483

TF 60.300 58.80 59.000 61.0

... TR 59.300 58.80 62.200 60.0

ZF 13.1845 10.8750 13.190 10.138

ZR 15.0191 12.7030 15.520 12.088

p -2.000 -2.000 -2.270 -2.00

~ 14.000 13.500 14.40 15.00

15

Page 28: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

1-8

9-16

25-32

33-40

41-48

49-56

57-64

65-72

80

7th Card*

FRONT SUSPENSION DATA

Format (9F8.0,I8)

Program Report Variable Variable Definition Units

AKF ~ See comments below Lb/In.

XLAMF** A.F Multiple of ~' for use in suspension de-flection stops (see Fig. 4.6, Ref. 1).

' I

CF CF See comments below Lb-Sec/In.

CFP C' Coulomb damping for Lbs F a single wheel, ef-

·fective at the wheel for front suspension.

EPSF E:F See comments below In/Sec

RF ~ See comments below Lb-In/Rad

Blank

Blank

ICARD = 5

Comments on 7th Card

suspension load - deflection rate for a single wheel, effective at the wheel in the quasi-linear range about the design position, for front suspensions.

>'< H the 7th card is omitted, the program will automatically select the

front suspension data of a 1963 Ford Galaxie given in Table 2-3.

**For new definition, see Sect. 1.4 of CAL Report No. VJ-2251-V-4, March, 1969, pp. 22-28.

16

Page 29: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

...

Comments on 7th Card (continued)

CF = viscous damping coefficient for a single wheel, effective at the wheel, for front suspension.

EF = friction lag in front suspension, to prevent extraneous oscillations induced by round-off error in suspension velocities.

~=auxiliary roll stiffnes (i;e., roll stiffness in excess of that corresponding to the wheel rates in ride motions) at the front suspension •

TABLE 2-3. TYPICAL FRONT SUSPENSION DATA

1963 Ford Typical Standard Typical 1958 Ga1axie Four-

Size Sedan Production Car 1953 Buick Door Sedan

KF 105.00 154.10 100.0 131.0

AF 6.0-25.0 3.00 3.00 o.s

CF 5.0 6.80 4.00 3.5

C' F 30.0 42.00 30.0 55.0

EF 0.001 0.001 0.001 0.001

~ 98500.0 95800.0 106600.0 266000.0

17

Page 30: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

1-8

9-16

25-32

33-40

41-48

49-56

57-64

65-72

80

8th Card)'>

REAR SUSPENSION DATA

Fonnat (9F8.0,I8)

Program Report Variable Variable Definition ·Units

AKR ~ See comments below Lb/In.

XLAMR** A. Multiple of ~' for R use in suspension de-flection stops (see Fig. 4.6, Ref. 1).

CR CR See comments below Lb-Sec/In.

CRP C' Coulomb damping for Lbs R a single wheel, ef-fective at the wheel for rear suspension.

EPSR E:R See comments below In/Sec

RR ~ See comments below Lb-In/Rad

TS Ts Distance between Inches spring connections for solid rear axle.

AKRS ~s Rear axle roll-steer 'coefficient (+ for roll under-steer).

ICARD = 6

Comments on 8th Card

suspension load - deflection rate for a single wheel, effective at the wheel in the quasi-linear range about the design position, for rear suspension.

* If the 8th card is omitted, the program will automatically select the rear suspension data of a 1963 Ford Galaxie given in Table 2-4.

** For new definition, see Sect. 1.4 of CAL Report No. VJ-2251-V-4, March 1969, pp. 22-28.

18

Page 31: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

...

Connnents on 8th Card (continued)

CR = viscous damping coefficient for a single wheel, effective at the wheel, for rear suspension.

~ = auxiliary·roll stiffness (i.e., roll stiffness in excess of that corresponding to the wheel rates in ride motions) at the rear suspension.

ER = friction lag in rear suspensions, to prevent extraneous oscillations induced by round-off error in suspension velocities.

TABLE 2-4. TYPICAL REAR SUSPENSION DATA

1963 Ford Typical Standard Typical 1958 Galaxie Four

Size Sedan Production Car 1953 Buick Door Sedan

~ 110.0 106.25 110.00 192.0

AR 6.0-25.0 3.00 3.00 0.5

CR 5.00 5.70 4.00 3.90

C' R 18.00 4.000 18.00 50.0

ER 0.001 0.001 0.001 0.001

~ 32500.0 23500.0 0.0 61900.0

Ts 45.0 38.28 50.00 46.5

~s 0.071 0.0 0.016 0.070

19

Page 32: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

1-8

9-16

17-24

25-32

33-40

41-48

49-56

57-64

65-72

80

*

Program Variable

AKT

SIGT

XLAMT

Al

A2

A3

AMU

OMEGT

A4

ICARD

·9th Card*

TIRE DATA

Format (9F8.0,I8)

Report Variable

)l

Definition

Radial tire rate in quasi-linear range for a single tire.

Maximum radial tire de­flection for quasi-linear load-deflection charac­teristic (see Figure 4.9, Ref. 1 ) .

Multiple of ~ for use in nonlinear range (i.e., travel limit) (see Figure 4.9, Ref. 1).

See comments below.

See comments below.

See comments below.

Tire-to-ground friction coefficient. This is the basic ground surface co­efficient of friction.

See comments below.

See comments below.

= 7

Units

Lb/In.

Inches

If the 9th card is omitted, the program will automatically use the tire data of the radial-spring tire model, which is given in Ref. 2 as:

20

Page 33: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

KT = 1098.0

oT 3.00

AT = 10.00

Al 8.276

A2 = 2900.0

... Al, A2 ' A3 ' A4

QT

A3 l. 78

].l = 0.30 to 0.80

QT 1.00

A4 3900.0

Comments on 9th Card

= coefficients in the functional relationships fitted to tire side-force data (see Ref. 2 ) .

= decimal portion of A2 at which the assumed parabolic variation of side force with tire loading is abandoned to preclude reversal in the sign of the side load under conditions of excessive tire loading (see Figure 4.13, Ref. 1 ) .

21

Page 34: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

lOth Card

INITIAL CONDITIONS (always included)

Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition Units

1-8 PHIO <Po Initial value of <P Degrees (Euler angular coordi-nates of sprung mass relative to space-fixed system).

9-16 THE TAO 8 Initial value of 8 Degrees 0 (Euler angular coordi-

nates of sprung mass relative to space-fixed system).

17-24 PSIO ljJO Initial value of ljJ Degrees (Euler angular coordi-nates of sprung mass relative to space:-fixed system).

25-32 PO p See comments below. Deg/Sec 0

33-40 QO Qo See comments below. Deg/Sec

41-48 RO R See comments below. Deg/Sec 0

49-56 PSIFIO ljJFo See comments below. Degrees

57-64 PSIFDO ~1Fo Initial value of steering Rad/Sec angular velocity (first time derivative of ljJF).

65-72 Blank

80 ICARD = 8

22

Page 35: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Comments on lOth Card

PHIO and THETAO are included only if DTCMPl = 1.0 on 3rd card.

If DTCMPl

Col. Nos.

1-8

9-16

17-24

25-32

33-40

41-48

49-72

= 0.0, PHIO and THETAO are left blank.

= initial values of P, Q, R (scalar components of sprung mass angular velocity, taken along X, Y, Z axes, respectively. See page 111, Ref. 1).

= initial value of ~F (steer angle of front wheels relative to vehicle coordinate axes system, positive for CW steer as viewed from above vehicle).

11th Card

INITIAL CONDITIONS (always included)

Program Variable

XCOP

YCOP

ZCOP

uo

vo

wo

Format (9F8.0,I8)

Report Variable Definition

X' See comments below. co

Y' See comments below. co

z' See.comments below. co

u See comments below. 0

v See comments below. 0

w See comments below. 0

Blank

Units

Inches

Inches

Inches

In/Sec

In/Sec

In/Sec

80 ICARD = 9

23

Page 36: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Comments on 11th Card

(1) ZCOP is included only if DTCMPl = 1.0 on 3rd card. If DTCMPl = 0.0,

ZCOP is left blank.

(2) XCOP, YCOP, ZCOP, must never coincide to a template point, as

described in 16th series of cards (Terrain Input).

(3)

(4)

X' Y' Z' co' co' co

u ' v ' w 0 0 0

= initial values of X' c' spring mass center of

fixed coordinate axes

Y', Z' (coordinates of the c c

gravity relative to the space-

system).

= initial values of U, V, W (scalar components of linear

velocity of spring mass, taken along X, Y, Z axes).

24

Page 37: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

12th Card*

INITIAL CONDITIONS

Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition Units

1-8 DELlO 010 See comments below. Inches

9-16 DEL20 020 See comments below. Inches

.~ 17-24 DEL30 030 See comments below. Inches

25-32 PHILRO QJRO See comments below. Degrees

. 33-40 DELlOD 010 See comments below. In/Sec

. 41-48 DEL20D 020 See comments below. In/Sec

. 49-56 DEL30D 030 See comments below. In/Sec

. 57-64 PHI ROD QJRO Initial value of Deg/Sec

angular velocity of rear axle (first de-rivative of !jJR, see page 111, Ref. 1).

65-72 Blank

79-80 ICARD = 10

* If the 12th card is omitted, the program will automatically set each variable on this card equal to zero.

25

Page 38: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Comments on 12th Card

o10

, o20 , o30 = initial values of o1 , o2, o3

(suspension deflections

relative to the vehicle from the positions of static

equilibrium, at the right front wheel center, left front

wheel center, and rear axle roll center, respectively).

See Ref. 1, page 111.

initial value of ¢R (angular displacement of the rear axle

relative to the vehicle about a line parallel to the

X-axis through the rear axle roll center, positive when

clockwise, viewed from the rear). See page 111, Ref. 1.

initial values of suspension velocities (first time

derivatives of o1 , o2, o

3 , respectively). See page 111,

Ref. 1.

26

Page 39: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

...

13th Card*

ACCELEROMETER POSITIONS

Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition Units -.-

1-8 Xl xl See comments below. Inches

9-16 Yl yl See comments below. Inches

17-25 Zl zl See comments below. Inches

26-32 X2 xz See comments below. Inches

33-40 Y2 y2 See comments below. Inches

41-48 Z2 z2 See comments below. Inches

49-72 Blank

79-80 ICARD =11

Comments on 13th Card

This card is optional, however, its use is recommended. For the

the case where no accelerometer positions are being considered, use (0,0,0)

for the points (X1

, Y1 , z1) and x2, Y2, Z2).

x1

, Y1

, z1

, x2

, Y2, z 2 = coordinates of accelerometer positions on the

sprung mass, at which acceleration components are to be calculated and printed

out, (with reference to the vehicle fixed axes).

* If the 13th card is omitted, the program will automatically select the following values:

xl = -34.480 x2 = -5.983

yl = 0.000 y2 = -16.500

z = 4.000 z2 = 3.138 1

27

Page 40: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

14th Series of Cards*

FRONT WHEEL CAMBER (~ ) vs. SUSPENSION c

DEFLECTION (of)

a. 1st card of series, Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition

1-8 DELB NONE Initial Value for

9-16 DELE NONE Final Value for of

17-25 DDEL NONE Increment for of

26-78 Blank

79-80 ICARD = 12

(DELE must be > DELB and [DELE - DELB/DDEL] ~ 49.)

Units

of Inches

Inches

Inches

b. The second card and succeeding cards contain the PHIC (~ ) Table c

(see reference 1). It consists of [DELE- DELB/DDEL] + 1 entries,

13 to a card [Format (13F6.3)]. The units must be "degrees".

Comments on 14th Series

A typical set of values for ~c vs. of is shown in Table 2-5.

* If the 14th series of cards is omitted, the program will automatically select the data given in Table 2-6.

28

Page 41: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

6f

TABLE 2-5. TYPICAL rp vs. r~f· VALUES c

(inches) cf>c (degrees)

-5.00 -3.55

-4.00 -2.55

-3.00 -1.80

-2.00 -1.30

-1.00 -0.95

0.00 -0.55

1.00 -0.30

2.00 -0.30

3.00 -0.40

4.00 -0.55

5.00 -0.80

For this set of data, the 14th series of cards is as shown in Table 2-6.

TABLE 2-6. SAMPLE INPUT FOR 14th SERIES

1st Card 2nd Card

Col. Col. Nos. Information Nos. Information

1-8 -5.00 1-6 -3.55

9-16 5.00 7-12 -2.55

13-18 -1.80 17-24 1.00 19...:.24 -1.30

. 25-72 blank 25-30 -0.95 31-36 -0.55

79-80 12 37-42 -0.30 43-48 -0.30 49-54 -0.40 55-60 -0.50 61-66 -0.80 67-72 blank 73-78 blank

Had there been more than 13 entries for cf> , one or more additional c . cards similar to the 2nd card would have been required.

29

Page 42: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

15th Series of Cards

DRIVER CONTROL INPUTS

General Comments: The response of a simulated vehicle may be determined

if the steering angle is known as a function of time. If steering inputs

are required, then set INDCRB = 0.0 on the third data card (ICARD= 1).

If no steering inputs are required, then the initial steering angle read in

the lOth card is maintained throughout the event, provided a specified

path (logarithmic spiral) is not used in the 24th series.

a. 1st card of series, Format (9F8.0,I8)

Col. Nos.

1-8

9-16

17-24

25-32

33-40

41-48

49-72

79-80

Program Report Variable Variable

TB NONE

TE NONE

TINCR NONE

NTBLl NONE

NTBL2 NONE

NTBL3 NONE

ICARD NONE

Definition

Initial time for driver control inputs.

Units

sec

Final time for driver sec control inputs.

Increment time for driver sec control inputs.

= 0.0, read ~f table.

= 1.0, do not read ~f table.

= 0.0, read TQF table.

= 1.0, do not read TQF table.

= 0.0, read TQR table.

= 1.0, do not read TQR table.

Blank

=13

(TE must be > TB and [TE-TB/TINCR] ~ 49)

30

Page 43: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

b. The second card and succeeding cards contain tables of steering

angles (PSIF, ~f), front wheel torque (TQF, TQF), and rear wheel torque

(TQR, TQR), in that order, depending on the value of NTBLl, NTBL2, and

NTBL3, respectively: For each variable with a 0.0 value there must follow

a table with [TE-TB/TINCR] + 1 entries, 13 to a card (Format (13F6.3))

containing data relative to that variable. For each non-zero value, the

respective table is omitted.

Comments on 15th Series

The units are PSIF (degrees) and TQF and TQR (lb-ft). See the 13th

card series for complete definition of (PSIF, ~f), (TQF, TQF), and (TQR, TQR).

If no steering inputs are required, i.e., the vehicle follows a

straight line path (per the initial steering angle (~FO) read in the lOth

card) into the target area, or the logarithmic spiral may be used in the

24th series in which case this series is omitted.

31

Page 44: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

16th SERIES OF CARDS

TERRAIN INPUT (always include)

GENERAL COMMENTS

A given terrain m~y be simulated by specifying templates (cross sections

of terrain) at consecutive intervals such that each template is perpendicular

to the X' coordinate axis. Each template is assigned the same number of

points (Y' and Z' coordinates) which define the terrain within a given

template~ Adjacent template points are connected by straight lines to form

the desired surface. See Figure 2-1.

a. 1st card of series, Format (3F8.0, 48X, I8)

Col. Nos.

1-8

9:-16

17-24

79-80

Program Variable

NBX

NBY

NMUXY

ICARD

Report Variable

None

None

None

None

Definition Units

Total No. of templates None

Total No. of points None used to define each template

No. of variable None coefficient friction patches

= 14 None

Comments for Card a.

This card gives the necessary information to describe the template to

be used to input the terrain information. Each template must have NBY points.

The templates are assumed to be normal to the X' axis. A maximum of 21

templates (NBX) and 21 points (NBY) per template may be used. The template

information is entered on cards that immediately follow the first card of

this series. If no terrain is to be input, set NBX = NBY = 0 and do not

include template cards (this assumes flat level terrain with Z' = 0).

NMUXY is the number of terrain patches which will have coefficients of

friction different from the coefficient of friction (AMU) read in the 9th card

(ICARD = 7). There are a total of (NBX) x (NBY) patches with a maximum of

21 X 2J = 441. 32

Page 45: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

b. Terrain Template Cards (include if NBX and NBY are greater than 0)

·The following cards will describe the template.

Format (I3,F7.0,(10F7.0))

Col. Program Report Definition Units Nos. variable variable

1-3 ITEMP(I) None Template No. (i.e., None 1,2,3, ••• 21)

4-10 XTEMP(I) X' X' value of template !TEMP(!) ft

11-17 YGP(I,J) Y' Y' value of point J=l in template !TEMP(!) ft

18-24 ZGP(I) Z' Z' value of_point J=l in template ITEMP(I) ft

25-31 YGP(I,J+l) Y' Y' value of point J=2 in template !TEMP(!) ft

32-38 ZGP(I,J+2) Z' Z' value of point J=2 in template !TEMP(!) ft

Continue with input of Y's and Z's (10F7.0) through Column

80 and on successive cards until J=NBY points'for each template

ITEMP(I) have been entered. On all continuation cards enter these

values starting in column 1 (there will be a maximum of four con-

tirtuation cards per template). Start a new card for each template

(part b is repeated for each template).

The following rules·should be observed in developing a surface:

(1) the templates are always normal to the X' axis,

(2) the values of XTEMP(I), YGP(I,J) and ZGP(I,J) are referenced

to the X', Y', Z' axis, respectively,

(3) points on each template are numbered consecutively,

(4) the point YGP (I,l) is always zero,

33

Page 46: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

w .;::...

F F

L_ ·-----........ -~--~ _j TEMPLATE 2 3 4 5 6 6

E

L, D

L,

c L, B L,

A x• L

r.•

241

y•

FIGURE

·j·

2

2

2-1

E

6 _j TEMPLATE 5

D

6 _j TEMPLATE 4

401

~241

141-181 c

_j TEMPLATE 45 6 T 3

181 B

5 t 6 _j TEMPLATE 2

1001

A

_j TEMPLATE 34 5 6 I

MEDIAN CROSSOVER AND AJACENT DITCH SECTIONS (PLAN VIEW)

y• I 2,3 ,5 6

~ ~ ~

t TEMPLATES 3 AND 4 {SECTIONS C-C AND D-D)

TEMP LA' 1,2,5, AND 6 (SECTIONS 8-B, E-E, F-F)

Page 47: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

(5) Each template must have the same number of points (Y' and Z'

coordinates) defining its particular cross section. If 2 or more boundary

lines converge at a point within a given template, then that point must be

treated as 2 or more points and each of these common points must be read in

separately. For example, in Figure 2-1, template 2 has 4 distinct points

(2, 3, 4, and 5) which in template 3 converge to 2 actual points (2, 3, and

3, 4) although these 2 actual points must be treated as 4 points when reading

in the data for template 3.

(6) The area outside the limits described by the terrain template is

assumed to be horizontal (plane X'-Y') with Z' = 0.

(7) The developed surface must be in the first (positive) quadrant of

the coordinate axes.

An example problem demonstrating the input· of this section follows

paragraph c.

c. Variable Coefficient of Friction Card (include if NMUXY > 0).

The following cards will describe the terrain patches on which it is

desired to change the coefficient of friction from the AMU value read in the

9th card (I card= 7). A terrain patch I, J, is defined as the surface

enclosed between two consecutive templates (I, I+l) and two consecutive points

(J, J+l) on the templates (I, I+l) (c.f. Figure 2-1).

Format (2I2,F6.0)

Col. Program Report Nos. Variable Variable Definition Units

1-2 I None Template No. (i.e. ' 1, 2' 3, ••• 21) None

3-4 J None Point number within None any template

5-10 AMUXY(I,J) None Friction Coeff. For None Patch I, J

An example problem demonstrating the input of this section is given on

the next page.

35

Page 48: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

w 0">

EXA.'1PLE: Develop the surface shown in Figure 2-1 from X'=O

of friction on the terrain patch 1, 3 (bounded by

to AMUXY = 0. 70

Data Card No.

1

Data Card No.

2

3

4

5

6

7

Data· Card No.

8

1-8 9-16 17-24

3.0 6.0 0.0

1 2 3 4-10 11-17 -----

1 0.0 0.0

2 100.0 0.0

3 118.0 0.0

1 2 3 4 5

0 1 0 3

*Continuation card.

DATA CARD COLUMN WJMBER

DATA CARD COLUMN NUMBER

18-24 25-31 32-38 39-45 46-52

0.0 24.0 0.0 42.0 3.0

0.0 24.0 0.0 42.0 3.0

0.0 24.0 0.0 24.0 0.0

DATA CARD COLUMN NUMBER

6 7 8 9 10

0 7 0

to X'=118' and change the coefficient

templates 1 ar nes 3-3 and 4-4)

79 80

1 4

* * 53-59 60-66 67-73 74-80 1-7 8-14

46.0 3.0 64.0 0.0

88.0 0.0

46.0 3.0 64.0 0.0

88.0 0.0

64.0 0.0 .0 0.0

88.0 0.0

Page 49: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

17th Series of Cards

CURB IMPACT INPUT

a. 1st card of series, Format (9F8.0,I8)

Col. Nos.

Program Variable

NCRBSL

AMUC

DELTC

ICARD

Report Variable

Lit c

Definition

No. curb faces

Tire-curb friction

Increment of integration

ICARD = 15

b. 2nd card of series, Format (6Fl0.0)

Col. Nos.

1-10

11-20

21-30

31-40

41-50

51-60

Program Variable

YClP

YC2P

YC3P

YC4P

YC5P

YC6P

Report Variable

Y' cl

Y' c2

Y' c3

Y' c4

Y' c5

Y' c6

Definition

Fixed Y-Coordinate,

(See figure 2-2 on next

page), Also see

comments on 17th series

of cards on the fol-

lowing page.

c. 3rd card of series, Format (6Fl0.0)

Col. Nos.

1-10

11-20

21-30

31-40

41-50

Program Variable

ZC2P

ZC3P

ZC4P

ZC5P

ZC6P

Report Variable

Z' c2

Z' c3

Z' c4

Z' c5

Z' c6

37

Definition

Fixed Z-Coordinate,

(See comments on

17th series of cards

on the following

page).

Units

Units

Inches

Inches

Inches

Inches

Inches

Inches

Units

Inches

Inches

Inches

Inches

Inches

Page 50: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

d. 4th card of series, Format (6F10.0)

Col. Program Report Nos. Variable Variable Definition Units

1-10 PHICl <Pel Fixed Phi-Coor- Degrees

ll-20 PHIC2 <Pc2 dinate, (see Degrees

21-30 PHIC3 <Pc3 comments on 17th Degrees

31-40 PHIC4 <Pc4 series of cards Degrees

41-50 PHICS <Pes below and on the Degrees

51-60 PHIC6 <Pc6 following page.) Degrees

Comments on 17th Series of Cards

(1) The Z'cl coordinate (in the 3rd card of this series) must always

be zero, (see Figure 2-2), therefore it has been omitted and the

required input begins with Z'cz'

(2) The maximum number of permitted curb faces is six.

(3) The last actual curb face is extended at the same slope but without

calling "CRIMBP", i.e. , without undue expense.

(4) The first curb point (Y' Z' = 0) cannot be located at the orig1_'n cl' cl

of the X', Y', Z' coordinate system.

(5) +X' in Figure 2-2 is into the plane of the paper.

(6) Y'cl = initial boundary of curb to be encountered by vehicle,

(first slope change).

38

Page 51: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

y~4l-~ I C41

~ZC4

+ z' + X1 INTO PAPER START OF CURB

MAXIMUM NO. CURB FACE = 6

Fl GURE 2-2 CURB COORDINATE SYSTEM

Page 52: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

(7)

(8)

(9)

(10)

Y' c2

Z' c2

Comments on 17th Series of Cards (continued)

= boundary of second slope of curb.

elevation of curb profile at Y'cz·

¢cl' ¢c2 = first and second curb slopes encountered by the vehicle.

~ = tire-to-curb friction coefficient. c

40

Page 53: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

1-8

9-16

17-24

25-72

79-80

(1)

(2)

18th Series of Cards

PARAMETERS NEEDED FOR GENERATING THE FJP (Fj) TABLE

One card, Format (9F8.0,I8)

Program Variable

RWHJB

RWHJE

DRWHJ

ICARD

Report Variable

NONE

NONE

NONE

Definition

Initial value of Rw-hj

for Fj table.

Final value of Rw-h~ for . J

F! table. J

Increment value of

Rw-hj for Fj table.

Blank

= 16

Comments on 18th Seri~s

This series is included when INDCRB = 1.0 (curb impact).

The F! table is generated in subroutine "WHEEL". J

Units

Inches

Inches

(3) ([RWHJE - RWHJB/DRWHJ] + 1) must be < 35. Typical values are

RWHJB = 0.0, RWHJE = 6.0, and DRWHJ = 0.25.

(4) Rw = undeflected radius of wheels.

(5) h! =rolling radius of wheel j. J

(6) Fj = the forces exerted by the individual radial springs when curb

impact occurs. The spring model is shown diagrammatically in Figure 4.8,

page 121, of the CAL Report VJ-2251-V-1 and the computation employing

Fj is on page 193 of the same reference. Fj i,s derived from the radial

load-deflection characteristics of the tires on flat terrain which is

shown in the graph on page 122.

41

Page 54: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

19th Series of Cards*

INERTAIL PROPERTIES OF STEERING SYSTEM

One Card, Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition Units

1-8 XIPS I. Moment of inertia of 2 Lb-Sec -In. ljJ steering system, ef-

fective at front wheels (both sides included}.

9-16 CPSP c' 1jJ Coulomb resistance in Lb-in.

steering system, ef-fective at the wheels (both sides included).

17-24 OMGPS ~ljl Angular deflection of Radians the steering system at which elastic stops are encountered.

25-32 AKPS KljJ Load-deflection of the Lb-In/Rad elastic stops in the steering system, effec-tive at the wheels (both sides included).

33-40 EPSPS E:ljJ Friction lag in steering Rad/Sec system.

41-48 XPS PT Pneumatic trail of front Inches tires.

49-72 Blank

ICARD = 17

* If the 19th series is omitted, the program will automatically select the steering inertial properties of a 1963 Ford Galaxie which are given as typical values on the following page.

42

Page 55: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Comments on 19th Series

(1) This card is included whenever the steer mode degree of freedom

is to be activated (INDCRB = 1 or -1, third card).

(2) Typical values (standard size sedan):

Ilj; 492.0

C' ljJ

600.0

~lji = 0.40

Klji = 5000.0

E:lj; = 0.075

PT = 1.50

43

Page 56: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

20th Series of Cards

VEHICLE AND BARRIER DIMENSIONS

One card, Format (9F8.0,I8)

Col. Program Report Nos. .Variable Variable Definition Units

1-8 YBPO (Y') B o See Fig. 2.3 & 2.4. Inches

9-16 DELYBP f:..Y' II Inches B

17-24 ZBTP z~T " Inches

25-32 ZBBP z~B II Inches

33-40 XVF ~F II Inches

41-48 XVR ~ II Inches

49-56 YV Yv " Inches

57-64 ZVT 2VT II Inches

65-72 ZVB 2VB II Inches

79-80 ICARD 18

Comments on 20th Series

(1) In Figure 2-3, the quantities ZVT' ~are negative.

(2) In Figure 2-4, the plane containing the barrier (cross-hatched) and

and the X'-Z' plane are parallel and separated by a distance of

(Y~) 0 • The bottom of the barrier is located a distance Z~B above

the X'-Y' plane. The elevation of the top of the barrier relative to

the X'-Y' plane is Z~T It should be noted that for the coordinate

system shown, both Z~B and Z~T are negative.

f:..Y~ = size of incrementing step in establishing force

balance between vehicle and barrier. (CAL uses

0.5 inches in Ref. 1., Page 49).

44

Page 57: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

/

/

·/ /

/ /

. ::t< / ' / I

z

FIGURE 2-3

/ /

. VEHICLE DIMENSIONS FOR BARRIER IMPACT

45

X

Page 58: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

FIGURE 2-4

BARRIER DIMENSIONS AND ~POSITION

46

Page 59: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col Nos.

1-8

9-16

17-24

25-32

33-40

41-48

49-56

57-64

65-72

79-80

Program Variable

AKV

SET

CONS

AMUB

EPSV

EPSB

DELTB

INDB

ICARD

21st Series of Cards

VEHICLE-BARRIER PROPERTIES

One card, Format (9F8.0,I8)

Report Variable

SET

CONS

J.lB

47

Definition

Load-deflection charac­teristic of vehicle structure.

Ratio of permanent de­flection to maximum energy absorbed by bar­rier.

Ratio of conserved energy to maximum energy ab­sorbed by barrier.

Sprung mass-to-barrier friction coefficient.

Units

3 Lb/In.

Friction lag in vehicle~ In./Sec to-barrier friction force.

Acceptable error in force Lbs balance between vehicle structure and barrier.

Increment of integration Sec during barrier collision.

= 1.0 rigid barrier finite vertical dim.

= 2.0 rigid barrier in­finite vertical dim.

= 3.0 deformable barrier finite vertical dim.

= 4.0 deformable barrier infinite vertical dim.

Blank

= 19

Page 60: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Comment on 21st Series

Typical Values:

~ = 4.0 (2.0 used by TTl)

SET = 0.122 (deformable barrier)

CONS = 0.56 (deformable barrier)

llB = 0.2

1.0

t:B = 500.0

DELTB = 0.002 (used by TTl)

48

Page 61: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

....

22nd Series of Cards

2 eards, Format (9FH.O,I8) and (21<'8.0)

These two cards contain 11 values of aR; 9 on the first card

and 2 on the second with 8 columns per entry. ICARD = 20, and is

punched in columns 79-80 of the first card.

These first six coefficients define the barrier force-deflection

curve in the form of a fifth degree polynomial •

The last five coefficients define a barrier force versus deflection

velocity curve in the form of a fifth order polynomial.

The total force is meant to be

FB = F + F'

However, for the present simulation F' 0 and the last five coefficients

are zero.

49

Page 62: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

23rd Series of Cards**

VEHICLE MONITOR AND TERRAIN CONTACT

a. 1st card of series, Format (9F8.0,I8)

Col. Nos.

1-8

9-16

17-24

25-32

79-80

Program Variable

NVP

SSTIFF

XJ

FRFAC

ICARD

Report Variable

Note: NVP cannot be greater than 28.

Definition

See comments below.

Stiffness of ground surface.

Soil damping constant.

Coefficient of friction between vehicle and terrain.

= 23

b. 2nd card (to be used if NVP > 0.0), Format (12F6.0)

Col. Program Nos. Variable

1-6 XVP(I)*

7-12 YVP (I)

13-18 ZVP (I)

* I = 1, NVP

Report Variable

X vp.

yvp.

z vp.

Definition

See comments below.

See comments below.

See comments below.

Units

Lb/In.

Sec/In.

Units

Inches

Inches

Inches

Continue with same format on succeeding cards, twelve entries

(four points) per card, six columns per entry (Format (12F6.0)). The

maximum number of cards of this type is seven.

** The user omits the 23rd series of cards unless he wishes to monitor more points or different points than those shown in Table 2-7. By including the 23rd series, the preset values are overridden.

50

Page 63: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

. .-

Comments on 23rd Series of Cards

(1) NVP (number of vehicle points to be monitored) is to be punched

as a floating point number, i.e., if 10 points are desired, then

NVP is punched as 10.0. These points also are the points on the

vehicle to which the soil restoring forces are applied if contact

is made with the ground surface.

(2) Subroutine STAN presets only four vehicle monitor points to

represent the four lower corners of the vehicle (four bumper points).

In vehicle-fixed coordinates, for the 1963 Ford, TTl has decided

to use the coordinate values shown in Table 2.7 for bumper points.

(3) XVP(I), YVP(I), ZVP(I) =coordinates of points on vehicle which

are to be monitored referenced to the vehicle fixed axes. There can

be a maximum of twenty-eight points (coordinates in inches).

(4) SSTIFF = 4000., is based on a soil subgrade modulus of 40 lb/in. 3

I

1

2

3

4

2 and a contact area of 100 in •• These preset values of SSTIFF, XJ,

and FRFAC are not necessarily recommended values since these change

for any given·soil.

TABLE 2-7. BUMPER POINTS IN

VEHICLE COORDINATES (INCHES)

XVP(I) YVP(I)

81.517 39.5

81.517 -39.5

-117.483 39.0

-117.483 -39.0

ZVP (I)

12.138

12.138

8.138

8.138

(5) See Figures 2-5 and 2-6 for more vehicle dimensions.

(6) The following values are also preset by subroutine STAN:

NVP 4.0 SSTIFF = 4.000

XJ = 0.001 FRFAC = 0.25

51

Page 64: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

\..J1 N

5411 20" 62

11

I I I I I I I I

I I I I I I I I

c~-:.~~~~~ _) 21 ..

119"

20'' 5111

53"

FIGURE 2>-5 ttPPROXIMATE BODY-DIMENSIONS OFTHE 1963 FORD, ~RT I

t ....

Page 65: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

ro" 29.511 I

39.511

39.511

6.511

~ j; v

16.511

9" 30-511 30.5

11

· FIGURE 2-6 APPROXIMATE BODY DIMENSIONS OF THE 1963

FORD, PART II

53

Page 66: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

24th Series of Cards

General Comments

This series of cards defines the path (Logarithmic Spiral) along

which the simulated vehicle travels and the initial coordinates and

orientation as shown in Figures 2-7 and 2-8.

The steering angle is estimated by pointing the front wheels in the

directionof the "Target Point" on the desired path some distance ahead

of the vehicle. This is achieved using a rod of constant length (called

the "Steering Pointer") one end of which is fixed at a point midway between

the front wheels. The steering pointer, which has no physical restraint

capabilities, is rotated in a horizontal plane until its free end coincides

with the prescribed path of the vehicle. This method of estimating the

steering angle is similar to that employed by an actual driver when he

estimates the steering angle of his vehicle by looking some distance down

the roadway. The driver depends on his experience in handling his car to

estimate the turn of the steering wheel, whereas the success of this

steering mechanism is dependent on the length of the steering pointer.

TTI has found that a steering pointer length of 20 ft produces good tracking

for curvatures from 100 to 2,000 ft and speeds from 30 to 80 mph.

One Card, Format (9F8.0, IS)

Col. Program Report Nos. Variable Variable Definition Units

1-S HT None length of wagon Inches tongue

9-16 c None BM8

Inches r=ce

[ 7- '24 m'l None BM8

r=ce

25-32 J\VT None =1.0

54

Page 67: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

X' X' 0

--.-------- -------~--------~------------------~------Y' 0

XCOP

I I I 1 I

/1"'

f.....s--TANGENT TO SPIRAL AT 8 =ei

LENGTH OF STEERING POiNTER

~ INITIAL vEHICLE YAw t _1 Ia s1N ei + cos ail ON HEADING ANGLE ('~'o: TAN u~COS8i- SINBi]

--~----~-~------------------------------------------------------~-y·

""'"1·--. -------- y cop -------------:3·~. ~I

FIGURE 2- 7 LOGARITHMIC SPIRAL AND INITIAL VEHICLE POSITION

55

Page 68: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Note:

prescribed path

to rget point

steering pointer

pivot point of steering pointer

Steering angle, + , is found by rotating the constant lengfh "steering pointer" until its free end touches the prescribed path.

prescribed path

FIGURE 2-8 SCHEMATIC OF STEERING MECHANISM FOR FOLLOWING PRESCRIBED PATH

56

Page 69: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

33-78

79-80

One Card, Format (9F8.0, 18) (cont'd)

Program Variable

ICARD

Report Variable

None

None

Comments on 24th Series

Definition

leave blank

=24

1. This series is left out unless the logarithmic spiral path is

desired.

2. Whenever this series is included, the following must be done:

a. Set INDCRB=O.O on third card (ICARD=l)

Units

b. Compute PSIO=(BM sine. + cose.)/(BM case. - sine.) as shown 1 1 1 1

in Figure 2-7 , and enter on tenth card (ICARD=8)

c. Set PSIFIO=O.O and PSIFDO=O.O on tenth card (ICARD=8)

d. Compute XCOP and YCOP as shown in Figure 2-7, and enter

these on eleventh card (ICARD=9)

e. Put in large enough terrain template in sixteenth series

of cards (ICARD=l4)

57

Page 70: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

25th Series of Cards

This series of cards provides the input for the calculation of

friction developed during the interaction of a tire with a surface

which is dependent on the vertical tire load and vehicle speed as well

as the surface characteristics. Include this card series only when this

correction is desired, othet~ise friction remains constant at the value

read in as AMU(~) on the 9th card (ICARD=7)

Col. No.

1-8

9-16

17-24

25-78

79-80

(1)

(2)

(3)

(4)

(5)

One Card, Format(9F8.0, I8)

Program Variable

ALPHA

XKVTH

XKL

Report Variable

1\,,1000

Comments

Note that f 40 lOOO is read as '

Definition

slope of ~,L

vs load curve

slope fV,lOOO

vs speed curve

slope of f 40,L

vs load curve

leave blank

ICARD = 25

AMU(~) on 9th

Units

1/lb mph

1/mph

1/lb

card (ICARD=7)

See Figure 2-9 for Graphical Description of ~,1000 See Figure 2-10 for Graphical Description of a

See Figure 2-!1 for Graphical Description of ~ Due to the number of different types of tires and road

surfaces, typical values will not be given in this

card series. See TTl Report 628-2.

58

Page 71: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

I

I I I I I I I I I I I

I : I f()l C\JI _I

a!1 ~1 o9 o1 v v oo;t v .... 1.._, .... 1 .... 1

'/ ~

/ /

C\J _J

/ /

rt) ...J _J

-!./ ::l/

r-7 v /

(SS31NOISN3WIO) ~ ~~QLO~.:I NOilOI~.:I·

59

~ E -> cf

0 w v w 95 w ...J ~

~

0 w w o_ (/)

w _j (.)

:r: w > (/) :::> (/)

~ ~ ~ u: z 0 I­(.)

a:: IJ...

~ w ~ (!)

iJ:

Page 72: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

\]-

I I I

ol oj ~~ :t,

I I I

0 0 0

60

-.£l --...J

i g w a:: i=

Page 73: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

_,

I I I I I I I I I I

d g -I 0" vi

.... I I I I I I

{SS31NOISN3WIO)

61

0 0 0 -

-.Q ---' c:f <( 0 ..J

w a:: i=

a:: w > 0::: g ()

l2: z 0 I­()

0::: LL

I

C\J

w a: ...... C!i LL

Page 74: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

26th Series of Cards**

FRONT ~~EELS' NONLINEAR SUSPENSION BUMPER DATA (always included)

One Card, Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition

1-8 AKFC ~c * 9-16 AKFCP K~c *

17-24 OMEGFC ~FC * 25-32 AKFE ~E * 33-40 AKFEP KJ!'E * 41-48 OMEGFE ~FE * 49-78 Leave blank

79-80 . ..,_ ICARD = 26

* Refer to Section 1.4 of Cornell Aeronautical Laboratory Report No. VJ-2251-V-4, March, 1969, pp. 22-28.

**

Units

Lb/in.

Lb/in.

Inches

Lb/in.

Lb/in.

Inches

If the 26th card series is omitted, the program will automatically select the following values:

AKFC

AKFCP

OHEGFC

ICARD

300.0

2.0

-3.0

26

62

AKFE = 300.0

AKFEP = 2.0

OMEGFE = 3.0

3

3

Page 75: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

27th Series of Cards**

REAR WHEELS 1 NONLINEAR SUSPENSION l~UMPER DATA (nlways included)

One Card, Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition Units

1-8 .AKRC ~c * Lb/in.

... 9-16 AKRCP Kic * Lb/in. 3

17-24 OMEGRC S]RC * Inches _ .. 25-32 AKRE ~E * Lb/in.

33-40 AKREP KiE * Lb/in. 3

41-48 OMF.GRE S]R.E * Inches

49-78 Leave blank

79-80 ICARD = 27

* Refer to Section 1.4 of Cornell Aeronautical Laboratory Report No. VJ-2251-V-4, March, 1969, pp. 22-28.

** If the 27th card series is omitted, the program will automatically select the following values:

AKRC = 300.0 AKREP 2.0

AKRCP = 2.0 OMEGRE "" 4.0

OMEGRC -4.0 ICARD "' 27

AKRE = 300.0

63

Page 76: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

a.

b.

28th Series of Cards

LOCATION AND STIFFNESS OF STRUCTURAL HARDPOINTS

1st card of 28th series, Format (9F8.0,I8)

Col. Program Report Nos. Variable Variable Definition Units

1-8 NHP No. of hardpoints, (.::_ 3.0)*

9-78 Blank

79-80 ICARD = 28

2nd thru 4th card of 28th series, Format (I4, TlO, 4Fl0.3)

Col. Program Report Nos. Variable Variable Definition Units

1-4 J Hard point number

5-9 Blank

10-19 XSTIO(J) See comments below. Inches

20-29 YSTIO(J) See comments below. Inches

30-39 ZSTIO (J) See comments below. Inches

40-49 AKST(J) Stiffness of hard- Lbs/in. point no. J, omni-directional.

50-80 Blank

Comments on 28th Series of Cards

(1) Friction on hardpoints is the same as that of sheet metal (AHUB of 21st series).

(2) XSTJO(J), YSTlO(J), ZSTIO(J) =coordinates of hardpoint no. J, in vehicle-fixed coordinates .

.,~

Input NHP as a real number.

64

Page 77: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

_,

Col. Nos.

1-76

77-80

Final Card of Section 2.1

(always included)

Informati.on

Biank

9999

NOTE: This card signifies the end of data in Section 1.

65

Page 78: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

2.2 PLOTTING DATA

Four options are available for use in displaying the output

generated by the HVOSM program. The CAL-COMP plot routines are

utilized for this purpose. A brief description of each option follows.

(1) Option 1 - A group of 19 plots will be generated under this option. Table 2-8 lists the plots which are printed. Two types of identification are printed on each plot. The first is a Figure number which corresponds to those given in Table 2-8. The second is general information related to the data group in the first card of Section 1.

(2) Option 2 - Any number of plots, up to a total of 19, may be generated by choosing this option. Table 2-9 lists the variables available for plotting. The type of identification appearing in the plots is to be inputted according to subsequent instructions.

(3) Option 3 - If no plots are needed, this option is used.

(4) Option 4 - Put data on disk or other storage medium and omit Section 2.2.

For a given data group only one of these options may be selected.

If another data group is submitted in the computer run, follow the

cards required for the chosen plot option by the first card of Section 1

of the next data group, etc.

Description of each option input follows:

Option 1- Standard Plots. One card required. Format (A4).

Col. No. Information

1-4 STAN

Option 2 - N Plots. Three series of input cards are needed in this

option: (a), (b), and (c).

(a) Plot Control Cards

Format (2A4)

66

Page 79: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

TABLE 2-8. STANDARD PLOTS

-----------

1 XTRK versus YTRK

2 XPOS II AVER

3 YPOS II ZPOS

4 YPOS II AVER

5 YPOS II ALON

6 YPOS II ALAT

7 TIME II XPOS

8 TIME II YPOS

9 TIME II ZPOS

10 TIME II ALON

11 TIME II ACX2

12 TIME II ALAT

13 TIME II ACY2

14 TIME II AVER

15 TIME II ACZ2

16 TIME II ROLL

17 TIME " PTCH

18 TIME II YAWW

19 TIME II SANG

* See Table 2-9.

67

Page 80: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

TABLE 2-9. ALPHAMERIC VARIABLE NAMES

SEQl:ENCE PROGRAM ~·;o. NAME VARIABLE DESCRIPTION .OT UNITS

1 TIME TM Time in seconds ..

2 XPOS XPO X, y' and Z coordinate, respectively, Inches

3 YPOS YPO of sprung mass relative to space-

" fixed coordinate system. 4 ZPOS ZPO " 5 ALON ACLON Sprung mass longitudinal acceleration. G-units

6 ALAT ACLAT Sprung mass lateral acceleration. " 7 AVER ACVER Sprung mass vertical acceleration. "

0\ 8 ROLL PHIO Degrees 00

9 PTCH THTAO Roll, pitch, yaw angles, respectively, " 10 YAWW PSIO of vehicle.

" 11 ACXl AXl Acceleration components in X, Y, and Z G.-units

12 ACYl AYl direc-tions, respectively, at acceler· " ometer position No. 1, relative to VE ·-13 ACZl AZl fixed coordinate system. " 14 ACX2 AX2 Acceleration components in X, Y, and G-units

15 ACY2 AY2 directions, respectively, at acceler· " ometer position No. 2, relative to VE ·-

16 ACZ2 AZ2 fixed coordinate system. " 17 VDFO DEFO Vehicle deformation. Inches

18 BDFL DELEO Barrier deflection. Inches

19 SANG PSIFO Steering angle. Degrees

20 XTRK XTRK X-position of vehicle wheel centers. Inches

21 YTRK YTRK Y-position of vehicle wheel centers. Inches

'I

Page 81: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Col. Nos.

1-4

5-8

Variable Name to be Punched

*

**

Program Variable

See Table 2-9

See Table 2-9

Definition

Y (abcissa)

X (ordinate)

* Time is usually specified as the first variable, however, it can

be any variable in the NAME column of Table 2-9. The variable to be

entered here must have a figure number less than the variable to be

entered in cols. 5-8.

**Any other desired variable in the NAME column from Table 2-9. The

figure number of this variable must be greater than the figure number of

the variable in cols .. l-4.

NOTE: (1) One card is needed per plot. A maximum of 19 plots can be generated for each data group.

(2) XTRK YTRK can only be plotted against each other.

(b) XXXX Card

Format (A4)

Col No. Information

1-4 xxxx

(c) Plot Identification Cards

Format (20A4)

Col No.

1-70

69

Definition

Signifies end of plot control cards.

Identification to be Punched

(whatever desired)

Page 82: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

NOTE: (1) Two plot identification cards are required for each plot control card of series (a) and their order of input must follow that of the plot control cards. For example, if 10 plots are specified, 20 plot identification cards are required.

(2) The information on each of these two cards is printed below each respective plot.

Option 3 - One card required. Format (A4).

Col. No. Information

1-4 NONE

Option 4 - One card required. Format (A4).

Col. No. Information

1-4 SAVE

70

Page 83: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

2.3 TERMINATION DATA

In order to signify the end of a. computer run, a termination

card must always be included. Its contents are as follows:

Format (A4)

Col. No. Information

1-4 FINI

71

Page 84: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

III. SAMPLE PROBLEMS

3.1 Slop:i.ng Culvert Grate and Surrounding Terrain

This example probh~m investigatE's the dynamic behavior of a. 1963

Ford Galaxie (4-door sedan) a.s it leaves the road and traverses the path

shown in Figure 3-1.

The necessary primary input data (described in Chapter II, Section

2 .1) for this example problem is show-n in Figure 3-2.

The primary input data a.s printed out by TTl's version of HVCSM is

show-n in Figures 3-3 and 3-4. Figure 3-3 shows the card images of the

necessary data while Figure 3-4 shows the same data in a more convenient

form.

The printed output for the time period between 0.510 seconds and

1.013 seconds is given in Figure 3-5.

Assume no output plotting is required, then, the necessary plotting

data (described in Chapter II, Section 2.2) for this example problem is:

Colurr.n Number

1-4

Information

None

The necessary termination data is given as:

Column Number

1-4

72

Information

Fini

Page 85: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

SIDE SLOPE s:1

'(TEMPLATE NO.

APPROACH ANGLE= 20°

40FT. MEDIAN CROSSOVER

PLAN VIEW

,I

APPROACH SPEED = 60 MPH 1-E---- 40' ---~-==-

276' . >-k 241----"'1

®

GRATE s:1

SIDE SLOPE e:1

241

2361

® ®

\___TEMP~ NO.

DITCH DEPTH =3FT.

SECTION A-A

FIGURE 3-1 SIMULATED MEDIAN TERRAIN CONFIGURATION AND AUTOMOBILE PATH

Page 86: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

i ..r. v!.-. !q:> 17 0 lz5 I 0 b~ f 0 1 ~~ 151 c 0 N M 0

I N M " ' " " " "' .4~ I~ (J • 2. ~ Fl LL !y A W= 2() olF 6 v "' ~0 MPH 8 : f G RA riE SL (J PIE 8 : 1 -~ ~E.

-~~ 5~ c RtiN ID5N :::: ~G $22 i

i . Qi z. 6b D. 005 10 .() o. 61 70 .o o. 0 k'.O ' 1

! ':01 t.r) -2. o.o o.o o.o o.o o.k? k;J.o ~

I

~~ .j I I!J 4-14 • [,1 -2. 4-. 13f'3 I o S6 .() (), 0 "'· /"1 q I

I I

.·o 6·0 Ill . Ill i ! i I i I i I ' I~ ' ' ' I

I I i I I I i ! I i ' ·-. -

I f)j, ol o.o za. () I \3o ·k' 2.0 ,{) .Sf ~ 0 23 .o l5'6 ,{) f--f-

;o I I I ~~1. () 2.0 .o i ! II 2o .11 2b .c I

' I ' ,__ I I

! I I i I I ~-

2[7 i (5. I It: zlo .~ ·bl 2.b 5'f,f. Is- 6 .o 2.. '(,i. o: 3'0 ,0 • 0 z 3'. 0 ·>- -l '~

,0 : i i .{) .. : I I!;~~ ('_Q, t) l 7 0. :o 2o

i J'oo .bi J:c I 1--

I I : i I

i t3 I I

' f-.,-· I ! 1-z;o . !e : i 0 .id 2<? .o 30 .o z.o ·~ Bb .a I

d. · i : 1&ol. 0 'T l~o . !O I i i /[2. 0 . 10 I 20 .o I I i

-~ . ! I I · j I

I ' i I I I I I I ' ' I I I i I ' I

.......... ·+ ..... - ' ! '4! ~ 4 k? . lo ~~- , :,-, I 1-z!o .\o ! I I, I 3D .b i :20 ,I) 30 ,() :z.c ~~lc::J .(, I IT T'' ,. ' '

() l-zio . lo oi. c T 2.0 ! . 'o . 1 1 , ;$'() , i i ) z .()

-·- ·t--' t ' I I I I I I i+ __ -~ ~· L .. L . I I I i ' I i I I ;

' --5'1 Glt,'4'' iO· 01 I 0 I I z..tJi. 0 i i I I Jiol. !a, I i 2.0 .o S.f .o 6.1 !'6 .o I I ~-:t1 ·r • 'o - r-r; ejo I ()I ' '2,0' 0 ! I I /2.o.lc1 i 1 I I '2./J • 0 ' I

i ! ' l i T

~ -~· ... I I I

' ' I ->--t

bl 1£0!0 • d I" I 0 I i2 ~%-~- f : :

13ioi. !oi i : 2(; ,() 5"..1 .o '2.3 10 56 . () .. . r -~ ~i.io i . 't' I _ __j__'8o . o B I lc,oi. o I < '

/1'2.. i zo .o . r--;-- t'--- --+-r- -r- t- Af Gr.J RE RR IM AIRY IN Pi(JI7 DA TAl I ! I i l I I ' : : I ' I i I I I i : I I i 3- 2..

1 : I 1 1 ' 1 1iT 1·-rr-~r : 1 , ·U!_LI Ft"lfl EX A MP Lr:i '3 • I • • • : ' 1

' : L I . --. ---'-!-!

I ~

,•

Page 87: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PROG 140-2 II' FILL .. FYAW'*20DEG.' V=60'1PH, 8:1 GRATE SLOPe, 8:1 SIDE 7.6J SEC R.lJN DSN ,. SG$22

INPUT PRFSET IN SUBROUTINE STO (ON DISK)

1 1J.fi1B 54.517

131.000 192.00')

1098.000

0.608 0.945 386.400 6Q.OQ.OOO .. 30000._000

o.o -34.481) -5.000

PHICf 11.1=1,11

64.48'3 0.500 0.501 '3.000 1).(' 1.(\ s.ooo

-3,5~1 -?.551'l -J.ROI) 492.000 600.('00

4 4000.000 XVPIII.YVPIII,lVPIIl,I=J,4

1!1.517 ~9.500

81.517 -39.50C

<'>1.000 3.1"t00 4.000

10.000 o.o 4.0('1) 1.000

-1. Vl'l 0.400 0.001

60.000 10.138 3.500 55.000 3.900 50.000 8.276 2900.000 o.o o.o

-5.9_1!3 - -16.500

-0.950 -0.550 5000.000

0.250

-0.300 0.075 -·

12.088 0.001 0.001 1. 780 o.o 3.138

-0.300 1.500

36000.000 -192.000 -2.000 14.000

266000.000 61900.000 46.500

o.aoo 1.000 o.o o.o

-0.400 -0.550 -0.800

-117.483 39.001') -117.4~3 -39.000

12. l31l VEHic.!...E !v1DN1TOR ., 12.136}

@. l 36 POINTS 0F BU1>1PERS ( 2 °S£T OF CARDS oF ICARD 23) A .na

'300.000 3('10,000

.7.000 2.('00

-3.000 -4. 0( 0

'300.0(11) 300.000

INP•JT REAI1 !\Y CALSVA (READ ;:! BY CARDS)

2.000 2.000

3.000 4.000

600.000 4400.000

0.070 3900.000

SEE APP!ONPIX.

Rl.iJ...E)

(.rcARD) 2 3 4 5 6 " 1 "

I 0 ,, 11 12 (F/.<?ST ..::4Rv)

_/ 2 (SEC.:JND CAk'::J, 11 2'1

{ 26 27

.oo~ (ICARD) .52

o.o 2.60 o.o • 01 10 • ·RIDE 7'//:JSE _ ··>11•.'.':

.s;-,:,..)

•'

o.o o.o -?0.0 o.o o.o o.o 8 CARDS PRES£/1/Tl

'.. l J TII£SE C.4RDS WI.:.L

UB!<uLJTI/.iE :::7LJ. '."-' '": .J 2464.!" 1044.0 -24.1313 1056. o.o o.o 9

--[26 WHicH ARE tJN DISK 27

'300.0 ?.no -~.00 30').1) 2.0') 5.1)0 300.0 ::>.on -4.00 30,J.O .?,OC 4. 50

SEE APPE.NDI X

6.0 6.r· o.o 14 XGP I I , I l , yr,p f1 , J l , 7 GP I I, J ), I= I, 6 J=l· 6

').') 0.1) 20.00('1 30.000 20.000 54.000 2'3.000 56.0-00 23.000 80.000 20.000

120.000 2{'.000 ;>76.00') n .o ll'l,l'!')rl 30.!100 20.1)00 54.000 23.000 56.000 23.000 80.000 20.000

1?0.000 2C.000 30('1.:l00 (l.(' 2'~.00') 31"t.O'l0 20.')1)0 30.01)0 20.00'1 80.000 20.000 80.000 TERRAIN DATA

120.000 ?0.000 (.ICAF'D .1-1-~z.) H:).OOO ('l,n 20.0111" 30.('100 ?0.000 30,000 20,1))0 80.00') 20.000 60.000

!20.000 20.000 H>4. QOO o.o 70.000 30.000 20.000 54.000 23.000 56,000 23.000 80.000

120.000 20.000 600.)00 o.o 2 '' 0 1)0 30.000 20.000 54.000 23 .ooo 56~000 23.QOO -80 .ooo 20.000

120.01')1) 20.0()1'1 FIGURE 3-3. PRIMARY INPUT DATA REPRODUCED

- - -.--

Page 88: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

'-1 0'

PROG 140-2 3' FILl, VAII•J(){)fGt V•fO)Ift~ li 1 1pAATE SLOPE, 8 1 SIDE Sl

2.60 SEC RUN DSN • SGS!2 ·

INERTIAL DATA (Ic,4RO 3) DIMENSIONS (ICARD 4) SUSPI

I'IS " 10.818(1 L8.-SEr.••211N A = 54.5170 INCHES KF "' 131.000 LB.IIN. L• PCUF 0.6080 . ' II . 64.4830 •• KR "' 192.000 LB./lN. Li MUR 0.9450 ,, -- rJ: " 61.0000 • • CF' "' 55.000 l8S • 01

TR ,. 60.0000 •• CR' 50.000 LBS. 01 IX 6000.0 LB.-SEC.••2-IN ZF " 10.1380 •• F PSI LONFs 0,001 lN./SEC. T~ l'f = 300M. 0 ZR " 12.0880 .. EPSILONRz o.oot lN./SEC. Rl ll "' 36000.1"1 ,,

RHO " -2.0000 .. CF 3.500 LB-SEC/IN RF lXI :-192.000 •• RW " 14.0000 .. CR 3.900 LB-SEC/IN KRS I R 6')0,00 ,, G "' 386.400 IN/SEC ... 2 { ,,,, • 300.000 LB/IN

AKFCP = 2.000 l8/IN3 l"CARO OMECFC* -3.000 IN

2ti> AKFE • 300.000 lii/IN SI:E APPEIJPIX. A.KFEP "' . 2.000 LB/IN3

.. !JM.E(;_E_E= . 5.000 .rN

AKRC AKRCP OMEGRC AKRE AKREP OIIIEGRE

INITIAL CONDITIONS (:rcA.RDS 8,9ond.iO)

PHI') o.o DFGRF[S xco• >=?4Fl4. 000 INCHES PO o.o DEG/SEC uo =1056.000 IN/SEC THETAO= PSIO "' PH!RD = PSIFIO=

T SEC

o.o

o.o -20.000

o.i:l o.o

PSIF DEG

o.o

TIRE OATA C:TC.Af.:!...- "f)

KT 1098.000 SIG~AT 3.000 LAMROAT • 10.000 AO =4400.(100 Al 8,276 A'l =7900.000 A3 1,7RO

" •• ,, ''

TOF lR/FT

0.(1

vco• =1044.000 zco• OELTA1= DELTA2= DI'L TA3"'

TOR LR/FT

o.o

215.862 o.o o.o o.o

T SEC

'. . ' '' '·' ••

PSIF DEG

00 o.o •• vo o.o ··--··--·Ro·-" o.o -.. wo o.o

DC PHIR 1/DTz o.o ' ' DIDHll/DT= o.o DIPSiFI/DTz o.o RAO/SC D I DEL211DT= o.o

0( DEL31/DT" n..o

.DRIVER CONTROL TABLES (NoT f!PPLICA BLE:)

TOF LB/FT

TOR LB/FT

T SEC

PSIF OfG

TQF LB/FT

TOR lR/FT

•• . ' .. • • ..

T SE

TERRAIN TABLE ARGU~fNTS PROGRAM CONTROL DATA (ICIJ~D .L) LB/IN

ICA£0{ SOIL DAMPING• 0.001 SPI 2.3 SOil FRICT. • 0.250

SSTIFF • 4000. lB!IN

START TilliE END TilliE · INCR FOR- tNTEGRATION = PRINT INTERVAL THETA MAX ITO SWITCHI• UVWMINCSTOPl POR MI NC STOP l

o.O SEC 2.600 0.0050 •• 0.010 "

70.000 DEG o.o o.o

"CARDS 7 .:Me/ 8)

00 00 00 INCHES 00 JNCHES 00 JNCHES ,1"1 LA-JN/RAO

=266000.0 LB-IN/RAO 0.070 ROLL STEER COEFF.

"' 300.000

"'" } 2.000 L'B/f N3 -4.1)'10 t'N J:CAK'D 2.7

" 300.000 ~~~~ ~3 ,_;;:; .._f-':£!-JPJ>. 2.000 4.500

ACCFLEROMFTER PO,SITIONS ( :r CARD i.!. )

. X 1 Yl Z1 X2 V'l 12

; IF lEG

= -34,480 INCHES o.o . ' 4.0')0 ••

-5.9113 •• = -16.500 ••

3.138 ..

TQF TOR LB/FT l.B/FT

A4 •3900.0'10 AMU o:AOO {

NO,W TEMPS, • 6 ICARD . NO. Y. TEMPS. 6

14- ·-· f-lo.· VAR AMU. 0 INDCR!I ·,.

'1Uit>E OF tNT EMU ION DTCMPl

-1 C•O.NO CURA,•l CURB,•-t· STEER OEG.OF FREEOOHI 1 1•0 VAR.AOAHS-MOULT., .. 1 RUNGE-KUTTAo•ZFf •• ~Ml

OMEGT 1.000 TABLES O. 1•1.0 SUPPLY INITIAL POSITIONI 1•0.0 CAR RESTS ON TERRAINI

COEFF, OF TIRE.~RttriON vs.

ISPEfD AND LOAOI DATA ALPHA• 0.0 IICLB-MPHI

} NoT I/.PPL!tA8J..f"

FIGURE 3-4. PRJM."Jl.Y I1'-i'TUT DATA REPRODUCED IN HORE CONVENIENT FORM

'.

Page 89: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

., ' ,.

XKVTH• 0.0 XJCL:a 0.0

1/ MPH l/l8 1. Nor APPLI!A-BLe -

VEHICLE MONITOR POINTS ( 13U IVIPERS) ICARD 23

X Y l ll~.l liN.) IIN.I

POtNT 1 81.517 39.~00 POINT 2 111.517 -39.500 POINT 3-117.4113 39.000 POINT 4-117.483 -39.0~0

12.118 l2.Utt 8.138 a. us

FRONT WHEEL 01Mf:3£R ___ .. Y.S

SUSPENSION DEF/.E:::/ION

OEL.TAF (Inches) .. P/1/C (JJ~n~)

-.s.oo -3.S5

-4-.C!O -.?.55

-s.oo -;.go -2.00 -/.:30

-!.ao -o . .Y5 I C'- t:JC! -:~,55 I·

I /.00 -o.3o

2.t10 -o.3o I

.:5. tJO -c .1-o

·1-.t:JO -0.-6'5

b-.t.Jo -o.g>O

T/J;s dam on . h-onl: wheeL C4lHber -verse;.::

.5-w::penS/O~l dcr/ecflon .tl./;// be ?nnfcd

oct t on /olc.r P"'-"':lll:l/1/.S

FIGURE 3-4. CONTINUED

Page 90: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

'-.1 co

C:U~B IMPACT DATA

YCI' o.c vr.z• 0.(1

PI!OG 140-2 3 1 FI!..Lo YAIC•ZOOEG, V"'bn.t..,, 8 '1 GRATE SLOPE, 8 l SIDE S 2.60 SEC RU~ OS~ E SGS22

***-'~~-CURB AND BARRIER DAT (A'OT APPLJCAB~E To TJ.I/5 STLJDY,

SPRUNG MASS-BARRIER IMPACT DATA BARRIE~ DIMENSIONS

lNCI-IFS IYB'lO 0.0 INCHES KV o.o LB/1111**3 ,, OELYB' = 0.0 •• O.'l DEFL.RAT!O

FlAR~IER

SIGMAR 0 SIGMAR 1

1\.2' o.o •• ZRT' o.o I I

SET CONS MUB EPSILON EPSILON OELTB

o.o ENERGY RATIO SIGMAR 2 DfLTC o.r PHIC l O.G PHIC:? 0.!1

A'!JIC o.n

~ 49?.rno CPS! 1 600.0('0 OMFr.A P'il '),4(0 KPS I =5(1011,000 FPSILON PSI 0.075 TRA!L,FRONTIPT)= 1.5('('

SfC I I"'TEG. I NCR. I OEG~EF'i

••

Lfl-SFC**:?-1 t\1 LB-IN QAO Lfi-IN/RAO PAD/SEC INCHES

ZBB' o.o If

VEHICLE DIMENSIONS XVF - - o·.o INCHES XVR 0.0 '' YV 0.0 '' ZVT 0.0 '' zvs o.o •• INDB • 0 1•1 RIGID BARRIER, FINITE

=2 '' " INFINITF =3 DEFORM.BARRIER,FINITE =4 " " INFINITE·

STRUCTURAL

POINT 1 POI NT 2 POINT 3

o.o SIGMAR 3 V: o.o IN/SEC flz o.o LB

S !GHAR '4 SIGMAR 1

5 o.o SEC SIGMAR 6

IINTEG.JNCRI SIGMAR 7

VERT. DIM. l • ' I

'' I e t I I )

HARDPDINTS RELATIVE X Y l

IINCHESI o.o o.o o. o.o o.o o. o.o o.c o.

SIGMAR 6 S IGMAR 9 SIGMARlO

TO C. G. STIFFNESS

'!4/IN o.o o.o 0,1)

WHEFL RA01US-R60IAL SPRING FOR TAfiLE (NoT llPPLJCIIBLE) RWHJBIRFGIP\11 O.Cl INCHFS RWHJFfi'NOI 0,1' ' 1

OPWHJIINCRF.l ll,fl "'

ANTI-PITCH TA~lFS FOR CIRCUMFERENTIAL TIRE APF" O.Cl o.r o.o o.o

o.o o.o o.o o.o APR= o.o 0 .c o.o o.o

o.o f),(' o.o o.,.

FORCE ~1\/oT APPL!Cir8U:) .o 1).0 o.o

o.o o.o o.o o.o o.o o.o o.o o.o o.o

FIGURE 3-4. CONTINUED

f),l)

o.o o.o o.o

f .

'o.o o.o. o.o 0,1)

··,

o.o o.o o.o o.o o .• o o.o

LOAD DEFLECT, (1.0

= o.o "' o.o

o.o = o.o "' o.o = o.o "' o.o " o.o = o.o "' o.c

Page 91: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PROG 140-2 1' FIll, YAIIaZODEG, V•66~. • l &JfATE SLOPE, 2,60 . Se..t . . IW~ J)S't. -~- S.GS2.2.

Tl ~f STFEI!ING TO ROllE INPUTS SPRUNG MASS CG .. -~CCEL. SEC. INPUT POUND-FEET G-UN ITS

OEG • .' FRONT .~EAR loiiiG. .. LAT. ... VERT. 0.51():) 0.7(> o.o o.o 0.037 -0.063 0.406

.0.'5?:>!> 0.77 o.o n.o 0.017 -0,04& 0.421 o. '>101) f), 77 o.o o.o 0.037 -0.025 0.408 o.54:ln 0.17 o.o o.o 0.011 -0.003 0~193 0.5500 0.7& o.n o.o 0.037 o.oo8 0.350 1'),5&"10 11,75 ll,!l o.o J)o037 Oo018 Oo329 0,57:)0 0.72 o.n o.o . 0.037 0.022 0.'304 0.5ROO o.M ·o.o o.o 0.037 0.023 0.277 !'!. 591l0 ll.b5 n.o n.o 0,1)18 0.023 0.247 0,61'l00 0.61 o.o o.o 0.038 0.024 0.215 o.ntoo 0,56 o.o OoO 0.039 o.028 0.182 'l,67JO 0.51 O.'l o.o 0,1)40 1),034 0.149 Oon30J 0.47 o.o o.o o.o4o ·- 0~·041 -0.115

0.&400 0.42- o.o o.o 0.041 0.047 Oo082 0.&5"11) , • 3& n.o o.o 0.041 0,051 0.050 O.b6)0 O.H o.o o.o 0.041 0.052 0.020 o. "700 0.26 o.o o.o 0.041 0.051 -Oo009

:O.b800 I') o20 'lol"f o.o Oo04l 0.047 -Oo037 -...! 0,6910 0.14 o.o o.o ~ Oo.042 0.042 -0.064 \0 0.7001 o.n8 o.o 0.042 ·0.038 -0.092 o.o ~ ..

o. 7J:l0 0.02 O,'l o.o-;,.; 0.043 0.035 -0,12).. Oo7?"10 -0.04 OoO o.o ~ 0.043 0.033 -0.150 o. 7300 -0.10 o.o 1).0 () 0.044 0.032 -0.180 0,7410 -0.16 Oo'l o.o liJ Oo'l44 1),030 -0.209 o. 7510 -0.22 o.o o.o ~ 0.044 0.027 -0.236 0.71'>)0 -1).2A o.o o.o ~ 0.044 0.021 -0.261 1',771(1 -0.33 o.o O.l"f~ 0.044 1),014 -0.281 0,7R01 -o. 39 o.o o.o"' Oo020 0.007 -0.100 0.7910 -0.44 o.o o.o C) 0.019 -0.001 -0.315 0.8"1"11 -0.49 o.o o.c s -0.014 -o. 009 -0.328 'l.RD1 -0.53 o.o o.o ~ -0.014 -0 •. 015 -0.341 o. p 70 0 -0.'57 o.o o.o ~ -0.035 -0.019 -0.351 0.11 l"l:l -0.61 o.o OoO [lJ U) -0.095 -1.006 -0.389 0.84"1'1 -0.66 o.o o.o tl(t:) -0.293 0.083 -0.602 n. a 51 :1 -0.70 o.o o.o ~<: -0.381 0.210 -3.513 ('\,111'>11 -o. 75 o.o 0.0~<) -1.208 Oo 307 -1.879

. '"'· 871" -o. 79 o.o o.o ~ \) i"':i-:481- -o."TIS- -=6.4"!!1 0.11R\:) -O.R5 o.o o.o ~ -2.010 o. 4.91 -8.486 0.1!910 -0.91 0.0 o.n ~!QI -2.1&9 0.085 -6.984 l (),9"10 -".97 'l.'l o.o o-..1 -1.536 -0.174 -8.631 0.9110 -1.01 o.o o.o f::-.iL.;0-836 -0.110 -4.261 I O.<J210 -1.04 o.o o.o ~~- -q_ • ..ll! -Oo180 -=.2 • .J.L6_j "-9110 -1.07 0,'1 0.1) ~ -0.249 -o:Tz~--·· . -1.334 1,9410 -1.10 o.o o.o :-~Q -0.180 -0.3H -1.541 O.<J530 -l.1Z o.o o.o ~~ -0.032 -0.706 -2.897 1.96~') -1.13 l),'l o.o ~ 0.058 -o. 377 -3.614 o.9no -1.1 .. o.o o.o -0.505 0.026 -2.15') 0,9830 -1.15 o.o . o.o . -0.568 -0.250 -6.470 0,9931) :.:i .16 o.o

··--- k -·:.o: 10f ._.o,Tso .:.f~036 o.o !Jl 1.003) -1.17 o.o o.o ~ Ooltl7 -0.099 -0.910 1.ono -1.18 o.o o.o ~ 0.030 0.079 -4.868

~ ~

FIGURE 3-5. PROGRAM OUTPUT

. ,,

8 1 SIDE SLOPE

AfiiGULAR DEG.

ROLL p -11. 7& -8.n -4.57 -5.5& -1.93 -2.51 -1.28

0.3& -2.&1 2.88 -2.02 5.25 -1.41 7.47 -0.79 9.54 -0.21

11.49 0.31 13.29 0.75 14.91t 1.10 16.43 1.3!'1 17.74 1.&0 1R.86 1.78 19.79 1.93 20o52 2.05 21.07 2.16 21.43 2.23 21.61 2.25 21.62 2.22 21.46 2.12 21.17 1.98 20.71 1. 76 20.11 1,48 19.38 1.17 18.55 0.83 17. 5<J 0.44 16.52 0.04 15.32 -0.40 14.03 -0.86 12.69 -1.33 11.37 -1.84 10.88 -2.18 24.72 2o45 51.42 11.78 16.38 24.69 97.11 55.43

115.07 83.45 97,80 114.5 2 71.24 139.28 41.74 152.20 22.22 156.74 8.50 155.16

-10.92 142.59 -38.29 122 0 72 -55.58 107.13 -6T. 72 80.28 :..""16 ;92 - -.

58.73 -17.57 52.91 -72.51 3').75

FORWARD SPEEO

IW FT./SEC. .3& 88.31

0.57 88.14 0.78 118.3'5 o.n 88.1& 1.03 88.·n 1.11 88.39 1.18 88.40 1.24 88.41 1.31 88.to2 1.38 88.43 1.45 111'.45 1o50 88o46 1.54 88.47 1.55 88.48 1. 54 B8.':iO 1.52 88.51 1o48 88 0 5.2 1.44 88.53 1.40 8!".54 1.36 8R.56 1.32 8Ao57 1.26 1!8.58 1.19 88.&(' 1.10 116 .b 1. 0,99 88.62 0.86 88.64 o.n 138.65 0.65 88.66 0.58 88.6& 0.47 fl8.66 0.34 8R.66 0.21 138.&5 1),1)1 88.63

-0.27 8R.S5 -0.31 81!.47 -0.59 88.24 -1.77 87.78 -3.59 87.25 -4.38 116.60 -5.40 86,08 -6.02 85.85 -7 .!7 85.81 -R,06 85,82

.22 85.81

.45 85.74 ,55 65.6 .. .46 85.50 ,lt1 !!5. 27 .21 8'5.09 .oo 8'5.15 .1 0 8'!.18

Page 92: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

00 0

T I"F SFC.

O.'i10:l n,<;?'"' o.~,O'l

O.S40:l I). ~Ci"\")

0.5600 0.5708 'l.SB'l') (),5'lCl'l 0.!.00.~

O.'ll""" 0,6201 0.'>31:1 ".1>4~1

o.osn1 O.of>O) 1.'>7!1') O.'> ~n:> O.'>~'l:J f'\ .• 7r,r.,.~

0.71f1) n. 770:J 0. 7V'1 0.74'1') 0.751)') (),7&')0 o. 77(''1

0.7803 0.1qrj ().'1:")'1"

(),'i1Tl 0.~2'1')

'l.RV11 r.q4"J n.•'i11 I).R61" 1.•1711 ~.11'31"

'l.R91'1 0.~01')

0.911" ".1211 o.q'IJ) 0.9430 n.95'1 :o. ~61') :o.=H3J ,".1A 11 n.cq "~

; '. ")~"' "\'~

0- ! '"

x'

L ' PR'lG 140-2 3' FILL, YAW•~OOEG, Vs60,.PH. 6 1 ClUTE SLOPE. 8 1 SIDE SlO 2.60 SEC RUN DSN • SGS??

tz' . -~,~' ~OLL(FIG..LS) -PITCf./(FIG.fS)

SFACE-FIXED coORDINATES SPRUNG I'ASS c-~ (YAW (FIG: .15) POSITION I l'ICHFSI FI6AI6 ORIENTATION ~~EGREESI VELOCITY 1FT /SF.C.J

X' Y' Z' PHI (tD) THETA(¥') PSI (?f) lAT. VERT. 29A9,R5 857.89 225.81 -1o.2? -2.19 -19.86 -1.10 0.10 299'1,77 854.19 226.37 -10.39 -2.44 -19.85 -1.13 0.76 'oo9.69 850.49 226.94 -10.47 -2.48 -19.83 -1.15 o.8Z 3019.61 846.78 227.53 -10.51 -2.52 -19.82 -1.17 0.90 3'1?'1.53 841,09 ?2~.13 -10.52 -2.54 -1'l,80 -1.18 0.97 ~')3'1.45 839.39 228.75 -10.50 -2.56 -19.79 -1.19 1.05 3049.38 835.69 229.3R -10.46 -2.58 -19.77 -1.21 1.12 31)59.3'l 83?.n'l ?30.:l2 -10.40 -2.59 -19.76 -1.22 1.20 3069.?3 B?H.31 ?30.68 -10.32 -2.59 -19.75 -1.~3 1.28 107'1.16 ~24.62 ?11.34 -10.21 -2.59 -19.73 -1.24 1.36 3189.1'1 8?1.94 232.11 -10.19 -2.58 -19.72 . -1.25 1.43 1019.01 817.?5 21?.68 -9.95 -2.?7 -19.71 -1.26 1.50 3108.97 A13.57 233.16 -9.79 -2~55, -19.70 -1.26 1.57 3IIB.on 809.89 234.n5 -9.62 -2.~4 -19.6'3 -1.27 1.63 1l?A.84 806.21 ~14.74 -9.44 -2.52 -19.67 -1.27 1.68 ~138.7'l 802.53 235.41 -9.24 -2.50 -19.66 -1.27 1.72 1l4R.73 798.86 2~6.12 -9,04 -2.47 -19,65 -1.27 1.76 315R.6B 795.18 236.81 -a.q4 -2.45 -19.63 -1.21 1.79 1168.&3 791.51 237.50 -q.62 -2.43 -19.62 -1.27 1.81 317!l.S8 787.R4 2l8.18 -8.41 -2.40 -19,61 -1.27 1.83 1!88,53 7P~.l6 ?18.R7 -8.19 -2.38 -19,60 -1.28 1.83 31~8.4'l 780.49 239.54 -7.98 -2.35 -19.59 -1.28 1.83 3?ra.44 776.~2 ?40.?2 ~7.76 -2.~3 -19.58 -1.28 1.81 1218.4() 771.14 240.8~ -7.56 -?.31 -19.58 -1.28 1.78 37?~.36 769.47 241.54 -7.35 -2.30 -19.57 -1.28 1.74 3738.31 76~.79 ?.42.19 -7.15 -2.28 -19.56 -1.28 1.68 1?4A.?9 7~2.12 ?42.82 -6.96 -2.?7 -19.55 -1.28 1.62 12SR.?6 758.44 ?43.45 -6.78 -2.26 -19.55 -1.29 1.54 32&8.2?. 7~4.76 744.07 -6.61 -2.26 -19.54 -1.29 1.45 3?78.19 751.08 244.67 -6.45 -2.26 -19.54 ~1.30 1.34 37~R.16 747.40 245.26 -6.31 -2.27 -19,53 -1.30 1.23 1298,12 741.71 245.84 -6.17 -2.28 -19.53 -1.31 1.10 >>nA.o9 74o.o3 246.40 -6.05 -2.29 -19.52 -1.12 o.96 1318.05 736.34 246.95 -5.95 -2.31 -19.52 -1.29 0.78 332R.9'l 732.29 ?47.52 -5.78 -2.32 -19,53 -1.25 0.24 3338.9~ 7?R.61 241,03 -5.38 -?.25 -19.54. -1.11 -0.52 114R.S3 7?4.94 24q,23 -4,75 -2,08 -19.56 -1.05 -1.47 1358.68 721.29 248.29 -3.87 -1.67 -19.62 -0.95 -3.39 3'6A.47 717.65 24q.06 -2.11 -0.99 -19.70 -0.87 -4.71 337R.1~ 714.02 747,57 -1.69 0.01 -19.79 -0.90 -5.80 33R7,A3 110;41 246.69 -0.84 1.2~ -19.87 -0.94 -5.96 1397.44 706.80 745~67 -0.?6 7~74 -19~95 -0.96 -4.98 3406.07 703.55 ?44,66 o.o1 4.13 -2:>.02 -0,.93 -3.47 3418.52 698.85 743.12 0.20 6.17 -20.13 -0.84 -0.81 >4?9.nR 695.23 241.89 o.19 7.67 -20.20 -0.88 o.ae 1417.61 691,60 240.58 -0.06 1.00 -20.25 -0.93 2.09 3447.12 687.97 239.17 -0.57 10.14 -20.29 -0.91 3.09 ~456.60 684.36 237.66 -1.18 11.10 ~20.33 -0.95 2.95 '466.01 680.75 215.95 -1.9? 11.76 -20.36 -1.04 2•74 1475.41 677.14 7)4.18 -2.70 12.32 -20.37 -1.13 3.35 \4R4.~'1 673.52 ?32.36 -3.46 12.78 -20.39 -1.20 3,18

FIGURE 3-5. CONTINUED

t

RF 250.88 251,34 251.80 752.26 252.73 253.19 253.66 ~54.13 ?54.60 255.07 255.54 256.01 256.49 256.96 257.43 257.91 258.38 7.58.85 259.32 75'l,80 ?60.27 260.74 261.21 ?61.68 262.14 262.61 263.08 263.51 763.97 264.44 264.90 265.37

·265.83 266.29 265~96

264.74 263.48 262.27 261.07 259.85 258.64 257.42 256.33 254.76 253.55 252.33 251.12 249.91 248~70 247.413 246.26

'•,

T

259.42 259.88 260.35 260.81 261.28 261. 75 262.22 262.69 263.16 263.64 264. 11 264.58 265.05 265.53 266,00 266.48 266.'l5" 267.42 267.8'l 268.37 268.84 26'1.31 269.78 2 2 7 2 2 2 7

2• lbfe1?

266.13 264.91 7.63,69 262.48 7.61.27 260.06 258.96 257.39 256.17 25• 25: 2'>; 251 25( 24!

Oi'.a ,.:,, )

RR 45.98 46.44 46.91

24 7.18 24 7. 85 248.31 241!.78 24'l.?5 249.72 250.18 250.65 251. l3 7.51.6() 257.07 252.55 253.0;> ?53.49 25 3. 'l7 254.44 254.'ll 255.38 255.85 256.3? 2'>6.79 257.26 25 7. 13 258.?') 25A.66 25'1.11 259.59 260.06 260.53 260.99 261.46 261. 97 262.44 262.91 263.18 263.87 264.28 264.75 265.21 265.63 266.23 266.72 '66. 22 65. ')1 63.81 62.60 ' 61.40 60.21

GCP G:EE r!GIJRE 15)

LR 25?.98 253.to5 253.91 254.38 254.85 255.32 255.79 ::>56.7.6 256.72 2'H.19 257.66 25 8. 13 258.61 259.08 2o;9,55 ?6'l. 03 260.50 260.97 7.61 •. 44 261.91 262.38 262.RS 763.32 263. 79 264.26 264.73 26o;,2o 265.67 766.14 266.60 267.07 767.53 ::>6R.OO 2•68.46 26'3.98 269,45 269.92 270.39 270.87 271.34 271 •. 74 272.21 272.63 271.18 269.97 268. 77 767.57 266.36 265.15 261.93 26?. 75

Page 93: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

'1

PROG 140-2 3' FilLo YAifz lODE Go VxoOMPH, I! 1· GRATE SLOPE, 8 1 SlOE SLOPE 7.. 6':1 SEC RUN OSN ,. SGS22

T I I'F UNSPRUNG MASSES RONT WHFfL ser. DEFLEC:TIONS (IN. ANO OEG.l VEUlCITlES fl N./SEC. • OEG./SFC.l MBER IDEG.l

OFL TA 1 OEL TA 2 OEL TA 3 PHI R OIOELli/DT 010El2110T OIOEL31/0T' OCPHI~ 1 PHI 2 1'1.511') 4.97 1.n 3.'18 2. 72 ·-0.67 -17.11 -5.68 7.65 -0.79 0.29 0.57.')0 4.96 1 .76 '1.01 2.8'> -7.. 87 -14.23 -5.36 16.71 -0.79 o.?R

o. 53:l'l 4.'ll 1 .63 2.9R 3.04 -7.19 -12.7.9 -5.12 21. 10 -0.77 '1.27

o.S4'l'l 4.81 1. 51 2.93 3.25 -12.46 • -11.93 -5.00 19. 13 -o. 74 o. ?7

o.5soo 4.61, 1. 39 ?..'17 3.40 -17.15 -13.04 -5.'>3 11.32 -0.70 o. 27

0.56')0 4.47 1.25 2.R2 3.47 -20.74 -15.02 -6.05 1.95 -0.65 0.28

().57')') 4.25 1. '19 2'.75 3.44 -7.2. 30 -16.77 -7.95 -8.?9 -0.60 0.29

o.5ROO 4.0'1 O.'l2 ?.b5 3.31 -22.32 -17.51 -11.04 -16.4() -0. ';6 o. 32

0.5900 ).Ill 0.74 2. 57 3.12 -21.58 -16.87 -14.81 -20.56 -0.52 0.35

0.6COO 3. 59 '1.58 2.36 2.9? -2'1.98 -15.05 -18.57 -20.15 -0.4R 0.19

0.61)0 3 .11' 0.44 2•1"i 7.. 73 -21.1<1 -12.70 -21.65 -16.16 -0.4') 0.42

.. 0.6?')0 '1.11 0.33 1. 93 2.59 -22.43 -10.59 -23.58 -11.31 -()~42 ().45

0.6300 2.91 0.7.3 1 .,9 2.50 -24.44 -9.37 -74.19 -7.)7 -o. '19 0.4R

0.64:10 2. 6R o. 14 1.45 2.44 -26.64 -9.27 -23.61 -6. 2l -0.'16 0.51

0.6'i00 2.40 0.04 1. 7.2 2. 37 -28.42 -10.06 -22.26 -13.35 -rt. 33 0.54

0.6610 2. I 1 -0.07 1.'l'l 2.26 -29.3 5 -ll.20 -2() .65 -13."6 -o. 31 o.58

o. 6 700 1.8? -0. 1g o.qo 2.10 -29.34 -12.06 -19.29 -18.72 -0.28 0.63

00 .0.61100 1.'51 -o.::n o. 62. 1.89 -28.59 -12.16 -18.57 -23.49 -o. n ').68

....... 0.6910 1 • 2., -0.47 (1.43 1• 64 -27. ';2 -11.37 -1'1.6fl -25.'13 -rt. 213 o. 73

n.70'lO 0.<1~ -().5~ 0.74 1.38 -26.54 -9.92 -19.27 -25.'5'\ -0.'10 o. 77

o. 7l:l0 0.77. -0.62 0.04 1.14 -25.<10 -8.29 -20.28 -22.74 -o. 36 O.'lO

o. 77:)0 0.41> -I). 10 -0.16 0.91 -25.66 -6.96 -21.?1 -18.74 -0.42 'l.A3

1). 7::1'1'1 0.70 -o. 76 -0.38 0.76 -25.68 -6~29 -21.90 -15.'\8 -0.4<) n. 136

0.74:11) -0.01> -O.R3 -0.60 O.b2 -25.66 -6.35 -21.60 -12.<10 ). o; 7 0.88

n.7'500 -n.'\1 -0.R9 -0.'11 0.50 -25,,5 -6.92 -20.46 -12.2<1 ,_ 68 .,,91

'1.76'1'1 -".56 -0.96 -1.00 1).37 -24.61 -7.59 -18.60 -13.39 ). 78 0.94

o. 7700 -0.80 -I .04 -1.18 0.22 -23.45 -7.97 -16.28 -15.42 ). 87 0.96

0.78()0 '-!.04 -1. 12 -1.33 0.06 -23.20 -7.87 -13. 8'1 -17. 32 1. 96 ().9'l

.n. 79'l'> -1.76 -1.2" -1.46 -0.1?. -22.34 -7.76 -11.5 ~ -18.17 1.0'1 1. 01

0.91:):1 -1 .4A -1.77 -1.56 -0.".\0 -20.74 -7.35 -9.64 -17.45 1. 10 t.03

n.RI:JO -1.68 -I. 34 -1.65 -0.46 -1'1.6'\ -7.59 -8.2::1 -1'5.2? 1.17 I • '15

O.R2!1'l -1 .85 -1.42 -1.73 -0.60 -16.38 -7.31 -7.24 -12.03 1. 24 !. Ofl

o. '1300 -7.01 -1.60 -1.AO -0.70 -14.45 -16.69 -6.42 -8.75 - l. 'II) 1.14

O.R4'10 -?.14 -2.R3 -1.$16 -0.76 -13.90 -235.9l -5.41 -6.'l1 -1. ,, 1.69

'1.851'1 -?.'12 -5.61> -1.91 -0.89 -72.9~ -159.12 -5.64 -19.17 -1.41 1.55

n.A610 -7.8$1 -<;.'59 -1 .98 -1.22 -12b.20 46.08 -6.73 -42.52 -1.73 3.55

0. A7l 0 -5.08 -6. (ll -2.04 -1.75 -244.50 -1M.25 -6.91 -64.44 -1.55 1."i5

n.8810 -5.76 -6.47 -2.13 -2.49' 59.14 -9.32 -9.86 -R2.03 -3.55 3.55

O.R9l:l -S.F!S -I>. 31 -2.23 -3.41 -75.01 15.91 -10.'59 -97.3R -3.55 1.55

0.9010 -1>.33 -6.16 -2.3S -4.32 -19.72 6.95 -11.59 -80.37 -3.55 3.55

0.9110 -6 .!6 -5.5R -7..46 -s.ro 34. 4'; ll9.87 -10.61 -54.17 -3.55 3.55

0.'17.10 -6.01 -4.21 -?. '>4 -5.41 b2. 44 129.28 -5.68 -24.48 . -3.55 2. 74,

0.9300 -'5.22 -3.26 -2.'57 -5.54 100.70 81.96 0.28 -6.26 - -s 1. 97

0.'1430 ·-'I. 06 -2.51 -2. ">7 -5.44 87. 16 4!.24 -4.59 31.56 1 l. 52

o. '1510 -1.7? -2.12 -2.9"i -'>.29 61.07 42.21 -64.14 234.67 4 1.35

0.9b30 -2.61 -1.1>1 -3.79 -1.25 62.66 57.22 -122.36 269.10 'I 1. 15

0.97'10 -1.P8 -0.91'> -5.48 -0.21) 87.29 76.94 -201. '55 -·lt3. 71) 5 0,'14

0.9830 -0.8'1 -o. 10 -t,.66 -0.66 121.51 93.65 20.21 5.20 9 0.59

0.9930 0.57 0.9() -5.4i -0.24 146.24 107.55 1~6. 88 21.75 0 0.32

1.003:1 2.01> z.ob -5.14 -0.1~ 16'1.26 123.57 -101.87 36.77 0 0.30

1.0131 1.68 3.35 -6.42 0.66 159.55 131.50 -70.'H 6<).68 0 0.45

FIGURE 3-5. CONTINUED

Page 94: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PRQG 140-2 3' Fill• YAW•200EG, V•601'1PH, 8 1 tRATE SLOPE, 8 1 :!>ID£ Sl 2.60 SEC RUN DSN = SGS22

Tl~F CA~BI'R . STEER ANGLES RELATIVE TO GROUND PLANES FORCES SFC. PHI Ct; !OFG,I PSI' IDEG.J )51

<1F LF RR LR RF LF RR LR RF RR LR O.S!O:l -4,'H! -l.lO -a. R7 -0.117 0.75 0.75 0.19 0 .19. 320.~ 150.7 7Z5.1 O.S?O:l -4.4!1 -3.42 -0.85 -0.85 0.76 p.77 0.20 0,20 320.( 32.6 761.1t 1).';3!""1 -4.54 -~~ <;Q -n. n -0.7'1 (),77 o. 77 n.21 0. 21 335.1 15.4 797.1 0.<;401) -4.55 -l.54 -0.56 -0.56 0,77 0.77 0.?3 0.23 3f>5.• 6.7 8~4.0

o.S5()0 -4.'52 -3.55 -0.42 -0.42 0.76 0.76 0.24 0.24 404.( 115.5 839.5

f>.S!>O:'l -4.46 -3.53 -0.33 -0.33 0.74 1).74 0,24 0.24 444.8 1106.9 136.3 844.5 n,<;71'10 -4.36 -~.47 -O.l2 -o. 37. 0.72 0.72 o.-24 0.24 482.7 1329.9 176.4 845,7 0,5f!OO -4 ,;>5 -3.38 -a. 39 -0.39 0,69 0.69 0.21 0.23 515.8 1'351.4 2l2.3 85(1.1 0.590') -4.13 -3.26 -0.49 -0.49 0.65 0.65 0.7.2 o. ?.2 545.3 1368.4' 297.4 8f>4,, ').6"1"1"1 -3,99 -3.12 .-0. 59 -0.59 o.&o 0.61 0.20 0.20 574.8 1379.4 364.4 890.4

0.'> 1 ()1 -l.R4 -7,96 -0.65 -0.65 0.56 0.56 0.19 0.19 608,1 1384.3 427.9 928,6 O.l>?t':J -3.66 -2.79 -0.65 -0.1>5 0,51 1).51 o. 18 0.18 648.2 !'384.8 4f!S.n 913'.:t (),l,l'l') -'1.48 -?..61 -O.SB -0.58 0.46 0.47 0.18 0.18 695.5 138'1.8 531>.'5 1019.1 0.1>41') _, .27 -:>.41' -0.48 -0.4R 0.42 0.42 0.17 0.17 748.3 1383.9 5135.0 1058•2 O.b<;OQ -1.06 -2.l'l -'1.36 -0.36 ').36 0.36 0.17 0.17 803.5 1386.4 6'14.4 1'186.-5 '1.&1,1') -2.114 -l.'l6 -1'1.?q -0.28 0.31 0.31 0.1& 0.16 857.9 1391.2 687.4 11 ()T, 3

0.'>70() -?.62 -l.H -'0.2 .1 -0.73 0.?6 0.26 0.15 0.15 909.0 1396,9 74'5.4 1111.2

0.&80~ -2.40 -1.45 -0.24 -0.24 0.20 0.20 0.13 0.11 956.'> 1401.1 807.8 1115.6 00 O.~YI'l -7.1 q -1.1'l -'l.27 -o. 21 0.14 0.14 O.ll 0.11 1001.1 1402.3 8 72,6 11U.2 N J.7'l0::J -?,O::J -O.'l'l -0.12 -0.12 0.08 o.oa 0.10 0.10 1044.7 1399.5 937.2 1135.5

0.7100 -1 .84 -0.68 -0.'15 -0.35 0.02 0.02 0.08 0.08 1089.0 11'l3.5 999.2 1157.2 ').7?"'1 -I .bR -0.43 -n,34 -o. 34 -0.04 -0.04 0.07 0.07 l1J4.'l 13R5.8 1057,4 1186,0

n.nn~ -I .54 -O.l'l -0.79 -n.2CJ -0.10 -0.10 0.05 0.05 1187.2 1378.4 1113.2 1218.3 0.7401 -1 .42 11.04 -0.22 -0.22 -1).16 -::0.16 0.04 0.04 12?9.6 nn.o 1164.2 1248.8 "1,75'l'l -I .3l 0.77 - '1.14 -0.14 -0.22 ·-0.22 0.03 Q,Q] 1275.5 1370.1 1?11. 9 1273.3 0,7600 -1 .??. 0.4') -0.07 -0.07 -0.28 -o. 28. 0.03 0.03 1318.4 1369.2 12 56.8 1289.0

0.7700 -1.1; 0. 71 -0.03 -0.03 -0.33 -o. 33 0.02 0.02 1357.5 n6'l.2 1299.1 12'lS,8

'1.7B"'1 '1.611 '1.'11 -0.01 -0.01 -0.3'l -0.39 o.oo o.oo 1398,1 1368.3 1137.9 1?'l5,3 (),7'100 0.74 I •. 11 -0.02 -0.02 -0.44 -0.44 -0.01 -Cl.01 1435.9 13 7?. 1 1 ?'l1. 3

0.8000 I).R6 3,47 -0.04 -0.04 -0.49 -0.48 -0.02 -0.02 1469.0 14(\2.6 1287.2 1). R I [):"I 'l.'l7 3,68 -'l.06 -0. 'lb -0.53 -0.'53 -0.03 -0.03 1496.1 1427.3 12'35.7 n.R?l1~ 1.07 -2.57 -('1.06 -0.0!1 -0.57 -0.56 -0.04 -0.04 1'518.4 1447.0 l21H.II o,qlOO l • l /, -2.38 -0.04 -0.04 -0.61 -0.61 -0.05 -o.o5 1530.1 1462.2 12'l2.5

n.ll4C10 I .?5 -1.77 -0.01 -0.01 -0.65 -0,6S .-0.05 -0.05 146fl.5 1474.4 1295,2 Q,R5l'l -4,64 11,?8 0.04 0.04 -O.I'>'l -0.69 -0.06 -0 •. 06 13'3'1.6 1516.8 1176.4 :),q61J -4.52 Q,f.'l O.lt n.u -'0. 73 -0.74 -0.09 -0.09 \812.7 1604.4 1122.6 I) .q 711 -5.70 1. 32 0.22 0.22 -o.i8 -0.78 -0.12 -0.12 8674.4 I 170';.7 1 04!'. 0 n,qR11 -4.A3 ?.?0 0.35 0.35 -0.84 -0.84 -0.17 -0.17 82!18.6 28334.7 1836.6 973.5

o.A<JIJ -3. 7'; 1.29 2.15 0.51 -0.90 -0.90 -0.24 -0.24 16899.2 13266.3 1 'l77. 0 878.0 I' ,O()l:J -'2.69 4.17 2.35 0.68 -0.96 -0.96 -0.30 -o. 30 25169.2 11792.8 2097.0 838.'l

O.'ll D -1 .86 5.21 2.55 3.01 -1.01 -1:oo -0.35 -0.35 11769.1 6858.2 2C\26.7 829.7 0,'1?\::l -I. :'11 4.'H 2.74 3.72 -1.04 -1.04 -0.38 -0.38 10409.1 1766.1 2563.6 831.6

0.9301 -1.05 4.46 2.91 3.39 -1. 07, -1.06 -0.39 -0.39 5162.1t 1120.9 2633.6 829.0

0.~41) 0.15 4.18 1.24 -2.7'l -1.10 '-1.09 . -0.'38 -0.38 1800.0 1159.0 2434.7 1018.4 o. ~'>'\) 0.6R 1.97 4.42 -1.65 -1 •. 12 -1.11 -0.30 -0.30 13'l2 .5 1128.2 2072.3 1743.3

(1.11>3:l n,7"1 3.50 1.15 1. 1 5 -1..13 -1.13 -0.09 -0.09 1272.2 1016.8 7019.1 2511.9 n.CJ73n 0,59 7.17 1.70 1.70 -1~14 -1:.14 -o.o1 -0.01 1082.9 869.1t 5690.2 lt827. 3

O,'l8Vl o.3? 1. so 0.63 ·b •. t.>3 -1.15 -1-.15 -0.05 -0.05 813.4 18075.4 10958.2 0. q 9 31 n.o& 0.77 0~3Z 0.32 -1~16 -1 •. 16 -0.02 -0.02 524.9 3893.6 3148.3

l. "1'13"1 -0.61 -0.07 -0•33 -0.33 -1.16 -1.16 -o.o1 -0.01 246.6 Hl3.9 3549.5

1. :n 'In -1.'>9 -0.65 -a. 30 -0.30 -1.17 -1.17 0.05 o.oc; 13.7 !1988.3 15211.7

FIGURE 3-5. CONTINUED

:' 'I

• I .

Page 95: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

00 w

Tl MF s~c.

o.o;1o1 IJ.570r'l O.'ilM 0.~400

IJ.'i';O'l 0.56'>0 O.'i7C'~ O.">RNl 0.5'101 0.600(1 O.!,JI'" 0.670::1 0.1)'300 0.'>4f'l'l l'l.l>'iC'O 0.6 .. 00 C'.b71'l'l n.6RI'\0 o.-.no n.7rl'lo 0.71~1'\

o. 7?(10 ·c.nr;o 1'1.74"1'1 o.7<;0n o. 76·1~ '1.77""' 0.7R00 0.7900 IJ.~':'"''l o.s1r1 O.R?r') ').A)'l')

n.~4r.:J

(1.851 ') I'I.•H>l" (1.q7J(1 o.~AI:J

r.q911 o. ~') !f''l 0.'1 I!) n.'l?t') 0.'1'101 O.'l'o3) (1.953" 0.0610 O.'lnO 0.'111 3:1 (1.1'11;) 1. on 30 l. 'l13:l

RF 118.20 88.21 All.;>} 88.25 A8.27 118.30 811.'12 A~ .14 llA.36 88.'18 8!1.4'1 II" .4 1 All.4l AR.44 R'!.46 RA .4 7 $jq .4<J 8A.5"~

lll!.'i? 811.53 88.'55 F!A.'i6 1!8.<,7 R8.'59 !18.f>O AR.61 11!1 .6) 1HI. 'lb P8.3f> ~fl."\'i

IIR. "'1 R~. '31 !'lA .? 7 'H!.:>') 87.51 88.112 on. I I P.f, .6 •1 ll8 .I q

'17. 77 A7.'>" 1!7.">? B7.'i0 A7.f>l B7.1'i 86.95 "6.7"> Rt..44 Pt..?6 R6.'i? 116.47

' .. 'I

PROG l40-2 3' Fl~lo Y~W=200EG, V=60HPH, 8 't GR~TE SLOPE, 8 1 SfOE SLOPE 2.60 SF.C RUN OSN • SGS22

HUB VFLOC !TY LONGITIJO!NAL LF RR

8A.2'; 88.20 88.2tl 8A.i'2 All.}? 811.23 1111 ... 5 88.25 1111.18 118.27 I!P..4f1 118.2'1 118.43 88.32 !''1.45 88.34 88.4"1 98.36 AA,50 88.38 811.<;2 88.40 '!A. 54 88.41 88.56 88.43 l!!l.5fl 1!8.44 81!.59 !18.46 8A.60 8'!.62 81' .6) 81'.64 '!1!.65 (!A,66 FIR .67 RA.6'3 8f'.">f! 81!.1\9 A'!.t.'l Af!,t.'l 'IR.b'l 81\,6'1 AA.?2 RA.?O 8'7. 'i'i A7.9" 911.43 8'l.6;> A'1o?l A'l,?'i 1!11.34 !JR.I? qq.10 87.1')9 A7,16 r7,4fJ 87.25 A6,99 1'6 .85 81>.113 86.69 86.64 86.99 86.9<)

88.4R IJR.49 8A.51 88.52 8A.53 88.55 IIR.56 118.57 1!8.'59 81!.60 8!!.61 ll!l.6l 88.61 2A.64 88.64 AR,6~

8P..63 88.61 R8.'i4 811.51 88 .• 411 8>l.l1 P7.96 8 7. 24 %.'l'l 8 7 .oo 87.?3 87.56 BR.O? 8R.41'\ P7.·n 85.72 86.16 86.74 84.88 !J4,'12

P.ARALU:l TO GROUND PLANES 1FT ./SEC.I LATERAL

LR 88.25 88.29 81!.32 88.35 !!8.38 118.40 88.43 88.45 RR.4 7 R8,50 88.52 A8.54 '38.56 R8.58 AB. 5'1 8A.60 '18.61 '18.62 8R.b4 88.65 88.66 88.67 88.67 88.68 88.68 8A,69 88.69 1Hl.69 A8.6'l R8. 68 811.66 1!8 ,65 88.61 1!8.51 88.49 88. H '!A,07 117. 8 1•

87.59 '!7.<;7 87.38 87.66 1!7.93 R7 .68 87 ·'•0 116.35 8';.97 86.54 A7,?.0 A5. 33 85.00

RF -O.'i5 -1).68 -0.84 -0.99 -1.13 -1.25 -1.35. -1.43 -1.50 -1.57 -1.64 -1.70 -1.76 -1.81

.-t.A5 -1.'!8 -1.90 -1.91 -1.91 -1.91 -1.91 -l,<JO -1.89 -1.91! -1.86 -1.1!4 -1.~2 -1.1'0 -1.77 -1.74 -1.72 -1.69 -1.67 -1.65 -2.07 -1.13 -3.78 -3.24 -3.'57 -3.06 -;>.53 -2.04 -1.79 -1.47 -0.82

0.04 0.62 I • 15 1.66 1.93 ! .99

LF -0.63 -'l. 7'; -0.87 -0.99 -1.11 -1.?2 -1.32 -1.4!"1 -l. 48 -1.54 -1.59 -1.64 -1.69 -1.74 -1.78 -l.Al -1.84 -1.86 -1.1!7 -1.87 -l.A7 -1.86 -1.86 -l.A5 -1.84 -1.1!3 -1.81 -1.79 -1.78 -1. 74 -1. 7l -1.68 -1.7A ..;.7.77 -2.68 -2.28 -3.3:? -3.39 .-3. 52 -3.09 -2.73 -2.20 -I. 73 -1.21! -IJ.B 0.03 0.57 1.14 1.67 1.94 1.99

RR -0.82 -1.13 -1.36 -1.47 -1.46 -1.4? -1.35 -1~33 -1.:H -1.47 -1.6? -1.78 -1.90 -I .96 -I .95 -i.89 -1.81 -1.74 -1.71 -1. 7l -1.75 -1.110 -1.1!4 -1.85 -1.R2 -1.71 -1.6'1 -1.63 -1.'511 -1.55 -1.53 -1 .54 -1.53 -1.49 -1.67 -?.01 -2.19 -2.30 -2.61 -2.5i' -2.47 -2.40 -2.39 -2.86 -5.22 -3.10

1.41 0.37 0.15 0.02

-0.66

FIGURE 3-5. CONTINUED

LR -0.82 -1.13 -1.36 -1.47 -1.46 -1.42 -1.35 -1.33 -1.37 -1.47 -1.67 -1.78 -1.90 -1 .96 -1.95 -1.89 -1.81 -1.74 -1. 7l -1. 7L -1,75 -1.1!0 -1.84 -1.85 -1.82 -1.77 -1.69 -1.63 -1.58 -1.55 -1.53 -1.54 -1.53 -1.49 -1.67 -2.01 -2.19 -2.30 -2.53 -2.39 -2.46 -2.42 -2.44 -1.42 -3.51 -3.10

1.41 0.32 0.15 0.02

.-0 .66

VERT

RF -397.4 -12 -472.0 -1;u~.~

-541.1 -1369.8 -586.5 -1437.7 -602.7 -1493.9 -597.7 -1';25.4 -5117.7 -1530.0 -589.7 -1513.6 -614.tl -148'1.5 -664.9 -1472.3 -73~.') -1471.9 -~06.8 -1489.9 -R74.2 -1520.2 -9?1!.2 -1551.7 -968.0 -1573.0 -998.6 -1577.7 -1~?7.8 -1565.1 -1062.6 -1540.9 -1107.6 -1515.0 -1161.7 -1496.6 -12i'l.4 -14'10.4h. -1279.6 -14'16.2 ~ -1~32.'; -1509.4 ~ -1377.1 -1~21.6 ~ -1413.? -1526.9 ~ -1444.~ -1521.5 -1473.q -1507.1 -1546.7 -14A8.1 -1562.4 -147'1.4 -1576.2 -1<;15.6 -1594.4 -1494.4 -161'1.3 -1559.7 -16~0.0 -1334.0 -1677.1 -9160.1 ~ -2508.5 -21!34.(1 ~ -91'15.1 -143'15,11 ~ --,.8'19.111 -21?19.3 I

-11773.3 -21008.3 -20962.'1 -:?OfJ09.4 -19253.0 -12403.2 -17016.4 -4670.1 -9086.7 -3255.7 -5630.4 -2769.8 -2906.0 -1372.4 -2109.4 -208.7 -1107.0 o.o

-204.6 c.o O.'l 0.0 o.o o.o o.o o.o o.o -279.3

:Es

u.ll -51.?

-l90.L -136.7. -465.5 -55'1.0 -604.9 -60!!.9 -5<J0.2 -57?. 6 -576.6 -612.7 -6 79.5 -766.5 -859.1 -944.1

-1014.4 -106'1.2 -11!'1.6 -1154.4 -ll97. 9 -1745.4 -1793.1!

. - ··3. 3 1'1. 7 10.0 .3. 3 'l .4 7.2

•2· B '"'·4 n.5

__ .,!0.3 -l64'l.9 -1660.3 -1685.0 -1727.4 -1841.0 -1942.4 -2(174.1

.-2249.3 -2447.0

1

LR -98';.1) -9'57.1 -899.8 -843.7 -821.7 -A 52 • 6 -935 .• 5

-1052.8 -1175.1 -1272.7 -1324. R -13?5.8 -1286.'1 -1731.4 -1187.7 -1178.5 -12!l.9 -12R8.1 -1384.4 -1478.9 -1549.9 -1584 .• 1 -158!1.8' -1';49.7 -1508.0 -1474.1 -1461.7 -1476.1 -1513.5 -1567.1 -1607.8 -1638.3 -1646.5 -1631.2 -1594. 7 -1';30.6 -1436.1 -1323.1 -1204.6 -10'15.7 -1094.2 -1064.2 -1083.8 -3219.b

-11200.5 -2958.0 -1951.2: -209R.O -9315.1

-16331.8 -3036.5

Page 96: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PRnG 140-2 "' Fill• YAW•lllOEGt V=60MPH, 8 1 GRATE SLOPE, 8 1 S !OF SLOP

2.60 SEC RUN DSN • .SGS2l

l I MF C IR~t4FERENTIAL TIRE FOlftfS TIPF SIDE

<:.l: .• IP01JNO<;I (POUND

RF LF RR LR Rf lf LR f). ')ll')'l n.O "·" n.'l o.:> 114.6'> 119.99 99.17 ,o. ~700 o.o o.o o.o o.o 96.95 130.99 130.58 .0. 5100 o.o 0.1) o.o o.n 110.56 142. L3 1'5'1.60

1"· 54'l0 n.o o.n 0.1) n.n 1?3.to7 152.71 164.21 :n. so;oo o.o o.o o.o o.o 134.16 11'1<?. 73 166.04

:o.o;~oo o.o o.o o.o o.n 11'o1.45 111.55 129.77 166.12 ;n. 5700 n.o 0.'1 o.o ('),') 14'-.31) 179.49 13'5.91 166.17 :o. <;~10 n.o o.o o.o o.o 1'>0.07 186.1)8 136.75 16 7.40 'Cl. ~90() o.o c.o o.o o.o 154.04 1'~"· 69 137.20 171.74 :!l.h)IHJ o.o 0.') '1.1) n., 159.14 19'1~66 ll'oO.H 1110.55 !0.HOO o.o o.o o.o 0.:) 165.17 195.65 147.0'1 19'3.4\ n.h?OO r.o o.o o.o o.o 171.13 l'H .02 157.15 207.62 0.h31(1 o.o o.o 0.1) o.o 176. 14 198.05 169.70 l1'l.05 n.I.4:JO c.o o.o o.o o.o 179.69 198.90 182.43 2<?4.45 n.r.5:>0 o.o o.o o.o o.o 181.48 199.6R 192.19 223.39 n.r.'>00 ('.0 o.r o.o ').'l 181.63 2'11).44 196.65 217.'l9 .. 0 .... 1'10 r.o o.o o.o C',O 180.67 200.79 L9S,.J38. ?tt·.oo-

,o. r.·q oo· o.o 0.0· 0;.0· o·. rr 178.11 200.25 192.29 ?Oio.39

00 l'.h1r:O o.n o.n o.o "·" nc;.8J 196.59 189,n;> 199.52 ~ '~- 7"1')0 o.o o.l) o.o o.o 172.01 195.~8 188.36 197 •. ;19

'"· 71 '10 n.o o.o o.o o.o 166.98 192.42 1 QQ. 89 198.03 n.12~n n.o o.o o.o o.~ 161).89 188.45 195.53 21)0.98

1".7VVI. 0.(1 o.o o.o O.:l 153.85 184.24 199.69 203.76 :0.7410 0.(1 o.o o.o n.:> 145.58 179.62 202.22 20'>.20 '!).7~(10 (',0 o.o o.n n.o 136.25 174.7~ 201.31 2"'1.21 '1.76'1" 1).(1 "·n 0.0 o.o 126.60 169.«;1 196.75 197.56 0,77(10 o.o o.o o.o o.n 116. 8 2 163.81 11'19.23 189.40 o. 7R on !'.() o.o o.o o.o 151.43 1'>7.42 18 1 "" 180.97 ": 71.,., o.n '1.'1 o.o o.o 143.19 151.03 17 1 n.48 ·1 ~ B'lOO o.o n.o o.o o.o 136.02 200.65 16 167.59 'o. "1 o'l o.c o.n o.o 0.:) 129.21 195.46 16 161.80 'l.H7'10 f).!) a.n n.l) o.o 122.19 23.79 16 162.01 '1. AV10 o.o o.o o.o o.:J ll c;. 15 -10.85 16 160.;59 'l. P41'0 c.o o.o o.o Q.:l 1011.1'0 46.15 15 156.88 ". I'«; 1., '1.0 1),1) 'l.'l I),:J -43.41 '10.55 17 l76.4b ').81>10 o.n n.o o.n · o.o -0.57 74.29 70 210.02 G.A710 o.o o.n o.o o.o 1.19 13 3 .o 8 72 275.7'>

. (\. Rq 1 I' n.o 0.'1 0,'1 IJ,:J -5.34 153.17 7'31.80 229.61 O.A~10 o.o o.o o.o o.o 7.5.65 178.90 297.95 241.38 0.'ll))0 c.o o.o o.o o.o 19.47 115.54 281.42 215.79 0,C:l10 n.o o.n o.o o.n 7.91 171.53 266.65 259.52 '1.9?10 n.o o.o o.o o.o -7.31 137.17 746.59 251.14 0.9100 ('.0 o.o o.o o.o -15.77 109.26 226.6.8 255.76. (',0431'\ n.o o.o o.-o 'l.O -7.15 62.83 ?14. 84 -20.56 o. 0 5V1 o.o o.o o.o o.o -10.11 -39.09 318.69 11 c;. 62 n.91>10 o.o o.o o.o 'o.o .. -111.76 o.o 114.53 172.85 0.9710 n.o o.o o.o '1.!:1 -ll't.59 n.o -34-Q7 -107.32 ".9'll0 o.o o.o o.o o.o o.o • 0.0.,. -7 -21.59 0.0')30 o.o o.n o.o o.o o.o • o.o -1 -1.">(1 1. !"130 0.0 o.n o.<l o.:> o.o • o.n -9 -9.51 1. "111) o.'l 0.'1 o.o o.o o.o • -185.80 42 30.1o1

FIGURE 3-5. CONTINUED

.. '\ '

" • '

Page 97: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

.. 'J

\

PROG 140-2 3' FIll I YAW.,.200EG, Vz6'JMPH, .8 1 GRATE SLOPE, 8 1 SIDE SLOPE 2.()0 SEC RUN OSN = SGS7.?

11~1' A.C:CELERATlON COMPONENTS AT POINTS 1 AND 2 ON SPRUNG MASS <;FC. IG-UNITSI

AlCI 1\YI 1\Zl AX2 4V2

0.5100 0.047 -0.151 '), 486 0.060 -o. 109 02

0.5200 0.049 -0.138 0.~19 0.061 -0.096 0.201

"· 'i300 0,1'149 -'1.110 ').5'19 0.059 -1),')74 0.1 en 0.?400 0,040 -0.076 0.4<i7 0.055 -0.04R 0.1 89

0-!;'5500 1),04!1 '-').053 0.439 0.052 .,f),fl31 o.1 11

o,·s&oo 0.04'1 -0.038 1).423 '),1)')1 -1),1)19 '1,162

,; ?700 0,1')48 . -0.029 0.400 0,051 -0.012 0.150

.~'illOO o.04fl -o. o2 6 0.370 0.051 -0.009 (1,133

1',5901) 0.048 -0.1)24 1),333 fi.O'i1 -'),1)')7 ".112 n,6f)n(l 0.047 -0.021 0.290 0.050 -1),1)03 0.088

0.61fl0 0.046 - o. 0 I 3 0.243 0.049 0.004 0.063

0.&7.0() 0.04& -0.002 O.l97 0.047 '1.')13 t),'l39

n. 6 3"Hl 1'1,1'145 0.011 o. 157. 0.045 0.024 0.016

0.1,400 0.044 0.025 o. 110 0,043 0.034 -0.005

O.&SOO 0.044 1).035 0.073 0.041 0.042 -1).1)24

".1,6nn '),')44 1),1)42 1).039 0 .• 040 0.046 -0.040

('1.1,700 0.044 0.044 0.007 0.039 0.048 -'1.055

n.6~00 0.043 0.044 -a.o2o; 0.039 0,047 -0.071)

00 " .691'1') 1),1'143 1),')47. -'l. 0<;9 0.039 0.04'; -o.o~c;

Vl 1).700') 0.04? 0.041 -O.OCJ5 0.039 1),044 -0.100

r. 11 CIO 0.042 0,043 -0.133 0.038 0.043 -1'1.118

r..7200 o,n41 '),046 -1'1. 113 1'1,036 1'),1)44 -0.137

o. 7 300 0.040 0.051 -0.213 0,034 0.045 -0.1'i7

0,7400 (1,040 '),054 -0.251 0.033 0.(146 -(1. 171

f',7')N) 0,()39 0.056 -~.284 0.031 1),044 1).196

0.71>00 0.0~9 0.054 -0,313 0.0'10 0.04\ 0.217.

o. 7700 o.o3R 0.050 -~.337 0.030 0 ·'l35 r.7?4

(", 7RMl o.11J o. 037 ...:n.363 1),01')9 ').028 '1.235 n .79"'1 0,017 0.031 -0.379 o.ooq 0.021 0.241

n,qnoo -O.!J?' 0.034 -0.401 -0.030 0.015 0.248

o.Atro -(1,023 0.029 -0.413 ..;0,030 1).()')9 (l,755

n.RZ"" -n·"'t4 0.032 -0.430 -0,054 0.001 0.?6~

n.'I~OCl -0.104 O.O'iO -0.463 -0.118 0.01B 1).317

o. ~4(1) -0.2"10 0.104 -0.581 -n.310 O.'l76 -0.682

"',R'i!'l -0.!4'> -'l,47R -1.48'1 -O.IQO -0.311 -5,93?

0.~1>\0 -I. 11 7 0.1'•8 -1.138 -1.191 0.170 -2.731 r q11f' -1,'172 0,(144 -2.652 -1.304 ~.(116 -7. q 62

".RRI'l - 1.134 -o.S35 -~.403 -1.651 -0.166 -ll.6R1

; .. '1910 -I. 'itO 0,247 -7..974 -1.976 0.439 -5.2R4

:",'lO!O -'l. 569 0.443 -3.41Q -1.?21 '1,519 -4.642

".9111'1 -'1,138 ').')26 -1,9~5 -0.705 0.173 -?.'i87

0,9?\" 0 ·'"?" 0.344 -1. 504 -0.305 0.243 -0.45?

0.9300 0. '•I> 1 1'1.162 -1.0'>6 -o. 20 t 0,096 -1'1.?1)1

0.Q4~1'1 l'l,;>r9 -'l.125 -3-~42 -"!.P1 -0.072 49

O,QI)J('I o.nAR -0.427 '"6. 703 ·O,oGE -0.76R '16

0.9630 -O.ORI, 0.353 -8.45J •ill. LSD 0.257 77

0.973'1 -'l.417 O,'l41> -4.141 -1'),441 0.122 7")

0.9'130 -1.017 -0.124 -12.05'1 -0.810 0.025 'i3

O,qq)Q -0.!49 -0.161 -2.26<J -0.054 -0.050 O'i

1. n030 0,357 -'l.066 -2.1'H 0.413 -0.018 57 \. 0130 -0.465 -0.049 -9.452 -0.37'i -0.033 lt6

FICllRE 3-5. CONTINUED

Page 98: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Tl MF SFC.

o.•nnJ 0.5lOJ ~.?V)'l

0.?400 O.'i500 '1.56'1~

o.'i700 0.51!0'1 '1.'i9"0 '1.600() 0.'>100 o.~21~

0.!,300 0,!,400 1').6500 '1.66'l:l ').6 700 ('.I>ROn 0.'>9'10 ·o.7or.~

0.710() 1).720'1 o.HCI) 0,7400 'O. 7"iM ·o. 7600 n.77f'.'l 0.781)() o. 7'10'1 '(),'\(10!)

;l'l. R I 0) I),R200 o.q31" 1), A4'l0 O.!l5D "-~6[') '1.1171, o.~ilt'l

0.9'110 1),9'lJ') n.<lllJ 0.'1210. 'l.'13"1 0.'14 30 Oo'l5"!'l o.~6~'l 0.'1710 0.'1830 !'.9'1"1"1 l.JOVJ t.:)I3J

RF 77.'1 31.'1 36.4 40.6 44.1 46.5 48.2 49.5 5'l.8 52.6 54.7 56.7 58."i "i9.8 f.'l,r;

&0.6 60.4 ?9.9 59.1 ?7.9 56.3 54.4 52.1 49.5 46.4 43.2 4).0

-74.0 -R0,6 -86.6 -03.2

-JI'l0.4 -1llA.2 -ll'i.R -3?9.4

-1149.6 -4'37.0

-1467.4 -7611.0 -23Q'I. 5 -2174.? -11"!'!.5 -709.5 -3!,5.8 -7R9.7. -?'1().9 -67.1

o.o "·" (\,(1

o.c

PROG 140-7 3' FILL, YAW•20DEG, Vz60"PH, 8 ~·-GRATE SLOPE·. I!! 2.60 SEC RUN OSN • SGS22

X' OIRECTION LF RR 39.5 4 ':\. 1 46.8 50.? ?3.5 56.4 5'1.1 61.3 62.'1 64.0 64.8 65.3 65.8 66.2 66."i 66.'1 67.2' 67.1 66.7 65.'9 64.'1 63.7 62.5 61. () 5'1.5 <;7.'1 ' 56.1 54.0 51. q

-96.2 -'lA.O

-186.5 -420.6

-1128.6 -"122.4

-1773.4 -?605.7 -?<;72."1 -2449.7 -1488.8 -5:n. 3 -35A.l -3~7.0 -14B.R -40.3

().0 o.o o.o

"·" o.o -102.3

o.o o.o

12.7 29.7 38.6 43.8 45.8 46.1 46.;> 47.3 49.5 52.9 57.1 61.4 64.7 66.1 65.9 64.7 63.6 63.4 64.2 65.8 67.2 68.0 67.8 66.2 63.7 60.9 58.4 56.5 55.3 54.8 54.3 52.9 59.4 70.7 76.4 78.7

-49.3 -66.4 -8&.1

-112.0 -140.1 -177.4 -173.1

-1601.5 -1204.1 -355.7

-1621.0 -1575.5

-321.1

HORIZONTAL TIRE FORCES !POUNDS)

LR. 31.6 44.2 52.0 55.5 56.0 56.1 5&.0 56.4 57.9 60.8 65.2 69_.9 73.8

_,75.5 75.2 73.3 70.'1 .68. 7 67.1 66.4 66.6 67.6 68.6 69.0 68.4 66.5 63.7 60.'1 58.4 56.4 55.2 54.6 54.1 52.9

.59. 5 71.0 76.ft 78.0 82.3 73.7

-29.8 -31.3 -33.7

-409.7 -t)59.7

-309.8 -281.1 -270.1

-1164.9 -2044.7 -369. l

RF 30.9 33.3 37.6 lt4.2 52.3 59.9 65.8 69.1 69.7 68.3 65.4 61.9 58.2 54.7 51~4 47.7 43 .l 36.8 211.5 18.0 5.7

·-7 .4 -20.7 -34.1 -47.6 -60.6 -73.6 -50.7 -60.3 -69.0 -77.8 -87.6 -98.0

-1 o8·. 3 -40.5 -0.5

1.1 ~5.0

23.9 18.1

7.4 -6.8

-14.7 -6.7

-65.6 -160.2 -106.8

o.o o.o o.o o.o

FIGURE 3~5. CONTINUED

.. ,• /

yo

.LF -44.3 -38.9 -36.0 -34.4 -31.9 -27.4 -20.4 -12.2 -4.8

0.2 2.1 1.1

-1.8 -4.9 -6.9 -6.8 -4.9 -2.5 -0.9 -1.2 -3.8 ·-8. 3

-14.0 -2n." -75. "! -29.6 -33.3 -37.0 -40.'1 -0.5 -7.8 22.3

-10.1 43.2 84.'1 69.6

124.7 143.6 167.7 164.5 160.7 128.5 102;1. 58.6

-36.4 o.o o.o o.o o.o o.o

-173.3

06t•7

59.1 <;4.1 54.1 59.4 67.9 77.0 84.4 88.2 86.6 79.3 67.9 55.7 45.7 3'1.6 36.9 15.8 33.8 30.2 23.? n.o

O.A -11.1 ~t.8

) • '5 r.o ~ .o ).8 1.6 !.2 J. 1 I.? 3.8

51.6 23.1 -7.5

-48olt ·'1~.1

-141.4 -79.6 16),9 -32 .a _,_ ,_

LR -2<l.1

4.? 33.2 50.3 54. 8· 51.2 40.7 n.2 16.1 12.2 \7.9 31.3 47.0 '59.1 63.5 ?'1.6 48.5 33.0 16.3 2.4

-5.11 -7.3 -4.7

1. 0 4.3 3.2

-3.0 -12.8 -24.6 -36.2 -4'5.6 -51.0 -51.4 -'5'>. 1 -32.0

7.9 34.6 52.3 78.1 67.1t

108.5 104.1t 106.4 -19.3 1011.5 162.3

-100.8 -21.2 -1.3 -8.9 28.6

I

..

Page 99: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

'.., ,I

PRI')G 140-2 " F fll, YAW,20DEG, V:60MPH, 8 1 GRATE SLOPE, 8 1 SIDE SlOPf 2.60 SEC RUN DSN "' SGS22

T f "'F STHPING TOROUFS TERRAIN SLODES ~ SEC. TlPSI T7PSI ·.PIHG1 PHIG2 PHIGl PHIG4 H1 H4

LR.-IN. LA.- IN. DEGifi:S DEGREES DEGREES DEGREES INCHES I~ ~ES IlliCitE S 0.5100 o.o o.o -7.1 -7.1 . -7.1 -7.1 13.7 1 ~. ' ......... o 13.1 0.'>21)0 n.n 1'),1') -7.1 -7.1 -7.1 -7.1 13.6 12.8 14.0 13.1 0.5300 o.:J o.o -7.1 -7.1 -7.1 -7.1 13.5 l2 .8 14.0 13.2 0.540::1 o.o o.o -7.1 -7.1 -7.1 -7.1 13.5 12.7 13.8 13.2 1').5500 1'),1') n.o -7.1 -7.1 -7.1 -7.1 13.5 12.7 13.7 13.3 11.5600 1".0 o.o -1. t -7.1 -7.1 -7.1 . 13.5 12.6 13.6 13.7

.0.5700 o.o o.o -7.1 -7.1 -1. 1 -;7.1 13.5 12.6 13.5 13.2 0.5AC'O n,n 1'),0 -7.1 -7.1 -7; 1 -7.1 13.5 12.6 13.5 13.1 0.5'l00 -600.0 o.o -7.1 -7.1 -7.1 -7.1 13.5 12.7 13.5 12.9 O.!>:JOO -nO:J.C o.o -7.1 -7.1 -7. 1 -7.1 13.4 12.7 13.5 12.9 0.610:J -6('1'1.0 0.1) -7.1 -7.1 -7.1 -7.1 13.4 12.7 13.5 12.~

0.6:?00 -6nn.o o.o -7. l '-7.1 -7 .t -7.1 13.3 12.7 n·.5 12.'! 0.6300 -600.0 o.o -7.1 -7.1 -7.1 -7.1 13.2 12.6 13'. 5 12.8 o.~4o:l -&or.'l r o.n -7.1 -7.1 -7.1 -7.1 13.2 12 .• 6 13.4 12.9 (1,651)0 -h'IO,'l O.'l -7.1 -7.1 -7.1 -7.1 13.1 17.6 1"1.3 12.9 o.66n -600.0 o.o -7. 1 -7.1 -7.1 -7.1 13.1 12.6 13.2 12.9

1(1.6700 -61)1).0 n.o -7.1 -7.1 -7.1 -7.1 13.1 12.6 13.2 12.9 0.!'>~00 -600.0 o.o -7.1 -7.1 . -7 .t -7.1 13.1 l2.6 13.1 12.8 o.o900 -hC'O.O o.o. -7.1 -7.1 -7.1 -7.1 13.0 12.6 13.0 12.8

(X) 0.701'10 -nor.r o.o -7.1 -7.1 -7.1 -7.1 13.0 12.7 13 .') 12.7· '-I

'). 710'l -6nt'' .o (1,') -7.1 -7.1 -7.1 -7.1 12.9 12.7 n.o \2.6 1).720') -600.0 o.o -7.1 -7.1 -7.1 -7.1 12.8 12.6 12.9 12.6 'l.7lf'1 -60('.(1 o.o -7.1 -7.1 -7.1 -7.1 12.8 12.6 12.9 17.6 'l.14n:J -h""·, O.'l -7.1 -7.1 -7.1 -7.1 12.8 12.6 l2. 8 12.6 1),7';00 -t.1lO .n o.o -7.1 -7.1 -7.1 . -7.1 12.7 12.6 1:?.8 12.6 0.7600 -600.!" O.'l -7.1 -7.1 -7.1 -7.1 12.7 12.6 17.7 17.7 n.1101 -6"'' .I) 11,'1 -7.1 -7.1 -7.1 -7.1 17.7 12.6 12.7 12.7 o. 780(') -600.0 o.o -7.1 -7.1 -7.1 -7.1 12.6 12.6 12.7 12.7 ('1.7900 -601).0 1".0 -7.1 -7.1 -7.1 -7.1 12.6 12.7 P.6 12-" 0.'1'1(1'1 -6'111,11 n .I) -7.1 .;..7.1 -7.1 -7.1 12.6 12.6 12.6 12.6 '1.'!100 o.o 0.1'1 -7.1 -7.1 -7.1 -7.1 12.5 12.6 12.6 12.'; 1).'!700 o.n o.:~ -7.1 n.o -7.1 -7.1 12.5 12.6 tz.& 1:?.5 ').'l~n1 " ,11 11,1) -7.1 o.o -7.1 -7.1 12.5 11.0 17.6 12.5 0.~41)') o.o o.o -7.1 o.o -7'.1 -7.1 12.5 10.5 12.5 12.5 O.A5!1 (\.0 o.o 1).0 o.n -7.1 -7.1 11.7 11.4 P.5 12.6 O,R6l~ -6'111,'1 'l.'l 0.1 '),() -7.1 -7.1 10.5 10.0 17.5 12.6 0.'17)) -600.1'1 o.o n.o o.o -7.1 -7.1 10.9 9,4 12.5 12.7 'l.8AI:J -600.0 0.0 o.o o.o -7.1 -7.1 16.2 9.4 12.4 12.8 O.fl91:l -611·1.') a.n "1.11 O.'l -7.1 -7.1 9,4 9.5 12.3 12.9 0.9()1) -6on.o 0.0 o.o o.o -7.1 -7.1 9.5 10.2 12.2 tl.J

1.'H l::l ').) o.o o.n o.o -7.1 -7.1 9.7 10.9 12.1 n.o 1.1211 o.n 'l,l) 0.1 'l.O -7.1 -7.1 10.5 11.0 12 .o 13.1)

'. y 30) 0.1) 1).0 o.n o.o -7.1 -7 0 l 10.8 11.5 11.8 13.0 n.943:J o.o O.:J o.o o.o -7.1 o.o u. 3 12.7 .5 11.0 0 ,95~1) t" .. C o.o 11,') 0.1) -7.1 o.o 12.! 13.8 .z 10.'3

0.'163!'1 0.1') o.o o.o o.o o.o o.o 13.0 14.0 • 1 ll.l 0.97'~0 o.:J o.o o.o o.o o.o o.o 13.8 14.0 .4 12.2 0.9831) o .• , o.o o.o :J.O o.n o.o 14.0 14.0 .4 12.1 0.993') 0.11 O.:J o.o o.o o.o o.o 14.0 14.0 • 1 1().4

1.0030 P.O o.o o.o o.o o.o o.o 14.0 14.0 .1 9.8

I .o 1 3l o.o o.n o.o o.o ::l.O o.o 14.0 13.7 ,5 u.z

Page 100: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PROG 140-2 3' F(llo Yllli•20DEG, V:60MPH, 8 l GRATE SlOPE, 8 1 SIDE Sll 2.60 SEC RUN.DSN ,. SGS22

5 ). X

T I MF WHEEL POS I Tl ONS llNCHESI CONTACT

<;fC. I* I NOH: ATE S LOSS OF CONTACT! U~ FACE

Pf WHEEL LF WHEEL RR WHEEl LR WHEEL II N. ) P7'Z PT.L 'II' Y' X' v• X' Y' x• v• n PT4 FRC,hlT

;o. 5tO:l 3051.Pl R70.7a 3030,94 ~13.44 7.939.85.* 910.21* 29l9,'H 854.32 .o o.o 0.~20') 1061.74 866.61 3040.86 809.75 2949.76* 906,52* 2929.23 850.62 ·" o.o l

0.5~1~ V'11 .65 86?,93 3(150.78 8'16,')6 2959.67 90?.83 29.,9.14 646.90 '•"' o.o Cq~ O.S4J) 10~ I. So !l5<1.;(>3 3060.70 '302.36 2969.5'1 899. 14 2949.06 843.17 voO o.o ur y 0.5SJ"l 1:)9t .47 855. 52 3070.62 798,65 2979.49 895.44 2958,97 839.44 o.o o.o o.o o.o AUTO r. 5o~~ 31~1.3'1 R51 .R I 3')1)(1. 54 794.94 2989.41') 891.73 2968.89 835.70 o.o o.o 0." o.n 1"),5 7"11) 31 II .29 84R .·OR 3090.47 H1.21 2999.30 8!l8.00 2978.81 831.97 o.o o.o o.o o.o 'RE"A.R

O.'iROJ 11 'l .?1 844.16 3100.40 787.48 3009.20 884.25 2988.73 8 28.23 o.o o.o o.o 0.(' P74 P7'3 Q,'i'l')~ 3131.12 (140.63 3110.32 7fl3.75 3019.ll 8AO. 49 2998.64 824.49 o.o o.o n.o o.o

'1),6·1nf') 1141.04 836.90 H20.25 780.01 3029.01 876.72 3008.57 1'?0.74 o.o o.o- o.o o.o 0.1>100 1lc;0.9n A3."l. Ill 3D0.19 776.28 3~38.92 872.94 3)18.49 1116.9!1 o.o o.o o.o o.o 0.1>201 "ll60.8A 8?9.45 )\40.12 772.54 3048.82 R69.17 3028.41 813.21 o.o 0.0 '),t'l I) .• "

'). ~'1"11 117'l.R'l R25.72 31<;0,06 768.111 3058.73 fl65.41 3038.33 809.43 o.o o.o o.o o.o 0.~4')') 118'1.7? 8:> 1. 99 3160,00 765.07 3068.64 861.64 3048.26 805.65 o.o o.o o.o o.o ~.~<;DO 3190.65 819.?5 H69.94 761.34 3078.56 857.88 3058.19 801.88 0.0 o.o O,'l '),'>

1~bflf'i<"\ 'l?"'l.<;7 814.52 "li..79. 8? 757.60 3088.47 !l54 .13 3068.12 798.11 o.o 0~0 o.o o.o :J ·"' 70) >:>10.50 81 c. 78 3189.113 753,86 3098.39 850. 3& 3078.05 794.34 o.o . o.o o.o o.o

co o.oqo:J 3??0.43 !lr7.1'l5 119'1.78 750.12 3108.31 846.60 3087.99 790.58 1"),0 o.o l'),'l l'),n

co 'l,S}11 3?30.37 A"3.17 3209.71 746.3 A '3118.23 842.84 3097.93 786.1!2 o.o o.o o.o o.o ().7000 174:1.30 7'19.60 3?19.68 742.65 3128.15 839,08 3107.87 783.07 o.g o.o o.o o.o ').71')') 3250.?4 795. S7 3229.63 738.92 3139.0'1 835.32 3117.81 779.31 o. o.o !',l'l o.o o. J?')'l 176'1.1 A 7'1 2.15 3739.59 H5.19 3148.1'J1 831.56 3127.75 775.56 o.o o.o o.o o.o (),13'11") V70,1'1 7R8.43 3;>49. 54 731.46 3157.94 8?7. 81 3137.70 711.80 o.o o.o o.o o.o o. 74')3 17'30.07 784.71 32'\9.50 727.74 3167.'18 824.07 3147.65 76R.04 o.o o.o o.o o.o ~.7'\'1, 3?90 .!'? 7A'l.99 3?69.4& 7?4.01 3177.8? 820.32 3157.60 764.29 o.o o.o o.o o.o 0,760) '\?99 .'17 717.?1 3?79.42 720.29 3187.71> 816.59 3167.55 760.54 o.o o.o o.o o.o (). 7701 3109.93 773.56 3289.38 716.57 3197.71 812.85 3177.50 756.80 0 n o.o "•0 ().78"'1 l'119,P'l 769 .. ~4 3:?'19.35 712.84 3207.&6 809.12 3187,4& 753.06 0 o.o o.o CJ. 7901 3129.84 766.13 3109.31 709.12 3217.61 805.39 3197.42 749.33 0 o.o o.o ). 0!)0') 3'139,8!' 762.41 3319.27 705.40 3227.56 801 .• 66 3207.37 745.60 0 o.o o.o 0.~ll'l:J '1349.75 751!. 7'l 3329.23 701.69 3237.51 797,94 3217.33 741. SA 0, o.o o.o o. ~ 21)1 3359.71 7'>4.<'19 3119.19 &97.97 3247.47 794.22 3227.29 738.16 o. o.o o.o (),830') 3169.67 751.2R 334'l.15 694.24 3?57.42 790.51 3237.24 734.44 0 o.o o.o 0,'14r'J"' 317CJ.6? 747.58 1159.10 690.40 3267.37 786.80 3247,19 730.13 0 o.o o.o 0.'151:'1 3190.56 743.4'1 3370.05 686.01 3?78. ~1 782.72 3258.1' 726.64 0 o.o o.o 0. R6!) 3400.49 n'1.71 3379.96 6112.27 328 8. 24 778.99 ~2&!3.05 722.89 o._ o.o o.o O.A71) 3410.40 735.77 1389.88 678.46 3?98.14 775.25 3277.94 719.13 o.o 3.1 o.o o.o O.!JRJ') 3470.?7 731."5 31C9o 72 674.61 3CI08.0l 771 • 51 3287.79 715.35 1.2 3 • .? o.o o.o 0.89\0 3430.08 728.16 3409.49 670.80 3317.!15 767.78 3297.60 711.56 2.0 2.5 o.o !),('

(\.'l:l\1 3439,A3 774.36 3419.20 61'>6.99 3327.6& 76lt .(18 3307.40 707.77 ;>.0 l.':l o.o I'J.O

0 ~q ll:J 1449·.5<; 7?0.59 3428.85 663.23 3337.46 760.40 3317.22 704.01 1.2 o.o o.o o.o '1.9?1) '1459.2:? 7!6.84 3438.50 659.47 3347.28 756.74 3327.09 700.27 o.o o.o o.o o.o "-~301 3467.94 713.46 3447,19 65&.10 3356.16 753.4& 3336.01 &96.94 o.o o.o o.o o.o :1.943'1 ~4$0.54 70R.59 1459.67 651.26 3369.06 74R. 71 3348.96 692.15 o.o o.o 0,9 o.o 0. ~ s; 31 '1490.19 704.86 3469.24 &47.57 3379.04 745.06 3358.86 688,54 o.o o.o 2.2 o •. o 0.96'1) 3499.79 701.18 3478.84* 643.90* 3389.05 741,45 3368.49 685.09 (),!' " " .,,9 1),0

'1,97~1) 3509,'18 697.56 34R8.4.8* 640.2&* 3398.70 737.91 3378,02 &81.59 0.( .o o.o 0.9'1'30 3518.99* 693.96* 3498.16* 636. 6':i* 3408.15 734.34 3387.65 677.98 0.( ,o; o.o fl,q<nn 352A,62* 690 •. 41* H07. 88• 633.09* 3417.98 730.70 3397.56 671t.33 0 ,( .7 ':l.O ","1"131 3'131'!. "~"* 6R&,69* 3517.66* 629.56* 3427.56 727 .ll 3407.28 670.71 0.( .o o.o .. :ID 1'i4~.01• 68'1.40* 35?7.49 626.04 343t..84 723.5 7 Hl6.57 667.17 0.( .o o.o

FIGURE 3...-5. CONTINUED

:' 'I

• ~ . ~

Page 101: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

3.2 Highway Curb and Surrounding Terrain·

This example problem investigates the dynamic behavior of a 1963

Ford Galaxie (4-door sedan) as it leaves the highway (at a speed of 60 mph

at 15 degrees) and strikes an 8" curb as shown in Figure 3-6.

The necessary primary input data (described in Chapter II, Section

2.1) for this example problem is shown in Figure 3-6.

The primary input data as printed out by TTl's version of HVOSM is

shown in Figures 3-8 and 3-9. Figure 3-8 shows the card images of the

necessary primary input data while Figures 3-9 shows the same data in a

more convenient form. The printed output for the time period between

0.0 seconds and 0.1 seconds is given in Figure 3-10.

Assuming no output plotting is required, then, the necessary plotting

data (described in Chapter II, Section 2.2) for this example is:

Column Number Information

1-4 None

The necessary termination data is:

Column Number Information

1-4 None

89

Page 102: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

x'

A

I

51.61

60MPH {1056 MISEC) CONSTANT VELOC

1963 FORD AT TIME =0

A

l_ ..______-+-------. \......--~-~-v·

. f-- 87" _ ___,_.

100011

SECTION A-A

FIGURE 3-6 ROADWAY CURB EXAMPLE PROBLEM

90

Page 103: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

r .. ~"' 'J ~lu lo 2.5 0 ~233 - i -<>" 16 "' M ......

IH!D ,.s p E C/ ~L ~E D I AN ST 'I D y - D I sr R I c..T 2. B v 1,. 6 0 M/' iH l1 Aru r. L E = I 5 I> E. G. 'l PSN = M2 E6

,...... . ·: --,_.. () • it> I • 0 o. ~05 0 . 0 0 • op z ,_.. - f

' I ~-··•

~- i4-14-oz 1!). S!i 07 C· 8 'l 5"""2.. 38 6. 4 62 t)D ,I)

r J_O o.lrl il' . I~ 13.o 3 ·Is 30 • 0

~-

/OS1·io o.ls" 14.o :J.Cf 14-Is. o f'- !

! ~ t-0'.'0' <'·0 15 ·0 ~. Jc ~. 0 ~

~~--lc Is t , 6 I I 0 I-S ~ . ~ - t I :

1--~· >o i 2 .lc kJ.o I'-' t

~· It. o It: .I~ ~ :I 0 .~ 3f;3" l-"1 ·0 ..... ·---r 'so It:. o ~- . p 21~ Ill !:z., o•o o.o .o 6· Q_ 0 • 8 .(!;. 00"2-

lo (), 0 ~~I ·4 /0 12. .o I o j,o - -. -o ·15" ~ -z. ,1'1 -~ .o -7 ,4--?..I .[~ -{, 7.5 -7 b . 0 -{, b•8

' (> _:_p.. ! - [e.o b •'2..5'

;3~o .ro1 , z.o -.3 ' 0 3 00 .{) ').,O

iJ lo1-~_:o:W. : '2.,,0 1- -f.O I 3 0 ~ .o '2..0

~ 1 ,.,~

IN CH c.u /f8 ,0 I 15 [lOt r 2.6 I <j 7r4-

71) .o ().0

$4 4() o. 0 36 ()() p. 0

(). ~ t!J{ r~ l5"k? o.o

o. ()()/ 32. 15" ll ~.o

I~ .~ a.o

/0 ~ .{. t'(J ls .o -8 .a -2_ ~ .2.. o.o

-s-.o r=tG l3 -!1 4 .s

~7

. •'

0 -<>

o.o

- I 92

~. D

~ -T~ '"' '

I . o I

,f1 6t:J c • 0

I

!

I

l

0 ., I

I

i I I j I 3 I ! [I; I

I

i I 6

1 ~

i •-+-i i_+.-I

! I ,_'I f- ..... : f- ..... J~

l I : ,I-

~-~ I

~ ! :

' I

! I I i I .r:. ' '

; : t I I

; I'. r I i I ,

'PR/ IJJA'IIV I NP'f.IT fll4~~ h]± /-"0~ E.'t.A~'PIL~ 31' l21 ! I l I

·----- • • ---- - ·- ~ ---'"-...<.

Page 104: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

1.0 N

T~n ~pr~r~L •rnyl~ s•y~y- "!~TRTrf 2, q !~CH ruan 'I = l,f) '-W'-1, f.•:r.( r : 15 !'Fr.,, flSr-f ~ M?>f,01r,, MhY 7~.\'174

10.~19 0.608 0.'145 3A6.400 1>000.000 30000.000 16000,000 -1'17..000 <; 4. ~ \ 7 64 ·'·~1 61.000 60.000

10. ''" 1?.08/l -?..nr.o l!•. () 00

1~t.'JOr. 0.500 3.000 3.500 55.000 0.001 26(>000. 000 l 'l?. (11)'} 0.500 4.000 3,0()() 50.000 O.f'Ol 6!900.'l00 46.500

1 ")C'! ~. 10C •.ooo 10.000 A.~76 2900.000 t.Tno 0.300 1.000 ~-" o.o f),() o.o n.o o.o O.f) o.o

-14. '• :!I) 0.0 4.000 -5.983 -16.500 3.138 -~.:)10 ~.000 1.000

.,,.. !~I II .I= I .! l -1.551 -?..':i50 -1.~00 -1.300 -0.'1~0 -o .• 550 -0.300 -0.300 -0.400 -0.550 -0.800

4'P.O:l!' 60fl,OOO 0.400 5000.000 4 '•000.000 o.oo l o. 250.

~V~(~ !.VV~(tJ,ZV~(fJ,!~l,4

0. t • .c; l ,7 1<?,c;on 12.133 ~1.':'17 -3'1.500 12.1>8

-11 r.4·n 19.000 a.11s -117,4'l~ -39.000 8.138

">0!),010 2.noo -3.000 300.000 ~ ).).000 2.00() -4.000 300.000

fOjDtJf ll':t" Py CALSVA

o.o 1.0 r.oo5 o.n 0.002 70.0 o.o ~.4'· 17 .'). "~07 O,f\'?~2 ~~ft.4 1)200.0 34400.0 obOOO. 101.0 o.so ,,0 3.5 :10.0 0,001 'lllSOO. 1')5.1 1.5 4.0 3.9 ItS. (l 0.001 3?500.

o.o ::1.0 l s. 0 o.o o.o o.o o.o ~7. 0 ~I ,f, l 10'>6. z.o 7. () o.o X!;P(!,ll,V':I'(!,JI,l':~'(l.JI.l=1o 2 J~1, l

o.o c.n o.o 8.333 o.o 5'10.010 o.o o.o 8.)11 o.o

~.,1 o.q n.oo? 100.) - 101.4 102.0 101,0 103.& 105,0 -1.~~ -?~0 -6.0 -7.4 -8.0 -~t.s -67.5 -76.0 -66.8 -23.?. o.o o.o ~.o o.25

2.00 2.1'1

_,_oo -4.00

300.0 ~0'1.0

z.oo ?.no

5.00 4,')0

o.a1t;

2.000 2.000

o.o -19~.0

'•6. ~ o.o

1.500

3.000 4.000

1.0 ~oo.o

0.070

1 ~

5 , 8 9

14

15

16

FIGURE 3-8. PRIMARY INPUT DATA REPRODUCED AS CARD IMAGE

... ..,..,\}•';'.•<)

o.o-:o ~~CJS').OO~

2 3 4

,,· 7

[()

11 12

17 23

26 27

Page 105: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

\0 w

,l

yyry SDfCTftl ~FnJh~ STUDY- DISTRICT 2, 8 lNCH CUDB V • 60 ~PH, A~GLE • 15 OfG., OSN = ~ZF60!5, ~AY 2~ 0 1974

l'llf~Tlhl 'laTA OIMFNSIONS SIJSPENS !0"1

u~ !!.440? Lfi.-S!'C .**?.liN " ~4.5170 I"!C"iFS 1(0: " 100.000 LP ./111!. l t '"PT) 1\C u IC r~.~~)7

,, " M.4Ao0 ,, 1(0 " 105.000 l" ./!"!. tt.•JPa~o,o

"t1q: 0.~~52 .. T" 61.0000 CF 1 10.000 l.P.S. ~Mt:;r,r.-:- '"S yq z 60.0000 r~· 45.000 l !'IS. o·"~ GA Q. lt-000 T t~': YF S

! ~ 5?00.0 Lf'.-SFC.""2-l'l Zl' . 10.1380 ,, Ef'S llO"lF= 0.001 I"'./SFC. TS 41',.'5::i0 !'!CHC:S IV ~44~0.0 '. l7 'f-.00~.0 I X! =-!0?.000 ,, !~ '>0::!.00 '. G . 1~f.400 111/SFr ... •z

p;q~-') o.o ncr,~FFS

T>'C T\ 0• :l.O DST!') 15.000 ""F1 = a.o <>SJc!Q= 0.')

o.o o.o

I(T lO<>R.OOO L<l II"' Slr;-...\T ,.00{) t!I"'R"'lfll IJ.OO'l •.,1 :4400.00(') \1 q • .:' Th

\2 •?900.00~ 1~ ! • 7d0 ~ '• =~'!00.00~ ~"} J,d'lO .., ... ~~r l.l)r)')

c~ 0 ~c. nc TJRO FO!(TJn~.

v~. f")'.H'• 1"1 !''!n U't;(') OAT!:

lR !?.Of\'10 EPS II. O~!P.= o.not P•./S<"r.. PQ 3?.>01.0 LP.-l~/~~11 PHn = -2.0000 ,, CF 3.500 LB-Sf'Ul'l ?.I= 98500.0 L'l-!"f/llt'J PW I'•· 0000 co 3.900 Lfl-S°C IT 'I I(Q<; 0.070 ~'lLL ST<:ER C1EFO:.

AKFC = 300.000 lP /IN AI<'!C 300 .ooo L'l/l'l tl{o:rp = 7.000 lR/!N3 AK~~P ?.00'J I_ '11'"13 n ... rr;rc: -3.000 l ~I n..,rr.or. -4.000 !I'Z MrF 300.000 U'/!N Al<l>f " 300.000 l fli!N A'<~""P = 7.000 UI/!N~ AK~!'P 2.090 L'l/!"13 0'1ECFE= 5.000 IN !1'1EGPO: 4.500 l'l

IN!Tt~l CGNQJT!ONS ~CCE~ER""~TFP. PnS t TliJ'IS

xco• 87.000INCiiFS p'Q o.o OEG/SFC uo :J0%.000 I "!/SEC Xl " -34.41lO l"'C"!:S YCO' 51.1>10 ()() o.o ,, vo o.o Yl o.a .. EO' -24.13~ oo <i.o ,, wo = o.o Zl 4.000 ')J;LT~1= o.o 01 PHI" l/OT= o.o DPJFlll/OT= o.o t I ~2 ' -5.9~3 flftTf.?= o.o 0(P$1Fl/flT= o.o P~D/SC 0(0!'1.21/QT= o.o Y2 -1!1.500 f!r,l TAl• o.o O!f'Fl3l/f'T= o.o Z2 3. na

OPIVFR CONTROL TARIFS

TOR L fi/F T

o.o

T SFC

PS IF OFG

T<RRh!N T~~LF ARGUMFNTS

SOIL OA..,P!Nr;= 0.001 SPl snn ro1rr. = o.z5o SST!F<: 4000. LE'/1"1 N0.X TE~PS. 2 "l().Y T~''"$,; 2 ~e. v~~ AMU = o H'~lf~

TOF LR/FT

TOR LR/O:T

T SH

START T!MF ENIJ Tl'"f

PSIF OFG

!"lCP Fno lNTEGPATlCN PP!"lT lNTEPVH

.TH 0 Th ~~X ITO SWITCH!= UVW'II'!(STO!>l Pf)OM!>I! ~TnP l l•!nrRfl "'111>1· PI· !Nl(GI>ATION rnr MP 1

TQO: LR/"T

o.o

TOR lfi/FT

SFC 1.000 0.00'50 ,, 0.002 ,,

1o.ooo nFr, o.o o.o

T SFC

p TOF l Jl/F T

1 1•0.~0 CUQR,•l CUQ~.=-i STEEP DFG.QF O:REE~O~l I 1•0 V~P.A'l~"'c;-"')UI T.,•l P 1 1'1r.r-I(•JTTA,u7FIY..~"l

O. 1=1.0 SUPPLY l~lTIAl PPSIT!n~J !=0.0 CAR PfSTS 011 T~O

~l. ?u~: ').0 1/ ( l. P.-..,PH)

FIGURE 3~9. PRIMARY INPUT DATA REPRODUCED IN MORE CONVENIENT FORM

Page 106: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

.. Xl(\fTY: C.'l XI(L= 1).-:J

)(

{ ! t~. '

:>nprr "'I. ';J 1 Or"f\iT 2 P!.511 Or"!'!f 1-\11.401 :)r!••"" !t-117.4°3

y z ( l~.l ( t•J. ,

~q.o;oo 12.1'8 -39.50'1 12.118

>9.or.o ~ .13R -3.,.000 f'.UP.

FIGURE 3-9. CONTINUED

'I

' .

Page 107: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

vr t• Y~?'

~'! t r)<LT: 04!f' t 0 ><tr' .. v

I "S l ros!.

~~"VT ~H<~L CA~R~~

V$ S~s~<~Sir~ DfFLECT!nN

!:'~LT!~

T vr H< S

-'5.000

f'H!C flCGQFfS

-3.'550

..

THO S 0 ~C!Al ~FOlAN STUDY- D!ST~!~T Zt 8 INCH CURB V = 60 ~PH~ AN~LF = 15 nE~.. DSN = ~2F60l5, MAY 28,1q74

SPP.U"'G "lASS-~APP.lEP !"PACT DHA !1~R!>IfR

UlO. oon I"'CI-'" S (YP.' l 0 ~

= 101.400 DEL VI\' -n.~~o 7RT'

O.fl02'1 Sfrt !"'TEG.!•!CQ. l Z~'l' -21.500 I')!='G~!:~S V<f'!(LE -67.~no .. XVF

o.~Clo XVR YV

'•q2.0~)~l L'l-5°("'*2-l"' 7VT 6 :>a. N'l) tn-1'~ lV".

OT MFNS trJNS 0.0 I''CHfS o.o n.o o.o ..

OI"F.NS!O'IS 0.0 INCHES o.o o.o (l.Q o.o

KV SfT C"~S MUB ff'S !LON FPS!LON f'Fl Tl'l

V= B=

o.o L'>I!N**3 o.o I')<FL.PH!O o.o FN<Pr,Y 9AT!I"J o.o o.o IN/SEC o.o Lf> o.o scr:

I INT~r.. PiCq l

~f.R~IfQ

SIGV~~ 0 SIG~f!P. 1 SIGI'A~ 7. S!GVAO 3 S !G"'~~ 4 SIG~A~ 5 <;yr;·~!.'\ , s :r, ... t.:J 7 S [ r;v! ~ ~ s rr,·~t ~ ')

eve c . .-. os• 0.40') q !';1"1 I ~'"!1 0 (=1 o!G!D PAPP!FP, FINITE =? INFIIII!H =3 DoFOR"l.BARRlfP,FIIIIlTE =4 't IN<I!II!TF

V~RT. D!".l •• l ,, .. )

srr;"6~to opq =~oon.0·30 1.1>-l'J/Q~D

~<><;!L"! PSI 0.075 0 ~"/SFC T~~tL.eqr~T(PTI= 1. ~00 I ~fH< S

FIGURE 3-9.

STPUCTI.Jf! Al

Pn!II!T 1 r>nt ~IT Z Pniii!T 3

CONTINUED

•• l HAPDPI'I~TS PELATIVE TO C. C

X

o.o o.o o.o

y

I!~CH~Sl o.o o.o o.o

l STIF~

lf' I o.o o.o o.o

L'Jt.D DEFL~r;r. O.'J

: o.o 1).1)

B o.o o.o o.o c.o O.rJ o.o o.o o.o

Page 108: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

'J:I 0\

...... CtJRn !MD~f.T f)~T~ ·~···

V"HICLF-CtiRA FRICTION COFF>l(IFNT (At-1tJC l 2 0 .BOIY

F I Xf'l SPACE Y-C OnR[) I !'Ill TF S ( INC'IfS l

Yt:lP YC2P YOP Y(4P YCSP

100.,00 101.400 10?.000 103.000 103.600

F!XFO SPMF Z-COI'PDT•IATFS I INCHFSJ

ZC 2P ZC3P ZC4P ZC5P

-0.~'50 -2.000 -6.000 -7.400

FIXED SPACE PH!-CC10RO!NATES (DE'GPEESI

PH!l1 PHI( 2

-?!.~no -67.~()(')

W'<!'rt O~"l'IS-~~~lhl ~l>~!"'r. FnD T~l'l f owYJ~c~:~!~l o.o INcH~s

qw~J 0 t=N~l ~.OOJ ' 1

~NTI-P!Tr~ ''PLES AD~~ ·1.Q

n.o 4"Cl'"'l:; a. o

ri.o

o. ?~0

F~P (IQ[U~FfP~NT!tl

o.o o.o o. 0 0.() o.o o.n o. o n.o

T IQE o.o o.o o.o o.o

F(1R(f

PH!C3

-76.000

. o.o o.o o.o o.o

o.o o.o o.o o.o

FIGURE 3-9.

PHIC4

-M •• ROO

o.o o.o o.o o.n

CONTINUED

PHTC5

-23.200

o.o o.o o.o o.n

:'

YC6P

105.000

ZC6P

-8.000

PHIC6

o.o o.o o.o o.o

o .• o

. ,

o.o o.o o.o o.o

o. 0

o.o

:

Page 109: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

. '

P~r;~

T>-~!'l S:>I'"C tAl ~EO! AN STII('Y - nt<;rRtO 2. 8 Hlf">-1 Cll 0. B v = ()() VI PH, ~ ~IGI c: = IS n!:r; •• I)$N = ~2~F.Ol5, IIIAV 2Rtl'l74

TJ"C ST!'~~T'lG Tf)QQUE 1!\IPliTS SPRUNG MASS cr. HCft.. ANGULAP VfLOC F')Dio/AR[)

s~:~"" • !'-!PUT POIJ!\1!)-Cf r T 1;-UIII!TS ry~;r,. /S':C. SDt;CI)

OFG. I'RC'•lT P.~!R LONG. l ~ T • VfRT. Pf'lll PITCH yt·~ FT./Sec. 1 • .) :J.O o.o o.o -O.OO'l o.o o.ooo o.o n."! o.c ~~.0:1

Q,<)Ot;Q o.o o.o o.o -().000 o.ooo 0.10'1 -o.oo -0.01 n.r;IJ BP.')"J

0.1'1('1() -0.0') o.o o.o -n.ooo o. ()01) 0. t:'\4 o.oo -o •. Jo i"J .. C'i. ?q.co J.('('OJ -0.00 o.o o.o o.ono o.ooo 0.159 0.01) -0.'10 0.00 ~ o:i .•. ')·':'\

o.,lto -o. oo o.o o.o o.ooo o.ooo o.te1 o.oo -0.'10 o.oo ~8.!:;0

0.)!30 -o.o~ o.o o.o 0.000 -o.ooo 0.205 o.oo .-0.01 o.oo ?~.oo

0.01~') -t). :J>) o.o o.o -0.001 -0.01)0 0.226 o.oo -0.01 o.oo P.~. 00 (). •1t 1·1 -0.(10 o.n o.o -0.010 0. Ol't o.743 -o.oo -IJ.IJl o.oo 8~.00

o. ll <>0 -('.l)('l 0.0 o.o -0.7~~ -0.~1'l 0.2<;3 O. ';II -0.1)6 -0.72 117.?'1 0.0?10 -0.01 o.o o.o -0.5'l1 -2.588 0.252 ?.55 -0.14 -1.14 81.9 .. o. )?'1\l -a.o~ o.o o.o -2.76'• -10.'i57 0.188 10.01 -0.45 -4.97 ~7 .. P.~

0.1'~0 -n.1~ o.o o.o -3.1")1 .. 0 -11.4fl7 0,077 20.55 -0.94 -10.37 87.'>'1 l1. 'l?.., ') -n. 33 o.n o.o -1. I>~ -!3.''1"17 -0. OM 33.39 -\.4~ -17.27 P.7.49 \l •. l")QO -r). 'i7 o.c o.~ -'Z.Ii'+1 -7.'161 -0.2131 45.!1 -1.75 -24.')') •7.31 J·. ,) 1l 0 -o. q3 o.o o.o -t.r) 7H -2.6~8 -0.483 4"'·'•4 -1.7~ -25.17 ll7. t1 o. 111 .') -1.09 o.o o.o -0.729 -!."1'-9 -0.69?. 41>.6R -1.48 -21>.31 87.10 0.11'i;'l -1. ,. O,() o.o .:o.1n -o. P.'•7 -2. ?l <; 4 1+.76 -O.b7 -27•14 $17.0~

\() ·:l.iP1lJ -1.61 o.o o.o -0.174 -0.'•36 -6.3011 35.01) 2.34 -77.40 ~7.1)7

"' (l,)V>r! -1.87 o.o n.n -0.3?() -1.039 -17 .I Cl4 10.A3 10.09 -77.86 ~7 .% o). }4\ I) -2.13 o.o o.o -0.1'16 -0.623 -9.222 -21.38 20.54 -U.45 e7.o4 0.;'141 ') -7.~9 o.o o.o -0.165 -0.~1!1 -6.~95 -36.61 ?'i,4~ -2.8. 71 n.o3 0,)45) -2.65 o.o o.o -0.116 -0.3'l8 -2.966 -45. 7(, 78. 1·9 -28.% ~7.03

O.J47:) -?.'l1 o.o o.o -0.075 -O.?Fl2 -0.6"18 -4'1,4fl· 29.75 ~7.03

l). t'~t • .JQ _,_17 o.o o.o -0.04<l -0.774 0,3<l6 -'i'l.17. 31).02 P.7.0~

(),1'it0 -'.4~ o.o o.o -0.0?6 -0.21A 0.5RR -4'l,67 29.96 ~1.03

a.')",., -3.1-~ o.o o.o -0.004 -0.?17 0.459 -49.0<) 29.~7 ~7.1)4

o. )~5') -~.Q4 o.o o.o 0.1)11> -0.7\6 o. 2'l'i -411.1>"1 ?9.86 87.04 0.1~71 -4.?0 o.o o.o o.07A -0.717 o.o<Jq -'+R. c; 1 29.'14 P7,05 o. J5'1•1 -4.45 o.o o.o 0.010 -o. no -O.Oflb -48.7~ 30.14 ~7.0?

').1~10 -4.71 o.o 1).0 0,0?1 -0.714 -0.211 -4'l.1~ ~0.41 87.06 O.;'lf Vl -4."5 o.o o.o o. 001 -o.?~A -0.301 -4"1.1>(, 1'1. 74 P.1.01

,). 16~') -~.22 o.o O.Q -o.o1a -0.~21 -0.474 -so.~A 31.12 e7.o7 o. )'>7!) -5.4 7 (1.0 o.o -0.0?6 -Q,?,'l3 -o.qn -S!. 5't 31.67 -21l.90 87.07 o. )~QQ -". 72 O.(l o.o -O.Oit'i -o.4n -I. 739 -')?,.P.l 3?..SA -28.'l7 97,1)'1

•).1'10 -<;.07 n.o o.o -'1. ()1,3 -0.40~ -?.7~4 -57.'11 34.1)5 -2'1.02 87.08 ) • ')7> '} -f-..7? o.o o.o -O.OA?, -0.441 -3 ,'>5.5 -61.81 3f>.07 -?'l.06 Jl7,Qq

J.·J7'iO -1>.47 o.o 0.'1 -0.0~7 -0.12'l -1.~31 -70.14 31!.20 -?.9.09 1!7.07 1. )77(1 -~.7? '1.0 o.n -0.05R -o. 3P -1.590 -n.4T 39.15 -29.04 IH.Ofl

:),')7~(1 -~.'17 o.n o.o -O.O'i4 -O.~A3 -1. 1'l3 -1f>.?? 40.10 -2'1.96 R7,0A

o. 1no -7.22 o.o o.o -0.04'1 -0.?50 -o. 7'\0 -711.21 41.1)1) -2R.B6 87,(1~

'1. )q '\(') -1.47 o.o 0,() -0.044 -0.771 -0.353 -7"1,44 4l.'t4 -ZR. n '17.0"

~-"Q~~ -7.D o.o o.o -0.041 -n.>17 -0.055 -AO. 0'• 41.?6 -;>R.,;o ~7.0'1

.). )r. 7~ -1.1.)7 1),() ~). 0 -0.'1'•0 -0.?0? o. 111 -A0.70 to[. 74 ~ 1. 0~

"'· 109 C\ -•.?! o.n n.o -0.0'•1 -0.107 o.>~ ... -R0.09 41.72 R1.0'l

'). ~" \1 -"·"" o.o n.o -0.04? -0. I "1(, o.ZRS -79, A& 41.66 87./)R

J.[\() 1 ,, -•.71 o.o o.n -0.0'•'' -O.?tn ().107 -7<l.'l'> 41 .5P. 'l7.!)q

'), Y'l'\') -'l.<JS (),0 0.0 -1).1)5? -0.7?7 o. 327 -79.16 41.48 117 .oq

J 0 1C 7 ~ -o.?o 'l.n n.fl -n .OS'J -0. 7'15 o. 345 -7~.1>~ 41. 3" 87.!)0

O.()c:q') -9.45 o.o (),f) -O.O>.>. -o. •·11 0.167 -711.1'\ 4! • 2'\ 67,0~

,.,I "1 n _q·"" o.o o.'l -n. n n -0·"''·'• 0,171 -77.50 41 .'lq R7,i)q

1.1) 10 -9.94 o.o o. ,, -O.OYQ -o. v12 0. l'l I -11,. A I. 4f),'J3 ~,. 07

FIGURE 3-10. PROGRAM OUTPUT

Page 110: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

~~GE 2 TH'l SPff! Ill Mrf"IIHJ <;TIJ'IV - 'I!~ TR I f. T 7. R l~f.H CIJ'lfl

v ~ 60 'I PH, ANGLF ~ 15 OEO •• !)$N = '-'2~6015, MAY 28,1974

"!--t'C' SPOIJNf. M~sc; r.r; TFOO AT SCP ';C:':.. P"ISIT!:'~ ll~CHFSl ()PffNTaTJ<")'l !nFGPFFSl VflflC IT Y (FT !SfC .I

x• v• l' PH! THrH PSI L~T. VEP T. i>F li> n •. 'J n.nn 5!.61 -2 4. 14 o.o o.o 15.00 o.o o.o fl.'l 0 O .. :J c.-.1~::! n.to '52.98 -z:,. •. 14 o.oo -0.01) 15.00 o.oo O.l)) 0.02 r) f).'}

~. ~":-7') <)4 .14 53.'5? -24.14 -O.fJO -0.00 1".00 0.00 f}. 02 •l. 'l? ~ (J •. ')

c. -y- <?') 91--.1~ 54.07 -?. 1t.14 o.oo -I).Qf) !'5.00 o.oo 0. "''

o .. r)?. :J.'' o.o o.o "'·,..,! t 1 QO.,~? ll4oA2 -2'•· 14 o.oo -0.0'1 1'>.00 o.oo O.Ott -.}. 01 0.0 0.() •J .. . ')

J. ·:! 3'1 1C0.26 55. I~ -24. I'• o.oo -O.Oll 15.00 o.oo 0.0'5 -0.02 o.o o.o G.f) ro:. ~. r::- ('I !f)'.'' 5'i.71 -"'•· n o.oo -o.oo 15.00 o.oo 0.06 -0.06 O.:J o.o [J • .J

"'• I; 1 "1 ') 104.34 156.?!, -?4.!1 o.oo -o.oo 15.00 o.oo o.os -0.42 o.o o.o o.o "· 'l q 1 l·1~.3R Sf>.90 -?'•· 13 o.oo -0.01) 1'>.00 -0.03 o. 10 -3.05 o.o o.o 0.0 C."~!'1 10?.4? ~7.3'i -24. 13 o.oo -o.oo 15.00 -0.13 o.u -4.26 o.o o.o o.o ". '~? 1..., 111).46 'i7.A9 -~4.12 0.1')1 -0.()0 14.99 -O.~Ii 0.13 -<;. ?6 o.o o.o n.o "'· ') ~ :;il !!2'.50 5f1.4l -24.~2 0.04 -o.oo l'•. 98 -1.\8 o.l3 -?.67 1).0 0.1) 0 .. 0 f\ .f'., 70 1 14. 'i4 r;q.,Q? -?l+.lJ ~.10 -o.no 1'• •. "5 -1.'l5 0.13 -6.03 0.0 o.o (1.')

~. ~~ J) 116. 'i q "9 •. -.n - ?4. ~~ ().! R -0.01 l't. <) 1 -7.1,'1 o.12 -().49 0.1) o.o o.o ('. :" ~, ') l 1 ~.A.., ~<'l.?Q -?·~. 11 0.?7 -O.Ol ll•• R6 -7.~0 0.0'? -7.07. o.o o.o o.o ,.. • "'~ 1: ') t ,:.J. (.6 1-l'. '" -24. 11 I).Jii -0.01 I'•. ~ l -7.q1 O.l)'i -7.50 o.a o.o 0.1)

·). :"~ -"0 12?.70 60.Al -24. 11 0.46 -0.0? 14.75 -?.89 -o.oz -7.88 o.o o.o o.o ·}. c· ~. r:J 1 24. 7'• 61. ?8 -2'•· 11 o. ~'t -0.01 14.70 -2.~3 -0.33 -7.90 o.o o.o o.o

~ ). '.1~1 12'>.7R 61.74 -?4.13 0.59 -0.00 14. 6'• -2.79 -1.11 -8.00 o.o o.o o.o CXl J. )'• \ '1 12~.~2 6?. 0 0 -?4.17 0.57 0.03 14.'i9 -2.78 -?.?.0 -R.OO o.o o.o o.o

•). "t. H' 130.~5 62.67 -24.23 0.51 O.OA 14.'i3 -2.73 -2.64 -8.1)1) o.o o.o 0.1) ; .... 't c; l ~~~-~Q 61. !3 -?4. 1'). 0.43 ().13 14 ·'· 7 -2.66 -z.qr, -R.OO o.o o·.o o.o r"'. ~-:.. 7('1 1 3~. ·':>~ 6'1.'i9 -2'+. :·l 0.33 0.19 1'•. 42 -?.'i9 -7.A9 -A.OO f).l) o.o o.o :.s~.,,., 1 3t-. 07 64.05 -24.41, 0.23 o.zs 14."16 -2.51 -2.80 ..:R.OO o.o o.o o.o (' .. ·"'"'!. J I ln .0 I t-"•·''1 -:'''· "' o.n 0.11 1'•. 10 -7.4'• -7.M -q,oo o.o o.o o.o c.}~ 1 J 141 • 04 1>4.97 -24.61 0.04 0.?7 14.24 -2.?6 -2.56 -~.00 o.o o.o o.o "· 'c; :::;(\ l4'1.0fl n'i.4~ -74.(.~ -0.0(> 0.43 14.1') -7..28 -2. 1+5 -R.OO o.o o.o o.o r.. :::... ., "' !->'>.12 1>~. 3R -~4. 76 -0.16 0. 1 .. 9 1'•• I 3 -?.?.() -7.~5 -fl.()!) o. o.o o.o 0.~~0') l47.lf> 66.14 -?',. A1 -0. ?0 o.s~ 14.07 -7.12 -2.26 -~.00 o. o.o o.o C.:)~ 1.1 140. 2l1 61>. Pt1 -24.<Jl -0.16 0.61 14.01 -?..05 -?..18 -R.OO o. o.o o.o "· '):.,"l'"') 1 'i1 .24 67.26 -?4.9A -0.41> 0.67 11.'l5 -1 .'17 -2.11 -8.01) o. o.o o.o ~- f'\fo c;::l 15~.2A 67.72 -25.0'i -0.56 o. 73 1"\.'lO -1.'10 -2.04 -8.0!) o. o.o o.o ~. 'J 7.) I~··· 31 6R. I 1 -2'1. 1 ~ -().(,(, 0. 1<) I'· ~'• -1 .A3 -1.99 -~.10 o. o.o 1).0 1.,\'~Cn !~7.15 63.1>1 -? 'i. ?1 -o. 11 0.86 ! 3. 7A -1.77 -1.96 -8.0() o. o.o o.o "'.?, 1 ·J l'i~. V> 60.Jq -?'). ,?0 -0. PA 0.'1? 13. 72 -1.70 -7.0? -8.0() o. o.o o.o ,, • •,1 ~ ':) ll'>l. 41 6tl. r:;rt -:?c-). 17 -1.00 O.'l'l 11.M, -1. f... It -2.13 -A.OO o. o.o o.o n. 17c, ..... 1 6 ~. '• 7 6Q.'I<J -25.'t6 -1.14 !.07 13.1>0 -!.57 -2.24 -8.00 o. o·.o o.o ". ")'"!'?"' lt '·51' 70.'t'> -2'i.'i5 -1. 2!l 1. I'• 13. ?4 -1.50 -2.24 -A.OO o.o o.o o.o (I. tl .... :: ) 1~7.'i'i 71. •10 -?'i.6'i -1.'•1 1 •. '? 13.4!1 -1.47. -7.?! -fi.OO o.o o.o o.o r, • ).' l (l 1 &9. 59 71.3'i -?5.7'i -1.5'1 1.10 !3. 42 -.1. 35 -2.15 -8.00 a·.o o.o 0.1)

) . ) ''\"• 1 71.6' 71. •10 -2'>. 9'l -1. 75 1.18 1 '1. 31> -I. 71 -?.07 -8.')0 0.') -o.oo o.o c. ~ l ;("\ 17">.1->7 7? .?'i -?'i."'i -l.'Jl 1.46 11.10 -1. l <) -1. <)(, -q.oo o.o -0.01 o.o

·"· ~..: . .) l !"1. 70 1 .~. r o -?c,. O!t -.~. ()7 l.r,tt 11. 2'• -I .11 -1.1!~ -A.rJO n.o -0.07. ().()

~ ..... {''"'') 1 77. ~4 73. 1 ~ -21). [t, -z.n 1.~? lJ. [8 -1.01 -l.l>'l -~.IJO o.o -0.01 o.o "• r ~, :1 17~.7" 7l.61 -?6.?4 -?.10 ! . 7! l ~. l? -O.'ll> -1.~5 -~.oo o.o o.oo o.o (. ·'; ') :. ") 1, l. 0 2 74. ')f, -2f). 3'• -2.'iS 1. 7'1 13.06 -0. >lA -I .41 -~.')f) o.o -0.02 1).0

('. ~' } ., ) ~~.t.~~h J!t. 1l\l - 1 f,. '•'• --:-. 7? 1. H 1 11.()0 -O.Al -I .?1 -R.O') o.o -0.01 o.o 1. ~ ~ 7J 15?.90 1'· .'I~ -?&.54 -?.88 1. ·~5 12. '14 -o. 74 -1.12 -~.00 o.o ()4 o.o ~. ) 1;) l ~7. C)!. 7S.40 -;>r). A1 -1.01 2.01 I?,R8 -0.67 -0.97 -~.00 o.o 04 o.o n . l 11 1 I,) .. }.')~ 7".. ~<; -?''• B -1.1<) 2 .l! 17.~? -O.f>O -O.R1 -~.1)~ o.o 04 O.'J ·' .. ! .' ~ .... ! '~ ... • 1 -~ 7f,. 1() -,'(J., !!,' - ). I C. ?.tn 1 ? .. Tf.. -o. -;,, -o.t.R -n.o'l 1).() ~4 ().')

FIGURE 3-10. CONTINUED

;" . \

i ;

Page 111: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

, :

oar;c 3 THI) <;Of:C l f,L "l"O!AN STI)r')Y - !')TSTD!(T ?, li !NI'H CUP'l v = 60 "'rtH, J\Nt;tF. . 15 nr=r.., OSN . "7r6015. 'lAY 7'1. 1<i7'•

T1 '1f- UNSPPIJNG "lASSES WH"'"'L ~FC, O!"FL!'CT tn'I!S !! N. ANf' flEG.I vnoc r r t!'s C!"',/SEC. • Oor..IS!;C.J (~e:r;.)

DELTA 1 DELTA z DELH 3 PH! P. D!DElll/!'lT D!I'ElZl/OT 0(0El3l/OT r)(Oii[P)/!')T Pf-ll l oo.q 2 O.:J o.o o.o o.o o.o n.o o.o o,o o.o -0.55 o.s~

o.:>or;:> 0.04 o. 04 0,0:? o.oo 16. c;s 16.<;5 'l.6') o.niJ -0.54 :'1.54

;o.::1o1n o.oq o.on (1.05 o.oo n . .,, n.41 D.?'l -':).01) -0.52 ~.52

O.C'C 0 0 0.13 o. l3 o.os -o.oo ?ll.Ol ?7.71 tf,. 73 -0.10 -0.51 ,.Sl O.Oll 0 o.t'l o. 1'l 0.11 -1').00 37.72 12.>7 1 C). q 1 -0.00 -o.t,.q 0. t.,q

0.0130 0.26 o. 26 0.16 -o.oo 36.54 36.34 22.80 -o.oo -0.47 0.47 (), H5·~ o. 1!, 0,14 0.21 -o.oo 39.51 39.<;6 7';,'\Q -o."oo -0.45 0-'•5 0.0170 0.4? 0.42 0.?6 -o.oo 40,A7 41.98 :?7.63 o.oo -0.43 0.43 O,<)toJ 0.50 0.50 0.32 -o.oo 35.19 41.87 29. •;7 -0.5'• -0.41 0.41 0.1210 o.o;~ 0.<;<1 O.'lA -o.'on 71.60 45.63 ~1.19 -?..40 -0.39 Q.)8 n.:P~O 0,'\5 0.6'l 0.44 -0.01 -31t.f.7 '•'l· 27 '12.71 -<1.42 -o.'3q 0.36 o. 12'\0 o. 3 s 0,7Q 0.51 .. -0.04 -1'·7.50 53.49 34.17. -1'l.74 -0.44 ').34 0,,)'70 -(').06 O,'lO (),'59 -0.0'1 -'101 .17· <;~.()~ 3'5.?? -3!. 1 A -0.5~ 0.32

o. -12"1 -o. q4 1.0~ 0.6'5 -0.17 -47?.63 61. ~8 35.R7 -4:?.04 -O.'l'l Q.30 o. )~ 17 -1.'l'i 1. 14 o. 72 -0.?'5 -1>34,17 '5A,66 3>.96 _,,;.oq -1.7~ O.?P. 'J.1~~:J -~-~<; 1.76 0.79 -0.14 -7'5S.30 54.97 35.45 -43.15 -2.03 o.za 0.1.''5" -4."7 1,36 0.8& -0. 1t? -7'l1.'l7 50.32 34.47 -41. 21 -1.46 o.n

1.0 J.)170 -!>.42 1.46 O.Q1 -0.'50 -675.03 45.6'1 33.47 -11.85 -3.55 o. 27 1.0 o. :Jl<l:) -7.46 t.<;o; 1.00 -n. 54 -331>.'H 43.44 32.'HI -ll.51! -3.55 0.27

0,1410 -7.64 1. 63 1. 06 -0.53 124.26 42.56 3?.1>5 22.26 -3.'55 n. 21 (1. )41 (') -7.16 !. 71 1.13 -0.47 141. 2 7 38.15 31.01 '"·~>a -3.55 o.~?

0,)4'5) -b,H 1,7<) 1.1'1 -o.3q 4AA.08 32.76 28 •. PO 45.21 -3.55 0.2P-

o. 14 7 0 -'i.V; 1.~'i !.74 -0.7'1 511.AA 71>. 70 21>. 04 48,49 -3.55 0.2~

0. :l'·"O -4.32 1.~9 l.?'l -0.19 507.59 20.510 zz .n 4fl.fl2 0.29 ().1~11 -1.3A 1.<13 1.33 -O.O'l 479.4'5 14.86 1'l.60 4A.12 0.29 Cl. vq::l -?.64 1.'1~ 1.17 0.01) 11)2. v Q,8P. 16.311 41>.98 0.29 o. 1'~"0 -~.19 l,<H 1.40 O.O<J 145.31 5.67 13.1Z 45.91) 0.30 :J. )'57() -7..06 t. '18 1.4?. 0,1o -15.<>0 2.24 9,A5 45.?9 0,31) 0.1'<')·1 -2.?4 1. 9.~ 1.44 0.28 -15'5.<;<; -O.'ll! 6.59 44.93 0.30

0. lSl :1 -2 ~ 66 1. '17 1. 45 0.37 -2'>2.'\1 -1.90 3.37 44.~3 o.3o O • .J'>'\11 -3.21 1. 'l7 1.45 0,45 -z<n.59 -7.78 o.n 44,9?. o.vl

O.J'-"0 -3.81) 1,9A 1. 45 0,5<; -?'l~.O<; -3.07 -2.130 4'5.25 o. 30 J. )I' 1 !') -'··'~ 1.96 1.44 0.1>4 -71R,Oi\ -2.<;3 -5.1>7 46.07 0.30 o. )'>'l') -4.90 1.95 1.47. o.n -242.47 -1.25 -~. 32 4~.04 _,_44 I),?Q

:1.171!1 -5. 3~ 1."5 I. 41 O.R3 -1 7?. ~5 o.R1 -10.70 51.79 -3.55 o.zq o. '''0 -1).1:,(') l.Of, I. 3CJ O.CJ4 -111,03 3." -17.77 57.15 _,.55 IJ.2'l '}. 1750 -<;.1>4 1.97 1.15 1. f){) 18.toA 6.43 -14.61 63.~-7 ->.55 0.31)

o. ·177) -S.S'i 1. 9e 1.32 1.1'1 75.?'\ <),44 -16.38 66.1'l -3.55 0.30 O,J7q0 -<;.J<; 2.()1 1.2'l 1.37. 123.3'l 12.R7 -17.'l3 6!1.'l'l -3.55 n.31J

0 .'J ~ 1, -<;.'1., ?.04 1.25 1.46 160.35 16.50 -19.76 7o.oo -3.55 0.30

O.P31J -4.71 ?.07 1. ?I 1. f.l 1 qf,, 14 20. l3 -?.0.15 72.1> -3.74 0.30 '). ,., ') -'·· 12 ;>.12 1. 1 7 1.7<; ?.0?. 79 74.00 -71.21 1"!.11 -?.84 o. 31 o. ,)t~ "-) -J.Qf) ?. I 7 \. ll 1.90 113. 10 n. ~7 -:n. P3 77..~f> _., -" 7 o.H c.;:>oJ -3.H z.n I, 0~ 2.04 ?l'l. f-7 30.'l1 -??.11 72.R1 O.H

IJ.i'Q 1'1 -~. 1)'1. ?.?O I. 04 :"'.10 .., ,?4. "\~ ;:\'•. 'r.; -77. I<> 1'l.74 0.32 '1. ('\ ~,., -?.SA ?.~~. 1.00 ?.H ::>77. >J 7 -.7.49 -21.'l4 1?.. '57 0.12

J.,)t::iO - . .., .1.? ?.44 0.'15 7,4R ?7C). '•" 4().1,'1 -21.41, 12. 2'• 0.H

Q • ')C 7) -1.6'> 2.53 n. CJ! 2.A? ??A, '11 43,q' -20.7" 7\,77 '),14

o. ~QCl·) -1. ?0 2.1>7 0.97 :>. 77 ? ?I·. 'tl 4o.'l2 -1'1.7'1 71. ?.1 !).15

0.1010 -0.7'i 2.71 O.fll ?.Q1 zn.rn lo'l.'lS -tn.5q 71',6? 0. J.C, ;_"\ .. t \) \,, -o. J."' ?.~., o. 19 1.0'1 :' 1 ''• Hl •)?.f}Q -\1. 17 (,'1.'1'; I) • ~ 7

FIGURE 3-10. CONTINUED

Page 112: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

p~~~ 4

l'lf) S"EC !Ill MF[\!fiN STUDY - nt$'"R!CT 7., 8 !N(H CUP~ v ~ 60 ~PH, A'-IGI.E z 15 O~G., OSN = '121:6015. 'lAY ?0.1'774

TT"~ CA'-'nE 0 . ~TCf'P A 'I GUS ~FLfiT! VE TO t;P.nu~·n Pt /'.~!~S s cs sc:. DY! q; (ncr;. l PSI' tor. G.!

Q,:O Lc pp LR Qc l f PR LR RF LO 0.(,

_ _,_,., 0.'5'l o,o o.o o.o o.o o.o 0.0 80~.6 .o 7'• 7. ()

0.01~) -0.54 o. ,,, o.on o.oo o.o o.o o.oo o.oo H1.4 .7 6f.1. 7 0. ci·17Cl -n.c;:" O.'l."' -o. on -n.oo -o.on -o.no o.oo 0,1)0 71',6.5 .? 6 1o5. 2

0. 0~ 0 J -0.51 0.51 o.oo o.on -o.oo -o.oo -o.oo -o.oo 7't2. 3 74 3. 5 62~. 6 .. 62~.6

0.011) -(1.49 0 .t,..q o.oo o.oo -n.oo -o.on -0.00 -0.00 719.7 721.1 6!?.4 617.4

O.JilO -0.4 7 0.4 7 o.oo o.oo -o.oo -o.oo -o.oo -o.oo (>')').4 700.4 5!)6.6 59~.(;.

o.nt o;o -0.45 0.45 o.nn 0.01) -o.oo -n.no -o.no -o.on 1',~1.3 691.5 5"1-5 5•1.5

o. 11 ra :!".31 \!.41 o. nn o.no -o.no -o.oo -o.no -o.oo 1'68. 6 664.8 St, 7. t '367.t

l'.C'l 01 ~-~-~~ 0. 1•1 n.n'l o.oo -o.oo -o.oo -o.oo -0.00 r,P.0.9 1,1,<),4 554 ·'• Sc;?.7

0. 1Z I 'l 6". 7q 0.3'1 o. (11) o.oo -o.oo -0.01 -0.01) -o.oo 72 3.4 1.33.5 544.3 53'>.9

f'.tl''' 6". 7J 1.1~ o. on o.oo -rJ.rJ1 -o.ns -o.oo -o.oo 983.1 608.R 541.9 5!2.6

0.0 ~~·~ ~2.3t> Q,Jq o.oo o.oo -0.1)1, -0.16 -o.oo _ -o.oo 1'o02.7 576.4 548.5 4~3.0

().('P7'1 6?.47 1.42 o. ()t o.o1 -0.14 -0.33 -0.01 -0.01 70()0.4 534.5 558.5 449.7

o. ·1"(')0 ?~ .... 4 0,4A 0.01 o. 01 -o.t.q -o. s 1 -0.01 -0.01 ?700 .9 467.? sr,9.A 41~.4

0.031) ~1.6'1 0.~6 0.02 0.02 -0.74 -O.R3 -0. 0?. -o.o2 3410.7 .452. 1 5·6~. 2 404.2

o.-Jno 2('1. "~ 0.64 n.oJ 0,01 -1.01 -1.09 -0.02 -0.07 414~.1 411.6 %7.6 ~9~.~

o.:P"'l 1'l,55 0.73 0.01 0.03 ·-1.77 -1.15 -0.03 -0.03 ?1?4.6 375,0 5<,5.6 3?.8.7

1-' o.J17o -3.01 0.81 0,04 CJ,04 -1.1. 1 -1.61 -0.03 -0.03 290611.4 319.4 551,7 396,7 0 0.()~-:lQ _.,..Qt\ 0.~6 o. ()4 0.0'• -I .!17 · -1. A7 -0.04 -0.04 57797.3 30A.3 517.1 4?5.6 0 o.n+!J -2.'19 (1.04 0.05 n.oc; -2.13 -?. 13 -0.04 -0.04 321!3.7 295.A 456.'~ 46'1. 7

o. v.~,., -l.r4 0,7'l 0.05 (),05 -2 .1'1 -2.10 -o.rn -o.rn 7?A76.7 313.6 433.4 t.95.4

a •. ..,~ :;n -3.13 0.70 'l.o<; 0.05 -2.1,5 -2.6'l -0.01 -0.03 11722.9 345.3 414.7 515.8

o.·.1:.. 70 -" • .?' 0.1>1 o.o<; 0.05 -2,90 -2.'l1 -0.02 -0.07 4 0_16 .9 3A5. 3 40'1.4 53!.2

o. c:,o" -2.63 o. 51 'J. 04 0.04 -3.16 -3. 17 -0.01 -0.01 SA!>.4 427.9 410.5 544.1 ('. ,, =) 1 (l _, .'14 0.41 0.04 0.04 -3.42 -3.43 -0.01 -IJ.01 -97.1 46A. 3 414.8 556.8

(', )~1J -1 • <;!I o. 11 0.04 0.04 -3.68 -1.68 o.no o.oo lq1.4 50?.2 4?1J.2 65'1.0 t'). -,c;-.., -1.47 o. ?r) o. 01 0.03 -3.94 -3.'14 0.01 0.01 6 74.3 526.9 476.2 67?.1 ('.(1~ 7:l -1 .~> 0.11) 0,03 0.03 -'·· 70 -4.70 0.01 0.01 !?~?.6 541 ~'3.?.7 ~J>6.4

(' . .:)')~, -1,11 - J. ')(1 o.o? o.oz -4 ·'•S -4.45 o.n 0.02 1793. il 1;05 ~39.3 70!.7

0.1~1:1 _,. ·11 -0.11 a. 01 0.01 -4.71 -4.71 o.o1 0.01 ?.l86.0 600 !t46 .1 71 ~- 0 (1,('-\10 -;t.4'i -0.?? -n. no -n.oo -4,01> -4.96 o.ol 0.03 ?.465.9 5f!9 452.9 714.9

o. )~5() -3.01 -o. 11 -a. 01 -0.01 -5.?.1 -5.72 0.04 0.04 3070.6 575 ~59.5 752.5

0,1'>7) -~. '>.1 - o. 44 -o. o~ -a.o2 -':i.it6 -s. 47 0.04 0.04 4'· 7!.?. 558 ~65.3 770. ~

o •. 1'> <lQ -4.?0 -0.55 -o.rn -0.03 -5.71 -5. 7? 0.05 0.1)5 7132.2 54! <6 ~. 9 7'1(),9

0.·~' 1() -4.5? -r..n7 -o.M -o. oo; -5,'l'i -'i,<)7 0.01, 0.06 101•96.8 41>? ~,B. 7 rn ~ .. 6

O.J''ll -4.6'i - J • q I -O.On -O.OA -6.20 -6. >;> 0.01 0.07 nt'>5.4 4 1t6 <64. 5 l>B.9 0.175;) -4.~0 -(),9'; -0.07 -0.07 -6.45 -6.47 0.07 0.07 7475.8 432 •5 a. 5 0(,4,9

o. ) 771 -4. qc; -I. I I -<1. 0'1 -O.O'l -1,.70 -f·. 72 O.Oil o.o~ 6617.7 42?..9 456.7 ?87. 2 0. (170c) -<;.1~ -1.>7 - o. 10 -0.10 -1\,94 -c.'17 0,0'1 o. QQ. ';375.0 413.6 454.~ 900•4

'' •. 1 ~I;) -o;.zq -!.44 -o. 12 -t1.12 -7.1 <) -7. ??. 0.10 0.10 1'JIA.1 404.5 453.7 9?q,J

0.1~~0 -C:::. l c; -1.1>1 -o. 14 -0.14 -7 .4'• -7 ·'• 7 n.11 0.!1 26!4.6 3'15.7 45!.8 941,. 3

~-~:l5Q -~.~3 -1.7~ -0.15 -0.15 -·r. 1:>'~ -7.71 0.12 0.12 !637.2 3117.6 450.7 91>3.0 o •. ,,. 71 -4. 7' -1.'l'i -o. 17 -o. 1 r -7. C"J'• -7. C1() n.n n. 13 10!7.1 ~7q.1 449,4 97'1. l O.'l~~'l -4.'i'> -?. q -o. 1 R -o. 1 A -A. l'l -8.?1 0.14 0.14 6A'i,Q 371.9 447.4 'l<l2,0

0.0:;1~ -4 •• '3 -2.11) -o. ZIJ -I). 20 -R ,..tt3 -P.45 o. 15 0.15 516. l 363.8 444.3 1004.5 (',01>1 -1·· "l'i -?.47 -o. ?I -n. ?.! -R.I. A -8.70 11.11> o. II. 444.~ 3'>~.3 440.1 101 s.-9

n. c ~· ., -4.V -?.~4 -o.n -o.n -8.91 -11.'14 o. 17 0 .!7 3Al.O 346.4 435.6 1021,. 0 '),('0 1~ -4.31 -2.ql -o. 7'• -8. 7 1

• -9.17 -9. 1 C) 0.111 O.l8 3"79.0 336.1 • 1 10~4.8

0. ")'"'().') -4. ")1 -?. '17 - n. ?'• - o. 21'. -'l.4? -9./t 3 o. !Q 0 •. 1 'l ?-~2- 5 3?.6.1 ·" 1 1)4'. 1•

~ .. 11!~ -'·.,, --r. l 4 -0.?" - .).;>n -').!,(, -<J.f-.7 o.zo 0.20 243.7 '115.1 • l 11)4~.5

0.1 '1'' -:,. ~ ~ -).Ill - f'). ?•) -o. 2•1 -9,.f)() -9. rJ2 o.?1 0 .. 21 ?17. n 10 ~ .. l • 7 t ') "~ 1 .. 4

FIGURE 3-10. CONTINUED

! 't

ot .

Page 113: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

~!.';? -THf) $PErl At MEf'IAi\1 STUDY.- or s Til. rc r ?, 0 INCH CUDij v : 60 "f'H, A"JGI.E = lS DEC., f)SN = r-2F.601s. MJIV 28.1974 -

TIIO~ .... t!~ vr-trcrrv I'APAll EL Tn GRniJt.,rl) Plllll!f~ (FT./SFr.,l VFDTTC s~:. UJNG ITUO l N Al l ATFRAL (POUN')SI

II.F tr= RP. tR ~F LF RP LR RF L" RR L" o.o 8!1.00 ~~.00 BR,OO 08.00 o.o o.o o.o o.o o.o o.o o.o o.o 0.0)50 8!'.00 P.'l.flO ~~.00 Pf!.OO o.oo o.oo o.oo o.oo -23.6 -45.3 o.o o.o \'!. ('!(' "'·J Rq.oo ~~.01) 88.0() RR,OO -o.oo o.oo -o.on -o.oo -69.? -A'l,S o.o o.o o· •. ,091 s~.no ss.oo 8g.oo 8q.oo -o.oo o.oo -o.oo -o.oo -121.6 -145.3 -31.6 -3t.6 0.1)110 911.00 ~q.oo flll.OO RR.OO ·-o. oo o.oo -o.oo -o.oo -220.5 -212.3 -72.8 -17..q O.!:l111 SB,O:l BS.O'l 89.0('1 as.oo -o.oo o.oo -o.oo -o.oo -314.3 -299.1 -120.9 -120.9 l'.J!C:O'.) 87.97 8,1,00 ':'tl,OO flR,OO o.oo o.oo -o.oo -o.oo -4311.3 -374.1 -175.3 -175.3 o. nt ,..) S6.42 8~.00 31\,(lO 88.oo -1.25 o.oo -o.oo -o.oo -747.6· -465.7 -235.5 -'-35.5 o.o1<~J 75.1'1 ~7.<1'3 A'I.OO 87.9n -2.;n -0.07 -o.o;> -0.02 -1'158.? -562.2 -300.6 -30').1!> O,<P10 72.H f!7,<l1 ~8.01 87.91 -2.04 -0.31 -0,07 -0.07 -3456.0 -661.6 -370.0 -1'>?.7 o.h?~, 73.26 ~7.54 AS,(l7 87.64 I. R~ -I.H -O.?'l -0.7.'1 -1:n5A. 7 -7F,1.'1. -44~.1) -44'.')

o.r:>1 81.4'1 g1,2t AS.11 87.n 9.16 -2.72 -0.61 -0.61 -19771).') -861.0 -519.3 -S1 t;. l O,Q>1J ~<>.so %.?0 R0 ,2? !'6.17. 19.411 -4.?0 -0.'19 -0.9'1 -2449B.? .:.')57,1) -590,.1 -'5'>•1. 'J

0."1:? 0 0 9~.7<; Rf.. ?t !'B. 3~ 86.?3 to. o 7 -6.19 -1.33 -1.~3 -2f,0'• 7. 6 -1047;.b -67B.Il -'>~.s. 4

Q._)1 1 i Q~. '7 Ri>.O~ ~R .?4 86.0? 14.f>6 -6,45 -1.37 -1.3 7 -2379'1.0 -1111.4 -71>0.1 -7 3<!. 2 0.01~0 ()~. 78 85.()1 RR. 22 115.'l3 111. ll -6.63 -1.36 -1.36 -16()07.4 -1206.0 -~40.7 -~!I. q

(l.O~<;!l Q1. ~'· ll<;,q6 !'H.?<; 85.88 1'1 ... \1 -6.(>4 -1.?b -1.?6 -s~n.1 -1269.7 -919,7 -~~~-7

.... o. 13 70 90.l5 85.99 88.30 A5.9l -5.35 -6 .• 26 -1.00 -1.00 -1%8.5 -1321.4 -9'16. 1 -951.2

0 0.0,'10 98.13 O<;,C)<J RR,43 A6.01 -4.95 -5.40 -0.45 -0.45 -931.5 -1360.5 -10(,8.7 -1'117,4 .... o.O+l'> 8~.38 85.13 83.61 86.14 -4.'5'l -4.?8 0.26 0.26 -b45.2 -1385.9 -1136.1 -10~1. 3

o. )4 ~J A~.45 86.?0 A.~. 70 86.21 -4.35 -3.!><) 0,65 0.65 -1016.5 -13'15.2 -ttn.q -1142.0 Q. H'>O s~.s4 ~6.?4 BS. 75 86.2? -4.11 -::1.31 0,9? 0.'12 -173'•·" -13R8.6 -1253.1 -11?~. 3 0.0+ 7() R~,1.4 Al..?6 88.7A R6. 77 -~.'11 -3.10 1. 08 !.OA -2l>21.6 -1366.7 -1249.5 o.J:.~o sq.12 ~6.27 ~8" 7n 86.28 -3.7? -2.<19 !. 18 1.10, -S~51.5 -1310.') -129 1 •• ?

n.tH\0 ~fl. 1~ P6.27 fl!\, AO. Af.,?R -3.1.5 -7<92 1.26 1.2, -14?!7.4 -!?Al,4 -13~4.1

C'.J'~O ~~. 71> !:16. ,.., 1 ~~ • A•) 8f>.29 - 3.4'1 -2.R6 1.~4 1.·H -201\P.,\ -17.20.9 -067.1 (l,!)<;<;Q A?. 70 !\6.?7 8~. Rj 81>.2'1 -3.17 -2.7'1 1.4'3 1o 43 -23?.52.1 -tt50.5 -1 B4, 2 ('I.J.; 7.) 8P.Id ~6. '1 AR.P2 !!1>,10 -1.?9 -7. 77. l. 51 J. 51 -7n47.1 -1071.7 -\415.? (',•]<;'l') 81l.4'l %.?11 ~~.A1 A6.~l -1. 2'> -2.1.3 1,60 1.60 -1'167J.2 -996 .o -143').')

". ,., t::l f!~. 31 86. 2'> e9. 8'• 86.31 -3.2:? -2.?4 1.70 1,70 -12051!.0 -8'15.5 ; -l~J~.-s

1',:1'>'0 81>.?~ Rf>. 29 88,AS 86.17 -1. 17 -?.44 I. 7'1 1.7'1 -3fl77.'1 -80?.0 7 -14'•1.1 O.N 5') 89.23 86.30 89.116 86.33 -3.15 -2.3'• 1.fl'l 1.88 -2475.1 -706. 7 l -14'37.4 'l. J'> 7(1 p,q .2() q6,'H A3.M 86."~1 -~.011 -;>.?4 1.'l8 1.911 -11!>tl.6 -611.1 -140!.0 -!4?7,7 r.o~~o 88.1'1 36.1~ 8<J,Of) 86.34 -2.94 -2.09 7..10 2.10 -11()9,4 -516.4 -1311.7 -14! ?. 2

o.·HtO 11Q.?.4 Q6.14 ~9.'12 1!6,35 -2.77 -J,fl7 2.26 2.26 -140.3 -423. q -1336.1 -13'1 t. 4 f).:'.\~' 0 8P.>4 8&.38 B~.<ll. ~~>. 1A -?. '·~ -1.<;~ ?.;;4<; 2 ·'•'> o.o _,H.2 -1?'14.5 -!'365.5 o. ·J1 o;n 88.47 86.41 llil,99 86.40 -? .13 -1.?7 2,64 2.64 o.o -24A.2 -1247.3 -1335.0 0.0170 RP.<;o R6 •'•'• A 'I. 01 86.42 -I •. 97 -1.05 2. 77 2. 71 o.o -166,'1 -!1'l5.2 -13'}').3 o.n:r~o A~.l:>'i 86.41> 8•1.0? 86.43 -\,f>O -O.A<; ;>,89 ?.A'I o.o -'11.5 -1138.!1 -17 .. 1.'1 0.0~10 AQ. 74 ill>.'t? qq,Q"' A6,44 -1.1'i -o. f. 'I ?.<l'l 2.9'1 o.o -23.0 -1078•7 -122'>.1 o.·J 111 8P,PI .S'>.SI sq. nz 8&.44 -1.!? -0.52 ~.OR l,Of! o.o o.o -1019.4 -1175.5 ('. :l·l~(l ~~ .. rq ~~-. ~1 11'1,0:'\ A?,. '•4 -0.'10 -O.VJ "1 •. 16 3.16 o.o o.o -963.'1 -11?~.7

(),1<10 P~.o~ R6,~<; ~9.03 ~6.4c:; -0.69 -0.27 3.22 3.72 o.o o.o -1')~').2

r.. (' 1·11 ?O ·"~ R6.<;7 q'l.rn 86.4~ -n.'ln -n.tr, 1,?9 ~.7<) o.o o.o -10'·1,q J,Oq!'l S9,J'l 8~.f>() ~9.0? e6.4~ -o. ~ 1 -o.o~ '3,34 3.~4 o.o o.o -?~').,

.o.r· '''J flC:,.!17 "t'. (,,7 R<l.01 flo. '•' -0.14 o.ns ~-'•0 ~.40 -ll7.l o.o -•no. 'I 0.111~'1 89, I;> ql).f.,4 A<>.rt 81>.45 o.oo o. 1 s 3,46 3,46 -322.? o.o -~~ 1. 'I

c.:nn 8n.! 5 ~6.1\~ qq,()l 86. 1•'• O.!l o.?<; 3.~2 3,52 -'i?R.7 o.o -q34.0 n •. ')O·'l') R'l,1A 81:>.6.~ q '1. :n 86.44 o. ?5 o. 3'• ~.<;~ ~.sa -11?. 7 !),I) -7::1 ~ .. 1

". \ .) l .) ~~ (': • ;" 1 ""·''(} A'J .nt P6. 4'• 0. 1<; 0,1,1 ~.1>4 3.1>4 -'131.~ o.o -11 .. 1,. T

!) • l l "! t) ~9.21 ~6. '\ H'!.Ol Al>.44 0.'•1 o. ~I I. 10 '.TO -ll2l.1, ().1) ··1'l'•.'1

FIGURE 3-10. CONTINUED

Page 114: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

::>•.--.r. ,, TH~ S<l F.r. !f,L "1ff)l "" STimY - f)ISTQ~{" T ? • 1) ~ K': H CV?f' v ~ Ml ~'f'H' aw.t!' . l'."i flr~ • ' OS"'' = '"':?FOOt'). \, '~ y ?.n:' 1 q71t

r pot• C !R(IJM!=I:Pf''JT !Ill T!P.F FOPCFS TJP 1: SIO<= Fr'IP s~r:. O'f'Ui'JOS l ( POI!'JI'JS l

RF. LF. PR L~ RF L" L::

(l,ll o.o o.o o.o o.o o.o o.o :; ... ') ,_ Q(''!';J o.o o.o o.o o.o -0.39 0.75 s.o C.~' 170 o.o o.o o.o o.o -t.oe !. 39 ·:.::: J. (.')9~ o.o o.o o.o o.o -1.82 2.17 o.c·o ).(lf)

~.('Ill 0 o.o !l.O .(),() o.o -3. 10 3.1)0 0.~0 o.oo 0.0130 o.o o.o o.o o.o -4.14 3.85 o.oo o. ·'),") (l. <11, () o.o o.o o.o o.o -5.47 4.h~ o.oo 0.')0 o. •)i 71) o.o o.o o.o o.o 313.63 5.32 o.oz 0.02

o. •11 'hl o.o o.o o.o o.o 51A,8f.> !!.'l1 l. 41 1.41 0,1?10 o.o o.o o.o o.o 4 76. 130 ~4.91> ?.91 5.91 o. (1~ 30 o.o o.o o.o o.o 251. 1t9 124. ~·1 23. ~~. 21. ')t,

0.12'5:J o.o o.o o.o o.o -'5~.17 240.';2 'il •. 'H1 '>2.19 n. ·l."' 10 o.o O.(l o.o o.o _cqc.t,l 371.1,3 P.~.R1 'l7.~1

J.:l?"'O o.o o.o o.o o.o -110.'l4 48?..it5 -119.77 121.49 n.:J'1, n.o o.o o.o o.o -37f•, OA 4'1!.1>7 1za.o1 1?.?. 11 0.T~ 1 0 o.o O.IJ o.o o.o -51~.07 490.1"1 130.74 132.35 0,0,5('1 o.o o.o o.o o.o -£>?0.61 4 71.'·9 125.38 126. 9Z

f-' 0. 'B?O o.o o.o a. a o.o 20l.24 414.01 101.20 l 0?. 54

0 (1,('3<:0 n.o o.o o.o o.o 150.57 302.06 44.21 . 44,9~ N :0· )41'1 o.o o.o . o. 0 o.o 74.1)3 145.6'> -34.81 -35.2R

0.0410 o.o o.o o.o o.o 4.99 '13.0, -77. !5 -7~. 43

.l.a~~o o.n o.o o.o o.o -AS. A4 -61.47 -106 .()3 -10~.1)1

o. 0'• 7n 0.'1 o.n o.o 0.0 -12~.10 -131,A.5 -tn.to -12~.64

c. ()4q') o.o o.o o.o IJ.O -112.'11 -lfl7,49 -133.4'• -136.4~

().1Sl0 o.o o.o o.o o.o -125.38 -235.90 -141.19 -144.56 (),(1<10 0.0 o.n o.n o.o -145.51 -279.48 -148.97 -15?.70 O.OS~') o.o o.o 1),0 o.o -1M.49 -31A.34 -157.05 -161.1? ,(',')< 7() n.o o.o n.o o.o -192.S4 -3<;1.59 -165.47 -1<'>9.90 ol), {l<QO o.o o.o o.o o.o -217.55 -377 •• R7. -174.26 -179.03

o. 1610 o.o o.o o.o o.o -244.33 -395.44 -1~3.16 -!B•.26 0,1)!,1(1 (),0 o.o (),0 o.o -7f>'l.R7 -401.09 -I'H,')P. -1'H,47.

:1. ),<,SO o.o o.o o.o o.o ;-451~'17 -399.75 -?.00.70 -2')6. 53 ('1, 1S 70 o.o o.o o.o o.o -'i91l.21 -384.73 -209.'76 -216.09

. 1. ;)I, Q() o.n o.o o.o o.o -47'i,3l -'3'i!l,O~ -nn.5?. -2?7.?4

'r. ·171 o o.o o.o o.o o.o -112.24 • -318.68 -2~4.13 -242.14

e.n11o 0.!) o.o o.o o.o o.o • -21,4,S~ -2<;0.28 -259.69 .o. 117"() n.o o.o o.o o.o o.o • -!'lll,S4 • -76S,S9 -276.83

Cl. n77rl o.o o.o o.o o.o o.o • -133.54 • -274.04 -2'!7.31 o •. )'QO o.o 0.0 o.o o.o o.o • -73,?4 • -780.03 -2'15. 7'>

o. 1•! 0 (1,1) o.n o.o ·0.0 o.o • -1~.43 • -?.q'<,7. 2 -3·)1.~A

(1,').~~0 o.o o.o o.o n.o o.o • 0.1) * -?!34.06 -105.6'1

a. ')q<;o (.',') o.o 1),0 ·o.o o.o .. o.o * -233.24 -307.5~

('\. 0~17t) f',f) o.o 0.0 o.o o.o • o.o • -~q(),OO -307.92

0.0~YO Q.ll O.'l o.o o.o o. 0 . • o.o .. -212.e3 -307.0Z o.rot;") (1.0 o.o (),() O.ll o.o 0,1) • -?t-4.12 -305.07

!'.f"T10 o.o o.o o.o o.o -91,A4 ~ o.o * -?5R,I>4 -302.40 1:' ••• , l"O o.o (),0 o.o o.o -7.57. 7S • 0,0 • -2'.i1.92 -2'1~.12

'), 1770 o.o 1).0 o.o o.o -4??.'lt• • o.o * -?.43.42 5.31

·"'· ('lQ-:'10 o.o o.o o.o o.o -5~'>.41> o.o " -n1.12 !.07 (·.! ll 0 (). (f n.o o.o o.o -737,S6 o.o • -?!'7,1)7 F-.,S~

\'. t (\ \) l),l) 11,11 o.o o.o -A Tto ,09 o.o • -7(!',..~ .. ~Jo t. 'll

FIGURE 3-10. CONTINUED

f··

Page 115: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

'J

o.a~t 1 THO SPF('.l~l "lHI! AN STUDY - (l!STP Jt::T 7, ~ INCH CURR v " 60 ~·PH, ANGLF = 15 OF.G., OSN = M2F6015, MI\Y 2!!.1974

Tl''e 1\CCHFPAT!flN CO"lr>O"'f:NTS AT POINTS 1 AND 2 ON SP~•JNG MASS s-=r. JG-IJNITSI

AX! AYl Hl AX2 AY2 AZZ o.o o.ooo o.o o.ooo o.ooo o.o o.ooo :l.OO'>O o.ooo o.ooo o.tu o.ooo o.oon 0.109 0.0070 o.noo o.ooo 0.13'> o.ooo 0.000 0.!34 'l.O(I•>n -o.ooo o.ooo 0.159 o.ooo o.ooo o. t 'il) (1. ~11 'l -O.OO'l -o.ooo O.!R7 -0.000 -0.000 o. 1ll? 0.01 l() -o.ooo -o.ooo 0.203 -o.ooa -o.ooo 0. 7.0'• O.OIS:l -0.0'11 -o.ooo 0.7?4 -0.01')1 -o.ooo 1). ?25 '),('1!7') -o.cnt 0,00? o.n., -0.07'• '). 0 l't (),;>')')

r). Jl rt() -0.291 -0.577 o.~oo -0~4SO -O,P.34 -0.140 o. C'?l" -0.601 -l. 723 o.tss -1.144 -2.nrn -0.8B1 o. 023') -2.'104 -6,94A -O,lS3 -4.517 -to. ~M -4, DO O.Q:-'"-.l -l.09 1t -7.727 -0.3?8 -5.400 -11.4~5 -4. 't3Z (),0?7J -3.165 -'1. ?A1 -0.409 -6.007 -13.'117 -5.27') l1. ('1;-'·1,1 -?.'if+') -7. ?'>1 -o.~qq -7.'161 -7.'l00 -O.<l47 11,0\11 -1.6'i?. -1,!142 -0.356 -2.107 -2.551 -o. nf, •), 133:) -0.1>13 -1.127 -0.31S -1.079 -1.761 -0.464 ("!. 0~ r,•) -0.0?4 -0.0?'; -1.04<1 -o. 71,1 -0.4!'l -0.~~0

1--' '),')3') 0.103 1.2S7 -4.322 0.074 o. 775 -1.5'75

0 ;,.o~-4J 0.615 2.107 -'1.01>fl 0,1<l0 1.314 -3.0,09 w n.~t.!'l 0.353 1.?07 -4.812 0.109 0.681 -1.~'17

a. 04'~"' 0.243 o. 761 -3.?<l0 0,06& 0.397 -1.242 o. )4<;,) 0. 11(, 0.261 -1. 4'>4 0.0?0 o.ofl9 -o. 447. 0.0471 0.0?4 -0.070 -0.191 -0.006 -0.107 0.04"3 0. 00 1• . -0.215 0,364 -0.010 -0.191') ).1')~11 o. 01 r -0.?47 0.41>~ 0,0()4 -0,21S J,1S'1 0,04?. -o. n~ 0. 365 0.027 -0.70~

,,,0~'>0 o. tl1() -O.?O'l n.zn 0.051 -().I<)()

1.f\';71 0,0'12 -O.lRO 0.16? 0.071 -0.1611 n. O~'"'·l 0,104 -0.11>? 0.051, o.oq1 -0.1~~

o. :J,,t J 0.101 -0.1% -0.021 o.on -o. t5J '), 11~'11 0.0~5 .:.o.t~5 -O.OAO 0.0~!1 -0.1&7

"· (1/-~'l O.M1 -o. 1q~ -n.tA'l 0.0'•3 -0.2'17 0,)'>7') 0.0'11 -0.159 -0.434 O,Ol4 -0.21'l -o.zze (). 1~·1:) 0.1! 7 -0.04S -o. RB'> 0,049 -O.ll~ -0.422 (l. 0110 0. I ~I> O.llR -1. '•41 O.OIIS 0.0?1 -0.1)15 J.ono 0, I~ I o. 7 1•'> -1.8A3 o. 104 0,11)3 -0.~1)4

"· r.7~) O.Pl o. ()?~' -0,'l61 O,O'l'i -0.001 -o. 370 0,()771 0.111 -o.nn7 -O,fi3A o. O'JO -I).O()Q -1),307 n. 17":1 (),<)'l~ -0.0~7 -0.631 0.095 -O.O?fl -0.706 'l.(J~l') 0.077 -0.11? -(),'l<)R 0.0'13 -0.050 -0.092 (1.0~1') 0.062 -0.11,1 -(). 18"> o.oq? -o.ou, 0,006 .1.1??1 0,04fl -0.?04 -o.n"\4 0,0113 -O,!rlll 0.076 •), ,,~ 71 0,03A -O.l!'l 0 ,()1>1 o.on -0.115 f),()O'>') 0.031 -0.241 o. 113 o.n?? -(),(24

, r>, 0011 11,0?7 -o. ,>4<J 1). 1 3fl O,(Jf,O -0.!20 (J,(''l1l 0.021 -O,ZAP 0. 14 7 0.0511 -0.15'> o. o~">rl, ().01~ -0.?'17 O.J')'l 0.0'·1 -O.J'l9

'), )CI?'J 0.004 -O.Vh (J 0 1{o3 o.o?s -0.740 '), r~~, -0.00') -0,153 [). l 7l 0,0:1~ -O,ZRI) r),1f'l(J -1'1.011 -0.177 o. 17'1 -0.01}8 -0,117 (l.,lll\·'! -a. n: 1 -n. ~'lH ll. !If 1 -0.0/? -(). ··~ '•''

FIGURE 3-10. CONTINUED

Page 116: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

:1.1.':,":"

THf'l ~!H( !'-\. "ff'll~'J STlJIW - rtTSTPtr.T 7. f1 yr..!rl-1' C<J~I1

v ~ (,() ~f'\'• ~ •;r.l r w 15 nrr .. , f\';'J . ~?rrd)J ~)' .., .~ v 7 'l t 1 (J ,,1

Tl"'C Hn~ I znNT~l T!RF FnRC~~ ( Pni)NI)<; I

~C('" • X' OtPtf"TtnN v• n tPc

RF LF RP l~ P.F LF LP o.n o.o o.o o.o o.o o.o o.o 0,')

O.fl:J<;:J 0.1 -0.2 o.o o.o -0.4 0.7 0.')

O.OJ70 0.3 -1),4 o.o o.o -1.0 1. 3 ').')

o. ,..,..,Q). 0.5 -0.6 -o.o -o.o -1. A ;>.1 o.n ().')

".(1! !1 0.~ -0.8 -o.o -o.o -3.0 ?,9 o.o f),l)

O. 0! V) !. l -1. 0. -0.0 -o.o -4.0 3.7 o.o !).C)

l).t'!'i1 -2.4 -!. 2 -o.o -o.n -6.":\ '-+· 5 o.o· o.o 0,·1! 7') -!.24.8 -1.4 -o.o -o.o 16.9 5.1 o.o o.o 0.()10~ -2B.6 -3.1 -0.4 -O.'t -3~67.'5 p.5 1.4 1.4 0.~?11 39 7. 0 -9.1) -1.5 -1.5 -1027S,q 33.8 5.7 5.7 n.r>:"J-1'1 ?113.4 -3?.1 -6.2 -6.7 -4163l.R 120.4 23.0 23.1 o. (l:?'5J 177. 'I -61.5 -13.4 -13.5 -46')01.1 232.5 50.0 50.4 ;1.()>70 ?~4~.~ -91.8 -77.4 -??.h' -551R2,9 ~s~.o q"j,') 84.8 ~'-c ... Cl) -~11>1. 3 -tto,') -30.8 -11.2 -13'11'l,6 46 7.4 1!5. 7 117,4 r. rn!.) -~47?.6 -11'"1.? -3?.!1 -33.7 -11~?3. 3 477,1) 1?3. 8 17'5,4 (),rll'" -o<>Z.6 -116. ~ -B.4 -33. R -R040,4 476.2 126.4 12~.0

c.o>~(1 71>7.0 -10'7.3 -31.9 -37.3 -7'"105.4 45R,6 121.3 122.'3

f-' t"'. c \7 J -1 t:•.z -93.8 -25.6 -26.0 182.7 403.3 97.9 99.2

0 c.cqqo -?-3. , _,,.~ -11. l -it. 3 146.8 2'14.6 42.8 43.5 ~ 0 .. 0 ·1 ·) -16. 1 -31.4 S.7 8.9 72,9 142.2 -33.7 -34.1

'l.fl<Vl -I. 1 -6.9 19.3 19.6 4.9 32.3 -74.7 -75.'1 (l.('I~~J 17.6 I? .6 26.5 26.9 -R4.0 -60.2 -102.7 -1!)4.6 0.0+""'0 24.~ 26.3 10.6 31.2 -120.6 -129~0 -119.2 -121,7 o. \'1400 :--:' .. 0 16,4 3~.1 '!3.A -110.8 -1B1.'1 -12?.3 -132.2 0.0?!0 2l.7 44.5 34,9 v;. 1 -123.1 -?31.7 -116.R -140.1 () •. ,, '1 ?6.7 'i1.2 >.6,7 37.6 -141.0 -274.7 -144,4 -148,() n.o~•r~ 3·1., ~6.6 38.5 19,5 -165,8 -"'113.3 -15?.3 -156,2 Q,Q'i7J 33,? I>O.b 40.4 41.5 -1n9.6 -146,3 -1M.~

t).llj>l') 31>.4 I) 3. l 47.,4, 43.6 -214.5 -372.5 -173 .• 6 O.C'!:o1~ ·3'"?. A 1>1." '•4· 4 45.7 -241.1 -390.2 -182.6 o.ot-~1 4.?. 3 1>3.0 46.4 47.7 -266.~ -191l. 1 -191.6 'l.J5~:l 6 ~ .: .. 6().3 4R, 3 49.7 .-446.2 -~?<;.2 - -200.5 11,1S 70 R1.~ <;t..O o;o,J 51.11 -'>f")l .. A -111'),6 -; -;>0').~

o.cs~o 6 1. 1 50,2 57..7 54. 1t -470.6 -154.5 -220.9 ; 0,(171(1 15.' 41.0 ~S.'l ~7.7 -111.? _, 1 <;. ~ - ?)<;,?

O.;)PJ o.o 34.J 5fl.'t 61. '1 o.o -71>2•1 -252.3 C'.01S') o.o 24.7 62.8 65.5 o.o -197,0 -; -269.0 '),!) 170 ),() 1~.9 6'•. f, 1,7,1 o.o -1~?.6 -?66.3 -279.2

n.r."''lJ o.o q,3 6'3.7 ()'"1,4 o.o -72.11 -772.2 -2~7.5

'). 0 3! 0 o.n 2.0 .()h,2 70.6 o.o -1'1.1 -27'5.4 -291.5 O,Qq30 (),!') o.o 69.11 71.7 1),0 o.o -27?.4 -291,3 o.1~'il n.o· o.o 6R,O 71.4 o.o o.o -77<;.') -.2?"1. 2 11 • ."~ 10 o.o [).0 1\4. 1 71. "l o.o o.o -27?.6 -299,6 0.0~1') 1'),1') o.o 1>0.0 70, q o.o o.o -266. z -29~.7

11. rot 1 o.o o.~ 60,9 70. I o.o o.o -257.0 ~296,9

1),'1'1'1') 7.1 o.n 1-.f),.;'l I~() •? -<n,!'. 1),() -7~1. <; -7'14,4 ::"' •. ~·")r;.) 1~.7 o.o ">7.1 6A,2 -257.1 o.o -245,2 -z•n.l (),'))7') cs.s o.o 5~.2 I, 7. I -477.0 o.o -23 -2~7.1)

0.~-:J'l'"l 3~.4 ~.(1 ')? • r, h!,.'J -'>84.1 o.o -n -zn.s "·1 c l·J 4?.0 o.o 49.0 ,,,_ 6 -n~>.4 o.o -?1 -?1'1. I

0. 1) '(\ 4">.? o.o /+6. 0 1,3.'• -H2.9 o.o -zc -?14.1

FIGURE 3-10. CONTINUED

I . ~

Page 117: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

THil v =

Tr-..F ST!'FQ T~r. T'1ROU~ S s=r. Tl"S I T2PST

U!.-1~. L!~.-TN. o.o o.o o.o O.OJ'>O o.o o.o 1!.0(110 o.o o.o o.oooo o.o o.o O. OttO o.o o.o 0.0110 o.o O.fl 0 .rt "0 o.o o.o o.ot•o o.o o.o 1),01'>0 o.o o.o O,'P 10 -600.0 o.o (). ·17 30 -600.0 o.o 1).0~'\0 -600.0 o.o n.('l770 -600.0 o.o 0.(')~00 -600.0 o.o 0."~~0 -600.0 o.o 0,0110 -b(l),(l o.o n.ino;r~ -hO·"·O o.o

1-' o .... ,70 -t:!JO.O o.o

0 0.010) -<',00.0 o.o V1 0.0410 -600.0 o.o

0.0430 -600.0 o.o a. !'4~0 -60().0 o.o 1'.0.70 -600.1') o.o 1! .. '1"0 -l•\10.0 o.o 0.1~10 -6(10. 0 o.o 0 .. ;."" '0 -600.11 0.1) Cl.O<;~O -~0:).0 o.o "· )'i71 -~0'1.0 0.() r.f1 ... .0l'l -~0·1. 0 o.o o.c~1o -60().0 o.o o,.1A'~ -60:1.0 o.o o.ot ~o -fd'IQ,.~ o.o "· 1A 7') -6fl'l.0 o.o 0.(\t.,•.,, -600.0 o.o o.o•1•) -600.0 o.o ('1.')7~') -~(10.[1 o.n ('. } ~ ~() -601..).0 o.o ('1.!"71('\ -600;0 o.n o.:noo -6().1.0 o.n 0.0~10 -600.0 o.o 0.1~l0 -6()(1.0 o.o "· ,..,~ c; (' -F,OO.'l o.n o ... , ,7,) -o 1·J. o o.o '). ·;'l l~ -600.1') a.n ..1.0Ql0 -~.)'1. () '1.0 (.. ~110 -6('1('),('\ o.o r.' ~~.} -60 1). n n.o ('. ')')7) -610.0 0.'1 '1.(110() -600.0 <1.0 .,_ ''"'! n -»f'n.n o.n ).1·''·' -~.~~ \'. \) <). \)

SI>EC !Ill. "F.DibN STUDY - 01 S TP I r T 2, 6 INCH CURB 60 MPH, A"'GLE c 15 DF.G., !)~~ " M2E6015, MAY 28.197-\

T~'RQ~IN SLI"!PF S PHTI;1 PHTG2 PHTf.3 PHIG4 H1

I)EG~ O::FS f?FGP!'FS DEGRFES DEGREES I"'CHFS o.o o.o o.o o.o 14.0 o.o o.o o.o o.o 14.0

-o.o o.o o.o o.o 13.9 -o.o o.o o.o o.o 13.9 o.o o.o o.o o.o ll.!l o.o o.o o.o o.o 13.7

-0.1 o.o o.o o.n D.6 -?2.1 o.o 0.() o.o 1"\.3 -66.8 o.o o.o o.o 11.<'} -73.1 o.o o.o o.o tO,<'J -n.5 o.o 0.0 o.o 9.9 -66.7 .. o.o o.o o.o '1.2 -65.6 o.o o.o o.o II.~

-;n. 2 o.o o.o ().0 8.11 -2<;.5 o.o o.o o.o '1.0 -23.9 o.o o.o o.o '1.7 -2?.'1 o.o o.o o.o 10.11 -0.4 o.o o.o o.o 12.2 o.o o.o o.o o.o 13.2 o.o o.o o.o o.o 13.4 o.o o.o o.o o.o 13.1 o.o o.o o.o o.o 12.4 o.o o.o o.o o.o 11.6 o.o o.o o.n o.o 1!l.ll o.o o.o o.o o.o 10.0 o.o o.n o.o o.o C'). '•

o.o 0.11 o.o o.o 'l.~

!).0 o.o o.o o.o 9.2 o.o o.o o.o o.o 'l.b

o.o o.o o.o o.o 10.2 o.o o.o o.o o.o 10.9 o.o o.o o.o o.o 11.7 o.o o.o o.o o.o 12.5 o.o n.o o.o o.o 13.2 o.o o.o o.o o.o 13.<'} 'l.O o.o o.n. o.o 14.0 o.o o.o o.o o.o 14.0 O.'l o.o o.o o.o 14.0 o.o o.o o.o o.o 14.0 o.o o.o o.o o.o 14.0 o.o o.o o.o o.o 14.0 o.o 0.0 o.o o.o l'•-0 o.o o.o -o.o o.o 14.0 !).() o.n -o.o o.o 14.0 o.o o.o o.o o.o 14.!) n.n o.o o.o o.o 1~.'1

0.0 o.n o.o o.o 13.7 o.o o.o -0.() o.o 11.? a.o 0.1) o.o o.o 11.l o.o n.o -n.o 0.() n.1 ('!.() u.o -o~o o.u 12 ·('

FIGURE 3-10. CONTINUED

. ,..

~'t'llt'

H2 tNC'lE$ 14.0 14.0 13.9 13.9 n.A 1.3. 7 n.1 13.6 n.5 13.4 11.3 n.z n.1 13.0 13.0 12.9 17.. g 12.3 12.8 12.7 12.7 12.7 12.~

12.~

1?..~ 12.') 13.0 11.1) l3.l 13.2 11.1 13.4 13.4 13.5 13.6 13.7 13.8 13. B 13.'1 14.0 14.0 !4.0 14 •') 14.() 14.0 14.0 14.1) 14.0 14.1) 14.1) l4.0

M~

INCHES 14.0 14.0 14.0 14.1) 1?.9 13.9 o. a 13.8 13.7 13.7 1>.6 13.5 }3.5 13.4 13.3 13.2 n.z 13.1 13.0 13.0 12.9 12.9

12.7 1::>.~

12.8 }:?.8 12.'1 12.9 13.0 13.0 13.1 13.1

PAt;~ 9

'"14 I NC'lES 14.0 1'·· 0 14.0 14.0 13.'l 13-'l 1'3.8 13.3 13.7 13.7 13.6 n. s n.s 13.4 n.3 !3.3 13.? 13.1 . 13.1 13.0 13.') 1?..9 12.9 17. P. 12.3 t?.ll 12.7 17..7 12.7 12.7 12.7 12.7 12.7 12.7 17.7 12.8 12.~

12. ~· 12.Q 12.? 12.'1 n.o U.'l 13. 1 13.1 n.2 13.2 n.z 1~.'3

I>. 'l t!.'<t

Page 118: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

P!. Gf 15 !H'1 ~Pf\! M_ Mrr,r 1\N STII'lY - "lST~lO ?, p PKH CIJO~

v : 60 ~PH, ANGLE a ~~ l)tf,., f)SN ~ ~2[.6015. MAY 2 ~~. 1 97'•

-·/ T!'-'~ WH~Fl Pnsnnms ( !Nr:4eS l p F" I,.~ ... ,, c;J=,... , .. l'JI"ll r:~ T" S Ln~s rr. (nNH<':TI "' T'-'

P.F IIH~E l. lF '~'"![ F l H". WHF[l LR. ~H~F.l {() r:c x• v• X' v• x• v• '(' Y' ~ y '~

(),') 131.77* (}';.!~"' 1 1+7. '5~* '36~?f.,'i:( 1 (,, 95* 61.90" 32.4~b 5. 9-'t*' :} :; •')

:". ') )")0 !Jn.e7 <JI,. ~'5 t~>2.0'j ) 7 .1>3 ?? • ()'>• (><;. 21·• 3 7. ') Rt1 7.11• 0 ').n

').{'':'~0 l 1~ • .., \ '17.09 1 '54, 69 3R.17 ? 1t,'O'J" 6'5.81"' 39.62* 7.86* o.a o.o o.o o.o 0.:1.)q~ 1 40.'7'5 97.64 151>. 73 1R.72 26.13 61>.36 41.66 8.40 o.o o.o o.o o.o -".en 1 o 14~.<>'1 '1~. I 'l 1 o; n. 71 1'1.27 ?8.17 66.'70 '•1. 70 R.9S o.a o.o o.o 'l.O

0.0PO 1.4~. 03 qq,n 11>0. !l t 19.81 30.21 67.45 4 5. 74 . 9.50 o.o o.o o.o o.o o. 1! "1 147.07 99.7.R l6?,R5 1t0. 36 32.7 5 68.00 47.7R 10. 'J 1t o.o 8 .. 0 O,i) '1.0

r}.f)l7'1 14".11 9'1,81 164.~Q '•"· <) l 3'•· 7f1 68.54 49.82 1 o. •;9 O.ll 0.0 o.o (),.1"'1

·~ •. "'11 ''1) ! ~I, 1 ~ II)(),,, 1 (,6. ')~ 41. 1t1) ~6. 'J ·' 6'),0'1 51 .. f)6 ll .. l 1• r).') Q,O 0.0 ·!. (';

0."'71t:'J IS<. 1 'l 100.t1? ll~ Fl. Q 7 41.<>"1 1~.37 69.64 t;3.9C' 1!. ,~ 1),0 c.o o.o o.c '). '"P?') 155.?'1 !1!.45 171.01 4?.53 4 o. 41 70.1A 55.?3 12.22 0.') o.o o.o o.o 0 • •' ~ "n 1 ~ 7 • ... :l I Dl • •Jt, ! 1 "· n t:; ,,,. n1 t,? .t,(, 70.17 ~7.'lf, 17.7f, o.o 0.11 o.n o.o '). )270 15". 35 11)2. 43 17 5.1)9 43.50 4'•· 51 71.25 59.99 13.28 o.o o.o o.o o.o ('). !"'!., '1"l 1 ~ 1. 4? t:).'.H7 1.77.1' 43.92 ft6.'ltl 71.77 67.00 11.78 o.o o.o o.o o.o o. "'\"l1 ~ 16'.~:l 103.10 17<>. 15 4'•· 33 4A.62 72.2fl .64.00 14.29 o.o o.o o.o o.o ,. 1'~ JO 1<'>~.5~ toJ. rz 1 ~1.1 B ftft. 72 50,F,7 72.79 66.01 14.7!! IJ.O o.o o.o o.o 1).0350 167.eo 104.15 18 3. 21 45.11 52.73 73.30 6.8.01 15.2~ o,o o,o o.o o.o

1-' ~.0)7') li.".H 104.5~ 1~ "· 24 45.50 54.7~ 73. A2 70,01 15. 7·9 o.o o.o o.o o.o 0 0'\ <'."1"1 I 71. O? l (IS. ()I 187. ?6 t.s .. CJO sr,. A'• 74.34 77.01 11'>.7!! o.o o.o o.o o.o

n.1:.! ·) 17 '.90 10<,4~ l8(J. ?9 4''• o I '>U.R9 7'• .ll7 74.01 lf,. ~ 1 o.o o.o o.o o.o "'· 0 .... '~ 1 r~.(-:oq IO~.R4 1" I. 32 46. 72 611.05 75.42 76.01 17.34 o.o o.o o.o o.o J.~4-;c J70,J7 1'1A.?b 19 '· 3 5 '• 7. l4 1'>3.01 75.97 78.0() 17.87 o.o o.o o.o o,o ~ ... (') .• !;,1 , ~(1 .. 1 h 1 ('II,. fl q J<')'i.lA '• 7. '16 613.0!, 76. 5?. AO.rJO 18.41 o.o o.o o.o o.o 0. J.:. ~:) 1'1?.25 I 0 I. 10 197.41 4 r. •J9 6 r. 12 77.06 R2.CJI} 18.95 o.o o.o o.o o·.o :~.~l:i10 1 94, ~4 1()7. ';? 199,44 4A,41 6'l,]R 77.63 R4.00 19.49 o.o o.o o.o o.o ('. )'i l ~ I ~f .• <.3 '1') ., • 'l5 201.47 4~.A3 71,?4 7£1.19 R6.00 20.03 o.o o.o o.o o.o

·;(!,('~~'"' 1 ~P. ~~ I !'.'1. l q ?Ol.CJO '•'l. ?5 71.10 7A. 74 RR.fJO 20.~7 o.o ' o.o .0. )'; '11) 190.60 10~.~1 20'>,S2 49,f,7 75.35 7'1.10 90.00 21.11 o.o ) o.o fl.()~'l:) 1'1?.69 I O<J. ?.3 207.S5 SC1.()9 77.41 7<1. 85 n.oo 21.65 o.o ) o.o 0. )'') l (\ 194,77 IO'l,l.!> zoo.ss 50.51 79,47 110.41 94,00 22.19 o.o ) o.o ('1 .. :)~'-J 1'1~.~" 11 o.o~ ?11. 6\ 5(),'l~ P.\.51 AO.'l6 91>.00 2?.B o.o ' o.o O,lf ~11 19A,03 110.49 211.64 51.35 A 3.59 AI. 52 9~.00 n.21 o.o ) o.o c.:}~ 70 211.01 11 (l, <>1 ?1') .. ~7 '>!. 71 8?.65 ~?.07 \00.00 23.81 0.1) ) . o.o n. i."', Q~'l ?0'. 011 Ill. 1? ? ! 7. TO 5?.19 R7.71 !12,63 102.00 24.35 o.o ) o.o C,J710 205.16 11 t. n 21'1. n 52.61 R9,H 83.18 104.01 24.89 o.o ) o.o 0,'")711 ?07.?4* 11? .14* Z?l. 71> ~1.04 ·ql. A~ A 3, 74 101>.01 25.43 o.o l __ __ ) 0~0

··1. 11~() ~oo.'1:1* 11°,5~" ."'?3 .. 7° 53.46 91,A'l A4.30 10R.Ol 25,97 o.o o.o o.o o.o f'.'l1'J 2!1. 41• !P,97* 2?5.q? lj"\, ~9 95.96 84,A6 110.01 76.S~ o.o 1),1) o.o o.o :), ')7Q, ? 1 ?·.51* 113.19* ?? 7. q/, 54.11 911.0? ?5.41 117.01 27.06 o.o o.o o.o o.o " • ~111 :l ?l'i.~O* ! ! "J,. q:'"" ?7f'J.~I1 54.74 100.0~ A5,'l'l 114.01 27,61 o.o o.o f),') o.o 0.0> 1 1 717.6 7* 114.24'" ?3l.'P .. 55.17" 10~.14 A6.S6 116,02 28. 16 o.o o.o o.o o.o ·"1. ("'~C}0 2! o. 'lf, .. ! 1'··· (, 1~ ., ,.~. 9"* t;'l. (JO• l(H,.:>o 67. t> \l~.rp ?1!.10 o.o o.n o.o o.o a. 1" 7 :) 22l.q'l• 11 s .II* 2~.:;.qq* 56.0~· 101',,27 A7.6q 120.0? 29.75 o.o o.o o.o o.o ·) ... f)~ ) ) ? :' .•• •)tt* ll'l,.')t,n 71'1.()?~ ,(,,. 4 7• 1 Of!, ll RA.?5 1?'2.')~ ?'"J. 19 o.o !J,O o.o o.o ) • 0; 1 ') ? "'! ''• t'J'•· ! ! <;. <)q>l< ?40.0~. 51), 90* 110. ~'l Aq,ql 124.0l 30.34 o.o o.o o.o 0.0· ('. "),1 "'J ? lQ. 1) 11'-.42 242.0~~ .<;7.1'1* 112.45 A'l, 'i7 171>. ·n 30.B~ o.o o.o o.o o.o "· O'l" 0 2o'l.2?. lV>o 97 244. l ?J!! <;7,71'>* ll4,5? 89.94 128.')4 ~1.4? o.o o. ) • 0 C' .. t)•) 7J :' 1.'. '1 117. 'I! 24 f,.,. I 'I• ~11 .. 20• 11 f1 .,.ljR t')O .. r;o llO.IJ'• 11. 'If, (),') o. ) • 0

).~:;.')') 234.41 117. 7f> ?.48.1 9" 5R.63* 11~.64 91.06 13?.05 1?..50 o.o o. J. 0

l, 111 'l ?1 ''• ~() IIR.?I ?sn.??• <;<J.07" 1?0. 71 91.62 1'4,05 11,1)4 o.o o. ).0 '),\'"1~) 2 ~ p. 5'l 1 i q, A6 z<;z.~~· 5'1.~0* 122.77 CJ2.18 136.06 3'~.58 1),0 o. J.O

FIGURE 3-10. CONTINUED f "';.

' .

Page 119: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

REFERENCES

(1) McHenry, R. R., Segal, D. J., "Determination of Physical Criteria for RoadsideEnergy Conversion Systems," CAL No. VJ-2251-V-1, July, 1967.

(2) McHenry, R. R., "An Analysis of the Dynamics of Automobiles During Simultaneous Cornering and Ride Motions," Institution of Mechanical Engineers Symposium, ''Handling of Vehicle Under Emergency Conditions," 8 January, 1969.

(3) McHenry, R. R., and Deleys, N.J., "Vehicle Dynamics in Single Vehicle Accidents: Validation and Extensions of a Computer Simulation", CAL No. VJ-2251-V-3, December, 1968.

107

Page 120: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since
Page 121: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

APPENDIX A

108

Page 122: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

.APPENDIX A

General Abbreviations

CAL Cornell Aeronautical Laboratory

CAL-COMP- California Computer Products, Inc.

CALSVA - Cornell Aeronautical Laboratory Single Vehicle Accident

HVOSM - Highway-Vehicle-Object-Simulation Model

TTl - Texas Transportation Institute

109

Page 123: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

' .

' \

APPENDIX B

110

Page 124: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

APPH1DIX B - DEFINITIONS OF INPUT PARAMETERS, LISTED ALPHABETICALLY

DESCRIPTION ICARD

A=OIST~NCE ALONG THE VEHICLE-FIXED X-AXIS FROM THE SPRUNG M :R OF GRAVITY fO THE CENTERLINE DF THE FRONT WHEELS 4

AAA=APPLICABLE ONLY IF MODE = O, SEE PlNTl ROUTINE 2 AKF=SUSPENSION LOAD-DEFLECTION RATE· FOR A SINGLt WHEtL, EFFECTIVE AT THE

WHEEL IN THE QUASI-LINEAR RANGE ABOUT THE DESIGN POSITION FOR FRGNT SUSPENSION 5

AKPS=LOAO-DEFLECTION OF THE ELASTIC STOPS IN THE STEERING SYSTEM, EFFECTIVE AT THE WHEELS (BOTH SIDES lNCLUDEDt 17

AKRS=REAR AXLE ROLL-STEER COEFFICIENT 6 AKR=SUSPENSION LOAD-DEflECTION RATE FOR A SINGLE WHEEL, EFFECTIVE AT THE

~ WHEEL IN.THE QUASI-LINEAR RANGE ABOUT THE DESIGN POSITION FOP REAR ~ SUSPENSION 6

. AKT=~ADIAL TIRE RATE IN QUASI-LINEAR RANGE FOR A SINGLE CARD 7 AKY=LOAO-DEFlcCTION CHARACTERISTIC OF VEHICLE STRUCTUPE 19 AM~=TIRE-TC-GROUND FRICTION COEFFICIENT 7

A~UB=SPRUNG MASS-TO-BARRIER FRICTION COEFFICIENT 19 AMUC=TIRE-TO-CURB FKICTION COEFFICIENT 15

AMUXY=FRICTION COEFFICIENT FOR A PARTICULAR FRICTION PATCH 14 AQ=COEFFIClENT IN THE FUNCTIONAL RELATlONSHIPS FITTED TO TIRE FORCE

DATA 7 Al=CCEFFICIENT IN THE FUNCTIONAL RELATIONSHIPS FITTED TO TIRE FORCE

DATA 7 A2=COEFFICIENT IN THE FUNCTIONAL RELATIONSHIPS FITTED TO TIRE SIDE FORCE

DATA 7 ~3=COEFFICI~NT IN THE FUNCTIONAL RELATIONSHIPS FITTED TO TIRE SIDE FORCE

DATA 7 A4=COEFFICIENT IN THE FUNCTIONAL RELATIONSHIPS FITTED TO TIRE SIDE FORCE

DATA 7 B=DISTANCE ALONG THE VEHICLE-FIXED X-AXIS FROM THE SPRUNG MASS :R OF

. '

Page 125: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

., ''

GRAVITY TO THE CENTERLINe OF THE REAR WHEELS tiET=APPLICABLE ONLY IF MODE = O, SEE PINTl ~OUTINE

CF=VISCOUS DAMPING COEFFICIENT FO~ A SINGLE WHEEL, EFFECTII fOR FRONT SUSPENSION

WHEfl,

CFP=COULOMB DAMPING FUR A SINGLE WHEEL, EFFECTIVE AT THE WHEEL, FOR FRCNT SUSPENSION

CONS=RATIO OF CONSERVED ENERGY TO MAXIMUM ENERGY ABSORBED BY BARRIER CPSP=COULOMB RESISTANCE iN STEERING SYSTEM, EFFECTIVE AT THE WHEELS,

4 2

5 L9

(BOTH SIDES iNCLUDED, 17 CR=VlSCOUS DAMPING COEFFICIENT FOR A SINGLE WfEELt EFFECTIVE AT THE WHEEL,

FOR REAR SUSPENSION CRP=COULOMB DAMPING FOR A SINGLE WHEEL, EFFECTIVE AT THE WHEEL, FOR REAR

SUSPENSION DDEL=INCREMENT FOR DELTA(FJ OELB=INITIAL VALUE FOR DELTA(F) UELE=FINAL VALUE FOR DELTA{F)

DELTB=INCREMENT OF INTEGRATION DURING BARRIER COLLISION DELTC=INCREMENT OF INTEGRATION DURING CURB IMPACT

QELYBP=SIZE OF INCREMENTING STEP IN ESTABLISHING FORCE BALANCE BETw~~~ VEHICLE AND BARRIER

DELlO=INITIAL VALUE OF DELTAilJ (SUSPENSION DEFLECTICN RELATIVE VEHICLE FROM THE POSITION OF STATIC EQUILIBRIUM AT THE RIG

THE ~ONT

6

6 12 12 il 19 15

18

10 WHEEL CENTER) DELlOD=lNITIAl VALUE CF SUSPENSION VELOCITY (FIRST TI~E DERIVATIV OELTA(l)ln

DELTA(2J (SUSPENSION DEFLECTION RELATIVE IV .rlE DEL20=1NITIAL VALUE OF VEHICLE FROM THE WHEEL CENTER)

DEL20D=INITIAL VALUE OF DEL3C=INITIAL VALUE OF

VEHICLE FROM THE ROLL CENTER)

POSITION OF STATIC EQUILIBRIUM AT THE LEFT FRONT 10

SUSPENSION VELOCITY tFIRST TIME DERIVATIVE OF OELTAC2Jl0 DELTA(3) (SUSPENSION DEFLECTION RELATIVE TO THE . POSITION OF STATIC EQUILIBRIUM AT THE REAR AXLE

DEL30D=INITIAL VALUE CF SUSPENSION VELOCITY (fiRST TIME DERIVATIVE DTCOMP=INCREMENT OF INTEGRATION DTCMPl=U,Q,PROGRAM COMPUTES INITIAL POSITION Of VEHICLE TO REST 0~

=i,O, USER PROVIDES ALL INITIAl POSITION DATA DTPRNT=OUTPUT INTERVAL

DRWHJ=INCREMENT VALUE OF R(W)•H'(J) FOR F'(J) TABLE

10 ELTA(3)l~

1 AIN l

1 1

16

Page 126: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

,

E~=APPLIC~BLE ONLY IF MODE = Q, SEE PINTl ROUTINE 2 2 tBAR=APPLICABLE ONLY IF MODE = O, SEE PlNTL ROUTINE

EPSB=ACCEPTAblE ERROR IN fORCE BALANCE BETWEEN VEHICLE STRUC EPSF=FRICTION LAG IN FRONT SUSPENSICN TO PREVENT EXTRANEOUS I

8ARRifRl9 ONS

INDUCED BY ROUND-OFf ERROR IN SUSPENSION VELOCITIES EPSPS=FRICTION LAG IN STEERING SYSTEM

EPSR=FRICTION LAG IN REAR SUSPENSION TO PREVENT EXTRANECUS OSCILLATIONS INDUCED BY ROUND-OFF ERROR IN SUSPENSION VELOCITIES

EPSV=FRICTlON LAG IN VEHICLE-TO-BARRIER FRICTION FORCE FRFAC=COEFFICIENT OF FRICTION BETWEEN THE VEHICLE AND TERRAIN

G=386.4 HMAX=APPLICABLE ONLY IF MODE = O, SEE PINTl ROUTINE HMIN=APPLICABLE ONLY IF MODE = O, SEE PINTl ROUTINE INDB=l.v RIGID BARRIER FINITE VERTICAL DIM. IND~=2.J RIGID BARRIER INFINITE VERTICAL DIM. INDB=3.·) DEFORMABLE BARRIER FINITE VERTICAL DIM. 1ND8=4.~ DEFORMABLE BARRIER INFINITE VERTICAL DIM.

INDCRB=0.: NC CURB INPUT =1.0 ACTIVATES ST~ER DEGREE OF FREEDOM AND RADIAL SPRIN& TIRE ~ODEL

(CURB INPUT) =-1.0 ACTIVATES STEER DEGREE ONLY {BARRIER INPUT)

ITEMP(l)=TEMPLATE NO. (I.E., 1,2,3 ••••• 21, MOOE=MODE OF INTEGRATION=O.O VARIABlE ADAMS-MOULTON

=1.0 RUNGE-KUTTA =2.0 FIXED ADAMS-MOULTON

NBX=NO. QF TEMPLATES ALONG X1 -AXIS NBY=NO. OF POINTS IN Y' DIRECTION ON EACH TEMPLATE

NMUXY=NO. OF VARIABLE COEFFICIENr FRICTION PATCHES NTBLt= =0.0 MEANS DO NOT READ PSifF) TABLE NTBL2= =0.0 MEANS DO NOT READ TQ(F) TABLE NTBL3= =0.0 MEANS DO NOT READ TQ(R) TABLE

NVP=NUMBER OF POINTS ON THE VEHICLE WHICH ARE TO BE MONITORED FOR CONTACT wiTH THE GROUND

OMEGF=MAXIMUM SUSPENSION DEFLECTIONS, FROM THE POSITION OF STATIC RELATIVE TO THE VEHICLE, FOR QUASI-LINEAR LOAD-DEFLECTION CHARACTERISTICS OF THE SPRINGS FOR FRONT SUSPENSION

OMEGR=MAXIMUM SUSPENSION DEFLECTIONS, FROM THE POSITION OF STATIC

•' . '

LIBRIUM

LIBRIUM

5 17

6

1 1

14 2 2 2

14 14 !4 13 13 13 23

•'

Page 127: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

., ,.

RELATIVE TO THE VEHICLE, FOR QUASI-LINEAR LOAO-DEFLtCTIC CHARACTERISTICS OF THE SPRINGS FOR REAR SUSPENSION 6

uMEGT=DECIMAL PORTION OF A(2)AT WHICH THE ASSUMED PARA80LIC Vt Jf SIDE FORCE WITH TIRE LOADING IS ABANDONED TO PRECLUDE REVERSt SIGN OF THE SIDE LOAD UNDER CONDITICNS OF EXCESSIVE TIRE LOADING 7

OMGPS=ANGULAR OEFLECTIO~ OF THE STEERING SYSTEM AT WHICH ELASTIC STOPS ARE ENCOUNTERED 17

PHlC=FRONT WHEEL CAMBER lZ PHICl=FIRST CURB SLOPE ECOUNTERED BY THE VEHICLE 15 PHICl=SECONO CURB SLGPE ENCOUNTERED BY THE VEHICLE 15

PHlLRO=INITIAL VALUE OF PHl(R) (ANGULAR DISPLACEMENT OF THE REAR AXLE RELATIVE TO THE VEHICLE ABOUT A LINE PARALLEL TO THE X-AXIS THROUGH THE REAR AXLE ROLL CENTER, POSITIVE WHEN CW VIEWED FROM REARI 10

PHIO=INITIAL VALUE OF PHI lEULER ANGULAR COORDINATES OF SPRUNG MASS RELATIVE TO SPACE-FIXED SYSTEM» 8

~ PHlkOD=INITIAL VALUE OF ANGULAR VELOCITY OF REAR AXLE (FIRST TIME DERIVATIVE .P. OF PHI(R) 1_:;

PO=lNITIAL VALUE CF P <SCALAR COMPONENT OF SPRUNG MASS ANGULAR VELOCITY, TAKEN ALONG X-AXIS 8

PQkMI~=STOPPlNG TEST=C.O 1 PSIF=STEERING ANGLE OF FRONT WHEELS RELATIVE TO VEHICLE COOROIN, 1XES 13

SYSTEM, POSITIVE FOR CLOCK-WISE STEER AS VIEWED FRO~ ABOVE lCLE, DEGREES

PSIFDO=INITIAL VALUE OF STEERING ANGULAR VELOCITY (FIRST TIME OER :vE OF PSUF)) 8

PSIFIO=INITIAL VALUE OF PSICFJ (STEER ANGLE OF FRONT WHEELS RELATIVE TO VEHICLE COORDINATE AXES SYSTEM, POSITIVE FOR CW STEER AS VIEWED FROM ABOVE VEHICLE) 8

PSIO=INITIAL VALUE OF PSI (EULER ANGULAR COORDINATES OF SPRUNG MASS RELATIVE TO SPACE-FIXED SYSTEM) 8

QO=INITIAl VALUE OF Q (SCALAR COMPONENT OF SPRUNG MASS ANGULAR V~l nciTY, TAKEN ALONG Y-AXIS ~

RF=AUXILIARY ROll STIFFNESS AT THE FRONT SUSPENSIGN 5 RHO=DISTANCE BETkEEN C.G. OF REAR AXLE AND REAR AXLE ROLL CENTE SITIVE

FOR ROLl CENTER ABOVE C.G. 4 RO=INITIAL VALUE OF R (SCALAR COMPONENT OF SPRUNG MASS ANGULAR :ITY,

TAKEN ALONG Z-AXIS 8

Page 128: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

R~=AUXILIARY ROLL STIFFNESS AT THE REAR SUSPENSIO~ R~=UNDcFLECTED RAOIU~ OF WHEELS

R~HJB=INITIAL VALUE OF R(W)-H'(J) FOR F'{J) TABLE R~HJE=FINAL VALUE OF R(W)-H'(J) FOR F 1 (J) TABLE

,

SET=RATIO OF PERMANENT DEFLECTION TO MAXIMUM DEFLECTION OF SIGR=POLYNOMIAL COEFFICIENTS FOR BAR~lE~ FORCE-DEFLECTION Cl SIGT=MAXIMUM RADIAL TIRE DEFLECTION FOR QUASl-LINtAR LOAD-D~~LcLllUN

CHARACTERISTIC SSTIFF=STIFFNESS OF EQUIVALENT GROUND SPRING

TB=INITIAL TIME FCR DRIVER CONTROL INP0TS TE=FINAL TIME FOR DRIVER CONTROL INPUTS TF=TREAD AT FRONT SUSPENSION

THETAO=INlTIAL VALUE OF THETA (EULER ANGULAR COORDINATES OF SPRUNG MASS RELATIVE TO SPACE-FIXED SYSTEM)

THMAX=VALUE OF THETA AT WHICH WE SHIFT PLANES USUALLY=7C DEGREES TINCR=INCREMENT TIME FOR DRIVER CONTROL INPUTS

Tl=END TIME TO=START TIME

TUF=APPLIED TORQUE FOR A SINGLE FRONT WHEEL, EFFECTIVE AT THE WHEEL (POSITIVE FOR TRACTION, NEGATIVE FOR BRAKING), LB.-FT.

TQR=APPLIED TORQUE FOR A SINGLE REAR WHEEL, EFFECTIVE AT THE WHEEL (POSITIVE FOR TRACTION, NEGATIVE FOR BRAKING), LB.-FT.

TR=TREAD AT REAK SUSPENSION TS=DISTANCE BETWEEN SPRING CONNECTIONS FOR SOLID REAR AXLE UO=INITIAL VALUE OF U {SCALAR COMPONENT OF LINEA~ VELOCITY >RING

MASS TAKEN ALONG X-AXIS) UVWMI~=STOPPING TEST=O.O

VO=INITIAL VALUE OF V {SCALAR COMPONENT OF LINEAR VELOCITY OF SPRING MASS TAKEN ALO~G Y-AXI$)

WO=IN!TIAL VALUE OF W (SCAlAR COMPONE~T OF LINEAR VELOCITY OF SPRING MASS TAKEN ALONG Z-AXISl

XB=INITIAL x• VALUE FOR TERRAIN TABLES XCOP=INITIAL VALUE OF X1 (Cl (COORDINATE OF THE SPRI~G ~ASS C.G. RELATIVE

THE SPACE-FIXED COORDINATE AXES SYSTE~) XE=FINAL x• VALUE FOR TERRAIN TABLES

XINCR=INCREMENT X1 VALUE FOR TERRAIN TABLES XIPS=MOMENT OF INERTIA GF STEERING SYSTEM, EFFECTIVE AT FRONT W

..

~

4

l~

lt 19 20

7 23 13 i3

4

8 1

13 l 1

13

13

4 c

9 1

9

9 14

TO 9

14 14

Page 129: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

''

lBOTH SIDES INCLUDED) 17 XIR=REAR UNSPRUNG MASS MOMENT OF INERTIA ABOUT A LINE THROUG~ rER

OF GRAVITY AND PARALLEL TO THE X-AXIS 3 XIX=MOMENT OF INERTIA OF SPRUNG MASS AbOUT X-AXIS 3

XIXZ=PROOUCT OF INERTIA OF SPRUNG MASS 2

XIY=MOMENT OF INERTIA OF SPRUNG MASS ABOUT Y-AXIS 3 XIZ=MOMENT OF INERTIA OF SPRUNG MASS ABOUT Z-AXIS 3

XJ=SOIL DAMPING CONSTANT 23 XLAMF=MULTIPLES OF AKF FOR USE IN SUSPENSION DEFLECTION STOPS 5 XLAMR=MULTIPLES OF AKR FOR USE iN SUSPENSION DEFLECTION STOPS 6 XLAMT=MULTIPLE OF AKT FOR USE IN NONLINEAR RANGE 7

XMUF=FRONT UNSPRUNG MASS (BOTH SIOESI 3 XMUR=REAR UNSPRUNG MASS 3

XMS=SPRUNG MASS 3 XPS=PNEUMATIC TRAil OF FRONT TIRES t7

~ XTEMP(l)=X'(G) VALUE QF TEMPLATE ITEMP(I) l4 -~ XVF=OISTANCE FROM C.G. OF VEHICLE TO FRONT OF VEHICLE MEASURED ALONG X-AXISL6

XVP(I )=X-COORDINATE OF PCINT I ON THE VEHICLE, IN VEHICLE FIXED COORDINATES 23 XVR=DIST~NCE FROM C.Gs OF VEHICLE TO REAR OF VEHICLE MEASURED ALONG X-A~ISlB

Xl=COORDINATE OF ACCELEROMETER POSITION ON THE SPRUNG MASS, AT :H ACCELERATION COMPCNENTS ARE TO BE CALCULATED AND PRINTED au· tTH REFERENCE TO THE VEHICLE FIXED AXISJ 11

X2=COORDINATE OF ACCELEROMETER POSITION ON THE SPRUNG MASS, AT :H ACCELERATION COMPONENTS ARE TO BE CALCULATED AND PRINTED OU' tTH REFEReNCE TO THE VEHICLE FIXED AXIS) ll

YB=INITlAL Y1 VALUE FOR TERRAIN TABLES 14 YBPO=DlSTANCE BETWEEN BARRIER PLANE AND THE x•-z• PLANE 18 YCIP=INITIAL BOUNDARY OF CURB TO BE ENCOUNTERED BY VEHICLE (FIRST SLOPE

CHANGE) 1~ YCOP=INITIAL VALUE CF Y1 (CJ (COORDINATE OF THE SPRING MASS C.G. RELATIVE TO

THE SPACE-fiXED COORDINATE AXES SYSTEM) 9 YC2P=BOUNOARY OF SECOND SLOPE OF CURB 15

YE=FINAL Y' VALUE FOR TERRAIN TABLES 14 YINCR=INCREMENT Y' VALUE FOR TERRAIN TABLES 14 YGP(l,J)=Y'(G) VALUE OF POINT J=l 0~ TEMPLATE I TEMPLATE ITEMP(IJ 14

YGP(I,J+\)=Y' (G) VALUE GF POINT J=2 ON TEMPLAT~ ITEMP(l) 14 YV=DISTANCE FROM C.G. OF VEHICLE TO EITHER SIDE OF VEHICL~ MEASv~~u ALONG

Page 130: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

THE Y-AXIS YVP( I l=Y-COORDI~ATE OF PCINT I ON THE VEHICLE, IN VEHICLE FIXE

Yl=COOROINATE OF ACCELEROMETER POSITIO~ ON TrlE SPRUNG MASS ACCELERATICN COMPONENTS ARE TO BE CALCULATED AND PRINTE REFERENCE TO THE VEHICLE FIXtD AXlSl

,ATfS H TH

H Y2=COORDINATE OF ACCELEROMETER POSITION ON THE SPRUNG MASS ACCELERATION COMPCNENTS ARE TO HE CALCULATED AND PRlNTEu uu1 tWlTH REFERENCE TO THE VEHICLE FIXED AXIS)

, 0 ... 23

ll ZBBP=THE ELEVATION OF THE BOTTOM OF THE BARkiER RELATIVE TO THE X'-Y' PLANE 18 ZBTP=THE ELEVATIO~ OF THE TOP OF THE BAPRlER RELATIVE TO THE X'-Y' PLANE L8 ZCOP=lNITlAL VALUE OF Z'(C) (COORDINATE OF THE SPRING MASS C.G. RELATIVE TO

THE SPACE-FIXED COORDINATE AXES SYSTEM) ZC2P=ELEVATION OF CURB PROFILE AT YC2P

ZF=STATIC DISTANCE ALONG THE Z-AXIS BETWEEN THE C.G. OF THE SPRUNG MASS AND THE C.G.UF THE FRONT UNSPRUNG MASSES

ZGP{ 1, J l=Z' !G) VALUE OF POINT J=l ON TEMPLATE I TEMP( I I ZGP (! ,J+2l=l' (G) VALUE OF POINT J=Z ON TEMPLATE: I TEMP( I)

ZR=STATIC DISTANCE ALONG THE Z-AXIS BETWEEN THE C.G. OF THE SPRUNG MASS AND THE ROLL CENTER OF THE REAR AXLE

ZVB=DISTA~CE FROM C.G. OF VEHICLE TO BOTTOM OF VEHICLE MEASURED ALONG Z-AXIS

ZVP(l}=Z-COO~OINATE GF POINT I ON. THE VEHICLE, IN VEHICLE FIXED ( ZVT=DISTANCt FROM C.G. OF VEHICLE TO TOP OF VEHICLE MEASURED t

Zl=COOROINATE OF ACCELEROMETER POSITION .ON THE SPRUNG MASS, l ACCELERATION COMPONENTS ARE TO BE CALCULATED AND PRINTED C REFERENCE TO THE VEHICLE FIXED AXIS)

I NATES Z-AXIS

ICH WITH

Z2=COORDINATE OF ACCELEROMETER POSITION ON THE SPRUNG MASS, t ICH ACCcLtRATION CO~PONENTS ARE TO BE CALCULATED AND PRINTED OUT (WITH REFE~ENCE TO THE VEHICLE FIXED AXIS)

·' ''

Q

15

4 14 l4

4

18 23 18

11

11

. '

Page 131: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

.-

APPENDIX C

118

Page 132: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

APPENDIX C - LIST OF PROGRAM' VARIABLES

FORTRAN NAME

A,B

AO,Al,A2,A3,A4

AMTX

CF,CR

CFP,CRP

PROGRAM VARIABLE

a,b

/!AI/

C~o

c$0

119

DESCRIPTION

distances along the vehicle-fixed

axis from the sprung mass center of

gravity to the center lines of the

front and rear wheels, respectively,

inches.

= constant coefficients in parabolas

fitted to tire side-force properties.

=

matrix for transformations from the

veh:tcle-fixed coordinate system to the

space-fixed coordinate system.

transpose of //AJ/ Note that the

transpose and the inverse of

are identical, since /1 A// is

orthogonal.

1/Af/

. = intersection area of cutting plane l

with the sprung mass, in2.

= small-angle camber stiffness, lbs/radian.

small-angle cornering stiffness, lbs/

radian.

viscous damping coefficient for a

single wheel, effective at the wheel

for the front and at the spring for

the rear suspension, at the front and

rear, respectively, lb-sec/in.

coulomb damping for a single wheel,

effective at the wheel for the front and

at the spring for the rear suspension,

at the front and rear, respectively, lbs.

Page 133: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

CPSF

AS,BS,CS

AX.,BX,CX

AY,BY,CY

CONS

Dl,D2,D3

FC

c' V'"

CAi} b i .

c· l

a'·? ,• bi c· t

a'"., b, . ,c):. I .._ ( l

C.Ot-JS

fc. I

120

= coulomb resistance in steering sy

effectivt.~ Gt the wheels (hnth !;i.d

included), lb-in.

directional components of a line pcrpcn-·

dicular to both the normal to the wheel

plane and the radial tire force, ~~ 4 directional components of lines in the

= cutting plane l , perpendicular to the

line between { ')( 1 1 Y, , 2: , ) ~ ( ")('Z., Y.,_ ,z.~. );

= direction components of a line per

dicular both to a normal to the ti

terrain contact plane and to the w

axis, 'Xw. , at wheel <. '

= direction components of a line perpen­

dicular both to a normal to the tire­

terrain contact plane and to the

vehicle- fixed Y axis , at wheel ,

= direction components of a line perpen­

dicular both to a normal to the tire­

terrain contact plane and the vehicle­

fixed X axis, at wheel (.

ratio of conserved energy to maximum

energy absorbed by barrier.

direction components of a line perpen

dicular to the normals of both the whoco:::.

plane and the tire-terrain contact plan•

at wheel (. •

= resistance force measured normal to the

contact surface of a deformable barrie

lbs.

= circumferential tire force (i.e., trac .

or braking force) at wheel l , lbs.

Page 134: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

FR

FRCP

FRtCT

FS

FlFI,FlRI

F2FI,F2RI

FCXU Fe'"'} FCYU F',vu.: FCZU F' C:2 u..:

FRXU .... ,} FRYU tfl."tiAi.

FRZU f:' '-~ui.

FSXU F" .... l

FSYU F $VU~ FSZU F"5-aui

SFXS L. Fvs ] SFYS lfvs

SFZS L_FZ$

121

vehicle force produced by deformation

of vehicle structure, measured normal to

contacted surface, lbs. .

radial tire force at wheel ' , lbs.

tire force perpendicular to the tire­

terrain contact plane at wheel ' , lbs.

friction force acting between the vehicle

sprung mass and a barrier.

= tire side force in the plane of the

tire-terrain contact patch, perpen­

dicular to the line of intersection

of the wheel and ground planes at wheel . { : lbs.

= coulomb damping forces in front and

rear suspensions, at an indivudual

wheel, effective at wheels in front and

at spring locations in rea~, lbs.

suspension forces produced by deflection

of springs and elastic travel limits,

lbs.

components of the circumferential tire

= force at wheel t. along the sprung mass

X , Y , Z. axes, lbs.

components of f"~ ~ at wheel L along

the sprung mass X , Y , 1! axes, los.

components of tire side force, F".s.: at wheel i along the sprung mass )( ,

'( , C. axes, lbs.

components of sprung mass impact force

along the sprung mass axes, lbs.

Page 135: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

. ·

FXU

FYU

FZU

GAIN

G

HI

XIR

XIX,XIY,XIZ,XIXZ

XIPS

AKF,AKR

F F . f )(UL r yu.i. ' i!U.L

(GAl~)

, ...,...,

tire force components along veh.ic1

axes, lbs.

value of circumferential tire force

that is used inapproximating the effects . of differential gears, at wheel t.. , lbs.

= tire side force for small slip angles

and for "equivalent" slip angles t

approximate camber effects, at whe

l. , lbs •

= Haximum possible tire side force a . wheel l , lbs.

= closed-loop steer control parameter,

radians/inch.

=

=

=

acceleration of gravity = 386.4 in/sec2

rolling radius of wheel £ , inches.

rear unsprung mass moment of inertia

about a line through its center of gravi

and parallel to the X axis, lb-sec2-in.

= moments and product of inertia of sprung

mass, lb-sec2-in.

= wheel identification-- 1, 2, 3, 4

RF, LF, RR, LR, respectively.

= moment of inertia of steering system

effective at front wheels (both sides

included), lb-sec2-in.

= suspension load-deflection rate for a

single wheel in the quasi-linear range

about the design position, effective a

the wheel for the front and at the spr

for the rear suspension, at the front

rear, respectively, lb/in.

Page 136: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

AKT

AKRS

AKPS

AKV

DELPTH

XMS

XMUF

M =M =~ . I 1. ~

XHUR

P,Q,R P. Q' R

XI'S

radial tire rate in quasi-linear range

for a single tire, lb/in.

= rear axle roll-steer coefficient

(positive for roll understeer)

=

load deflection rate of elastic stops

in the steering system, effective at

the wheels (both sides included),

lb-in/radt reference Fig. C-1.

load-deflection characteristic of vehicle 3 structure, lb/in .

time increment between sampling times

for closed-loop steer control, sec.

sprung mass, lb-sec2/in.

front unsprung mass (both sides), 2

lb-sec /in.

= front unsprung mass at a single wheel,

lb-sec2/in.

=

=

123

rear unsprung mass, lb-sec2/in.

components of moments on sprung mass

produced by sprung mass impact forces,

lb-in.

moments produced by forces acting on

the unsprung masses, lb-in.

rolling moment acting on the rear

axle, lb-in.

scalar components of sprung mass

angular velocity, taken along X , V -;!__ axes, respectively, radians/sec.

pneumatic trail of front tires, incheR.

Page 137: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

RF ,RR

RW

•'

SET

SI S· '

t

DELTC

TF,TR

TI T· l

auxiliary roll stiffness (i.e., roll

stiffness in excess of that corres-

pending to the front wl1eel rates in

ride and to the rear spring rates and

spacing), at the front and rear

suspensions, respectively, lb-in/radian.

= undeflected radius of wheels, inches.

= constants for barrier face plane, to1

plane and bottom plane, in.

the two heights and base, respective]

of the triangles used in calculation

of the intersection area at cutting 0

plane ( , in.

= ratio of permanent deflection to

maximum deflection of barriero

= total suspension force produced by the

combination of springs, travel stops,

viscous damping, friction, and

auxiliary roll stiffness, effective

=

at the wheel for the front suspension

and at the spring location for the rear

suspension, at wheel i. , lbs.

polynomial coefficients for curves

defining desired vehicle path.

time, seconds.

= time increment size used during curb

contact, sec.

tread at front and rear suspensions,

respectively, inches.

circumferential tire force corresponding . to the applied torque at wheel l , whieh

~s suhjected to force-limiting logic, lbs.

Page 138: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

TQF,TQR

TS

UG

u,·v,w

I I ' u,v,w

U, I I . ,,tr.,,w,

125

tabular inputs of applied torque for

a single wheel, effective at the

wheel, for front and rear wheels,

respectively (positive for traction,

negative for braking), lb~ft.

= distance between spring connections

for solid rear axle, inches •.

coulomb friction torque in steering

system, effective at wheel l

lb-in.

resistance torque produced by front

wheel steer angle stops, effective

at wheel ,· , lb-in.

= scalar components of linear velocity

of the sprung mass, taken along the

=

X , V , Z axes, respectively, inches/

sec.

scalar components of linear velocity

of sprung mass, taken along space­

fixed 'X/ J y 1

' :z I aXeS' respeCtiVely'

inches/sec.

forward velocity of wheel center in

the direction parallel to the tire­

terrain contact plane, inches/sec.

absolute value of u~i·

algebraic sign of ()~t .

scalar components of the velocity of

the three or four points that define

the intersection area of the barrier

and the vehicle along the space-fixed

axes, in/sec.

Page 139: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

VG

Xl,Yl,Zl

X2,Y2,Z2

X

VTAN

X,'I,Z

v' y' 2' " t )

X',, Y, , Z, (

Xz , V z., Z. 1 )

X' 8 8 ' y 8 8 'z &8

= scalar components of the velocity of

the point of application of the spru

mass contact force along the space­

fixed axes, in/sec.

lateral velocity of the contact point

of wheel t in the direction parallel

to the tire-terrain contact plane,

inches/sec.

= velocity of the point of application

of the sprung mass impact force

tangential to the barrier, in/sec.

= vehicle reference dimension for

closed-loop steer control, inches.

= coordinates of a point relative to

the vehicle-fixed coordinate axes

=

=

system, inches.

coordinates of a point relative to

the space-fixed coordinate axes system,

inches.

coordinates of accelerometer positions

on the sprung mass, at which accelera­

tion components are to be calculated

and printed out, inches.

= coordinates of the intersection of the

'{' axis with barrier cutting plane ( ,

in the vehicle-fixed axes, inches.

=

126

coordinates of the intersection of the

2:' axis with the barrier top plane

in the vehicle-fixed axes, inches.

coordinates of the intersection of the

~' axis with the barrier bottom plane

in the vehicle-fixed axes, inches.

Page 140: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

XCP,YCP,ZCP

YCIP

XC2P

ZC2P

XCPP,YGPP,ZGPP

ZF

1 y' I

XcPnt a•Z:c""'

Y~.

, v' . '<, y' '( PI t U. ' f\ ' P4-

I

Z-c:z ..

127

= coordinates of vehicle corner point

n in the space-fixed axes, inches.

= coordinates of the sprung mass center

of gravity relative to the space­

fixed coordinate axes system, inches.

= coordinates of the centroid of the

intersection area on barrier cutting

plane i , projected onto the actual

vehicle-barrier interface of the

previous time increment, inches.

= the coordinates of the point of

application of the sprung mass impact

forces, inches.

= '(' coordinate of barrier face plane,

inches.

initial boundary of curb to be

encountered by vehicle, inches.

= boundary of second slope change of

curb, inches.

= transition boundaries for polynomial

curves defining desired vehicle path,

inches.

= elevation of curb profile at '<~L

coordinates of the "ground corttact

point" of wheel i.. relative to the

space-fixed coordinate axes system,

inches.

static distance along the ~ axis

between the center of gravity (e.g.)

of the sprung mass and the e.g. of the

front unsprung masses (e.g. of the

individual front masses assumed to

coincide with the wheel centers), inches.

Page 141: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

ZR

ZPGI

XVF,XVR,YV,ZVT,ZVB

ZBTP,ZBBP

CAB

CBB

CGB

CAC

CBC

CGC

CAGZ

CBGZ

CGGZ

CAR

CBH

CGH

-, Z Gi.

Cos «e7 co3 ~ 8

cos ~ 5

cos oq,~

CoS I fa;

c.os l ~;

128

static distance along the Z axis

between the e.g. of the sprung ma~f

and the roll center of d1e rear

axle, inches.

= ground elevation with respect to

space-fixed ~,axis, under the center

of wheel (_ , inches.

= a vector through the ground contact

point, normal to the actual or

"equivalent" tire-terrain contact

plane, at wheel i (Fig. 4.4, Ref. 3

= vehicle dimensions for sprung mass

impact, inches.

= elevations of barrier top and bottom

planes for sprung mass impact, inches.

directional cosines of a normal to

= the barrier face plane relative to the

vehicle~fixed axes.

directional cosines of a normal to

the barrier top and bottom planes

relative to the vehicle-fixed axes.

direction cosines of a line perpendicu:

= to the normals both of the wheel plane

and the tire-terrain contact plane at

wheel .

c.

direction cosines of a normal to the

tire-terrain contact plane at wheel C

directional cosines of the resultant

radial force on wheel i to the vehicle-fixed axes.

with respect

Page 142: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

CAR

CBR

CGR

CAS

CBS

CGS

CAX CBX

CGX

CAY

C'BY

CGY

CAYlol

CBYW

CGYW

CAZW

CBZW

CGZW

BET

BETBR

BETP

cos "'i 1 cos~i

cos Yt

cos oC )C

cos ol., C0.5 (J ~ cos (~

} }

COS c>(. Yw~~ cos fl '(~oaf.

C.OS 0 vwi

directional cosines of a line to wheel

center ( , from the point of contact

= with the ground (or curb) of radial

spring j , relative to the space-fixed

axes.

=

=

=

=

direction cosines of the resultant

radial force on wheel ,· , with respect

to the space-fixed axes.

direction cosines of a line perpendicular

both to a normal to the tire-terrain

contact plane and to the wheel axis,

')( 14,);. , at wheel i

direction cosines of X axis.

direction cosines of Y axis.

direction cosines of a normal to the

plane of wheel l

directional cosines of the kingpin axis

of wheel {, (kingpin axis assumed to

lie in wheel plane)

= slip angle at wl1eel <. , radians.

= non-dimensional slip angle variable for .

wheel L •

= "equivalent slip angle" produced by

camber effects at wheel ( , radians.

= non-dimensional side force at wheel £

129

Page 143: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

DELTA

DEL1,DEL2,DEL3

EPSB

EPSF,EPSR

EPSV

EPSPS ~t.p-

( SJn ,( S), , C SJ t\

ZETA3,ZETA4

130

barrier deflection, inches.

= size of increment between barrier • cutting planes, l , inches.

. distance from the center of wheel (

to the "ground contact point", inches ..

suspension deflections relative to the

vehicle from the positions of static

equilibrium, at the right front wheE

center, left front wheel center, anc

rear axle roll center, respectively,

inches.

= permanent set of barrier, inches.

= acceptable error in force balance

,between vehicle structure and barrier,

lbs.

friction lag in front and rear suspensions

respectively, to prevent extraneous

oscillations induced by round-off error

in suspension velocities, in/sec.

= friction lag in vehicle-to-barrier

friction force, in/sec.

= friction lag in steering system, rad/se

= coefficients for parabolic .form of barr

load-deflection characteristics for

barrier unloading.

suspension deflections relative to the

vehicle, from the positions of static

equilibrium, measured at the right rear

and left rear spring positions, respec­

tively, inches.

Page 144: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PHGI,THGI

XLAMF , XLA.'fR

XLAMT

AMUB

AMUI

AMUXY

(/;,e,y

I

e,

131

Euler angular coordinates of sprung

mass relative to the· space-fixed axis

system, radians.

Euler angular coordinates of sprung

mass relative to indexed intermediate

reference axes. systems (i.e., to permit

unrestricted ranges of angular travel),

radians.

= angle between x-axis and tire-terrain . contact plane at wheel < , radians.

= Euler angular coordinates of terrain

profile relative to the space-fixed

axis system~ under the center of

wheel .

{ , radians.

multiples of K,, Kt( , respectively,

for use in suspension deflection stops

(Fig. 4.15, Ref. 3).

= multiple of KT for use in nonlinear

range of tire deflection (i.e., travel

limit).

= tire-to-ground friction coefficient.

= tire-to-curb friction coefficient.

= sprung mass-to-barrier friction

coefficient.

tire-to-ground friction coefficient

(dependent on tire location on terrain

surface).

tire-to-ground friction coefficient

(variable over terrain surfnc<•).

Page 145: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

RHO

SIGT

SIGR

PHICl,PHIC2

PHIR

PHil, PHI2 ¢,,~f.

¢,

(/)2.

132

distance between center of gravity o

rear axle and rear axle roll center,

positive for roll center above e.g.,

inches.

= maximum radial tire deflection for

quasi-linear load-deflection charac­

teristic, inches.

coefficients for polynomial form of

barrier load+deflection characteristj

(for increasing loading).

first and second curb slopes encountE

by the vehicle, radians.

= angular displacement of the rear axle

relative to the vehicle about a line

parallel to the x-axis through the

rear axle roll center (positive when

clockwise as viewed from the rear),

radians.

= right front and left front wheel camber

angles, respectively, relative to the

vehicle-fixed coordinate axes (positive

when clockwise as viewed from the rear),

radians.

¢c evaluated for <8+= ~~ (RF wheel)l -¢c evaluated for O..r = 0 z. (LF wheel).

where ¢-e. VS d~ = Tabular Input.

angle between Y-axis and tire-terrain

contact plane at wheel { , radians.

camber angle of wheel t." relative to

J

its tire-terrain contact plane, radians.

Page 146: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PSIF,PSIFl,PSIF2

PSIIP

OMEGAF,OMEGAR

OMGPS

Figure C-1

= steer angle of front wheels relative

to vehicle coordinate axes system,

positive for clockwise steer as viewed

from above vehicle (assumed equal at

the two wheels), radians.

steer angle of rear wheels relative

to vehicle coordinate axes system,

positive for CW steer as viewed from

above vehicle, radians.

= steer angle of wheel c" in its tire­

terrain contact plane, radians.

= maximum suspension deflections, from

the positions of static equilibrium

relative to the vehicle, for quasi­

linear load-deflection characteristics

of the springs (Fig. 4.15, Ref.3), inches.

= angular deflection of the steering system

at which elastic stops are encountered,

radians. reference Fig. C-1.

STEERING SYSTEM ELASTIC RESISTANCE

I

FRONT WHEEL STEER ANGLE, f".r

STEERING SYSTEM ELASTIC RESISTANCE VS STEER ANGLE

133

Page 147: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

ONEGT

--

134

multiple of A2 at which the assume'

parabolic variations of small-angl'

cornering and camber stiffnesses with

tire loading are abandoned to preclude

reversal in the sign of the side force

under conditions of excessive tire

loadin~.

Page 148: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since
Page 149: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

_.

APPENDIX D

135

Page 150: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

Appendix D - Derivation of Vehicle-Ground Interaction

Inevitably, for certain combinations of vehicle-maneuvers and

terrain configurations, the vehicle body must come in contact with

the terrain. To incorporate the effect of this occurrence in the

vehicle's response, subroutine "VGCP" has been added to the original

CALSVA program.

This subroutine essentially monitors certain points on the

vehicle, selected and input by the user as explained in Part 2.1.

Whenever any of the chosen vehicle-points engage the terrain, contact

forces are computed and transferred to the center of gravity of the

vehicle. The magnitudes of these forces depend on soil stiffness,

soil damping characteristics, depth of penetration and velocity of

the vehicle-point in question.

It was decided, after trying other ideas, that the soil should

impart only two forces to the vehicle at the point in contact, namely

a force normal to the terrain surface and a frictional force tangent

to the terrain surface. To compute the magnitudes and directions of

these two forces, the following parameters are needed:

(1) The amount of soil penetration, in a direction normal to

the terrain surface, at the point of contact,

(2) The velocity vector of the point on the vehicle, in a

direction normal to the terrain surface,

(3) The velocity vector of the point on the vehicle, in a

direction tangent to the terrain surface.

136

Page 151: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

The derivation of each of these parameters follows, and in each

.case, the actual Fortran names of the variables are used.

Amount of Soil Penetration Normal to Terrain

Consider a point "I" on the vehicle body defined by coordinates

XVP(I), YVP(I), and ZVP(I) in vehicle-fixed coordinates,

X'

(space-fixed coordinate system)

Z I

y

z

Figure D-1. Coordinate Systems

137

(Vehicle with its vehicie­fixed coordinate system at center of gravity)

X

"I II

(XVP{T),YVP(I),ZVP(l))

Page 152: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

The coordinates of the vehicle point "I" in space-fixed coordi-

nates (XVPP(I), YVPP(I), ZVPP(I)) are obtained by:

= AMI' X !XVP(I))

YVP(I)

ZVP(I) EPP(I)l PP(I)

PP(I)

+

X' c

Y' c

Z' c

AMTX is a transformation matrix used to transform from vehicle-

fixed to space-fixed coordinates (see page 185, Ref. 3). X' Y' and c, c,

Z' are the coordinates of the vehicle center of gravity in the space­c

fixed system.

Now consider a top view (X'-Y' plane) of the terrain (Fig. D-2)

assuming that the vehicle point "I" lies somewhere between terrain

template (J) and terrain template (J+l), and points (K) and (K+l) on

these two templates. Let the point "PT" represent the point on the

terrain directly above or below (depending on whether contact occurs)

the point "I" on the vehicle. The coordinates of point "PT", in the

space-fixed coordinate system, are defined as XXX, YYY, and ZVPPGI;

therefore it necessarily follows that:

XXX = XVPP (I)

YYY = YVPP(I)

ZVPPGI = terrain elevation corresponding to XXX and YYY (computed)

Points Pl and P2 with coordinates as shown in Fig. D-2 are also

computed based on input terrain information. With these three points

(PT, Pl, P2), two vectors which lie on the terrain surface and extend

from point PT may be defined as follows:

138

Page 153: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

X'

P2(XGP(J+1,1),YYY,ZZ3)

1 K+1 Template(J+1)

P 1 ( X..XX, YY1 , ZZ 1 ) . .,_ __ _._~~P~T~X~XX::...l..Y~Y::...::Y~Z..,_V..,_PP;:;..;G....,I:=.L--..r-

)late(J) 1 K+1

~--------------------------~----------------------~..- Y'

Figure D-2. TOP VIEW OF TERRAIN

Page 154: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

PT Pl = (XXX-XXX)I + (YYl-YYY)J + (ZZl-ZVPPGI)K

or,

PT Pl = (YYl-YYY)J + (ZZl-ZVPPGI)K

PT P2 = (XGP(J+l,l)-XXX)I + (YYY-YYY)J + (ZZ3-ZVPPGI)K

or,

~ = (XGP(J+l,l)-XXX)I + (ZZ3-ZVPPGI)K

NOTE: I, J, and K represent unit vectors parallel to X', Y', and

Z', respectively.

Let N = ~ X PT P2, the inward normal vector to the terrain surface

Thus

or

at point PT.

I J

-N = 0 (YYl-YYY) (ZZl-ZVPPGI)

. (XGP(J+l,l)-XXX) 0 (ZZ3-ZVPPGI)

N = (YY1-YYY)(ZZ3-ZVPPGI)I + (XGP(J+l,l)-XXX)(ZZl-ZVPPGI)J

- (XGP(J+l,l)-XXX)(YYl-YYY)K

Since XVPP(I) =XXX and YVPP(I) = YYY~

N = (YY1-YVPP(I))(ZZ3-ZVPPGI)I + (XGP(J+l,l)-XVPP(I))(ZZl-ZVPPGI)J

- (XGP(J+l,l)-XVPP(I))(YYl-YVPP(I))K

"

140

Page 155: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

For convenience define:

AA = (YY1-YVPP(I))(ZZ3-ZVPPGI)

BB (XGP(J+l,l)-XVPP(I))(ZZl-ZVPPGI) (D-1)

CC = (XGP(J+l,l)-XVPP(I))(YYl-YVPP(I))

and N = (AA)I + (BB)J + (CC)K

From Equations D-1, it is now possible to define the equation of

a plane which is tangent to the terrain surface at point PT, and the

equation of a line which is normal to the terrain surface, passing

through point "I" on the vehicle (Fig. D-3).

Z'

Y'

-

X'

Line normal to terrain passing through point "I"

Plane tangent to terrain at point PT

N (inward normal vector)

Figure D-3. Tangent Plane, Normal Line

141

Page 156: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

The equation of the plane, passing through point PT, having N for

a normal is

(AA)X' + (BB)Y' + (CC)Z' = G (D-2)

where G = AA(XVPP(I)) + BB(YVPP(I))

+ CC(ZVPPGI).

The equation of the line passing through vehicle point "I" and

parallel to N is

X' - XVPP{I) AA

Y'-YVPP(I) "" = BB

Z' - ZVPP(I) cc (D-3)

Solving equations D-2 and D-3 simultaneously yields the coordinates

of point "IX" shown in Fig. D-3, i.e., the point of intersection of

the line and plane in question. These coordinates are

Xix = XVPP(I) + (AA) (XL)

H

Yix = YVPP(I) + (BB) (XL) (D-4) H

2ix = ZVPP(I) + (CC)(XL) H

where, XL = CC(ZVPPGI-ZVPP(I))

and H = (AA) 2 + (BB)2 + (CC) 2

To find the distance, DLTVG, between points "I" and "IX"

(Fig. D-3), define

142

Page 157: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

or

or

IIX (Xix-XVPP(I))I + (Yix-YVPP(I))J + (ZIX-ZVPP(I))K

IIX = ~((AA)I+(BB)J+(CC)K)

DLTVG is determined by lrrxl • Hence,

DLTVG

DLTVG = (XL) (VH) H

(D-5)

It is noted that "DLTVG" is computed only when the quantity

(ZVPP(I)-ZVPPGI) is a positive number, i.e., when point "I" is in

contact with the terrain. As such, "DLTVG" is the amount which point

"I" penefrates the terrain in a direction normal to the terrain plane.

Velocity Vector of Vehicle-Point "I", Components Normal and Tangent 'to Terrain

Since the solution of equations for the model is performed in

vehicle-fixed coordinates, the forces applied to the vehicle by the

soil are computed in vehicle~fixed coordinates rather than space-

fixed. Therefore N (vector normal to the terrain) must be converted

accordingly.

N (AA)I + (BB)J + (CC)K (space-fixed)

or

N (AV)f + (BV)J + (CV)K (vehicle-fixed)

where I, r. and [ are unit vectors parallel to X, Y, and Z, respectively

(vehicle-fixed coordinate system).

143

Page 158: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

By definition of AMTX (page 185 of Ref. 3),

{(M~ [ J {(AV)} (BB) = • AMTX (BV)

(CC) (CV)

and by the property that [AMTX]-l = [AMTX]T,

{(AV} [ ]T{(M)} (BV). = . AMTX (BR)

(CV) (CC)

thus completely defining N in the vehicle-fixed coordinate system.

To define the velocity vector of point "I" on the vehicle the

following known parameters are needed: U, V, and W which are the

scalar components of linear velocity of the center of gravity of the

vehicle taken along X, Y, and Z axes, respectively; and P, Q, and R which

are scalar components of vehicle angular velocity taken ·about X, Y, and

Z axes, respectively.

Let (VCG = ui + vj + wk) represent the linear velocity of the

vehicle center of gravity, and (w = Pi + Qj + Rk) represent the

angular velocity vector of the vehicle center of gravity and

(r = XVP(I)i + YVP(I)j + ZVP(I)k) represent the radius vector from the

ve.hicle center of gravity to the vehicle point "In.

- -Using the vectors VCG, w, and r, the velocity vector of paine "I"

(VI) is

VI = VCG + w x r

144

Page 159: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

and i

w x r p Q R

XVP(I) YVP(I) ZVP(I)

or

w x r = (Q(ZVP(I)) - R(YVP(I)) i

- (P(ZVP(I)) - R(XVP(I)) I

+ (P(YVP(I)) - Q(XVP(I))k

If VI is further defined as,

- -VI = VUPi + VVPj + VWPk

then

VUP U + Q(ZVP(I)) - R(YVP(I))

VVP = V + R(XVP(I)) - P(ZVP(I))

VWP = \.J + P(YVP(I)) - Q(XVP(I))

-At this point, with N and VI defined in the same coordinate system,

VI can be resolved into two components one normal to the terrain plane and

the other tangential to the terrain plane. Both of these components lie

in a plane defined by and containing both N and VI, as shown in Figure

D-4. The vector normal to this plane is defined by

i I

VI x N vur VVP VHP

AV BV cv

145

Page 160: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

/ /

I /

/ /

/

I I )

/ /

Plane contair

VI

VIN

VIT

N

lel to both planes

Terrain plane

= velocity vector of vehicle-point "I"

= no~l component of VI

= tan~ntial component of VI

Figure D-4. SCHEMATIC OF COMPONENTS NORMAL AND TANGENT TO TER OF VELOCITY VECTOR OF VEHICLE-POINT "I"

Page 161: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

or

VI X N (AVT)i + (BVT)j + (CVT)k

where

AVT = (VVP)(CV)- (BV) (VWP)

BVT (AV) (VWP) (VUP) (CV)

CVT = (VUP)(BV) (AV)(VVP)

The vector parallel to the intersection of the terrain plane with

the plane containing VI and ~ (Figure D-4) is defined by

N X (VI X N) =

or

i

AV

AVT

j

BV

BVT

k

cv

CV'l'

XIV = N X (VI X N) (AVNT)i + (BVNT)j + (CVNT)k

where

AVNT (BV)CVT) - (BVT)(CV)

BVNT = (AVT)(CV) - (AV)(CVT)

CVNT (AV)(CVT) - (AVT)(CV)

The magnitude of the tangential component of VI is expressed by

VMPT jvrl·cos a= VMP•cos a

147

Page 162: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

where

and

Also,

and

Then

VMP I VI I = ~ (VUP) 2 + (VVP)

2 + (VWP) 2

VI • XIV cos ex lvrl jxivl

VNTIM = fxivl = ~(AVNr) 2 + (BVNT)2 + (CVNT)

2

VI • XIV = (VUP) (AVNT) + (VVP) (BVNT) + (VHP) (CVNT)

VMPT = (VUP)(AVNT) + (VVP)(BVNT) + (VWP) (CVNT) VNTIM

The direction of the tangential component of VI is the same as

that of the unit vector UXIV, defined as

Hence,

XIV XIV "''XfV = VNTIM =jxttJl

VIT = VMPT (XIV) VNTIM

The magnitude of the normal component of VI is expressed by

VELPN (VMP) cos y

148

(D-6)

(D-7)

(D-8)

(D-9)

Page 163: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

\<There,

and

and

Then,

VMP = I vrl ' (Equation (D-6)

VI . N cos y =

l vrJ I Nl

VNTM I Nj

VI . N = (VUP)(AV) + (VVP)(BV) + (VWP)(CV) •

VELPN = (VUP)(AV) + (VVP)(BV) + (VHP)(CV) VNTM

(D-10)

The direction of.the normal component of VI is the same as that of

the unit vector UN, defined as

Hence,

- -- N N UN=--=--

/Nj VNTM

VELPN(N) VIN = VNTM

(D-11)

(D-12)

Using equations D-7 through D-12, the forces afforded by the soil

to the vehicle are computed. The soil is modeled as a spring having a

stiffness "SSTIFF" (lbs./in.) and a damper having a damping coefficient

"XJ" (sec./in.), at the point of contact.

149

Page 164: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

The force vector normal to the terrain is

FN = -K(UN)

where UN is defined by Equation (D-11) and K = ~STIFF){DLTVG)(l.O +

(XJ)(VELPN)). (Note DLTVG is defined in equation (D-5). For convenience,

re-define FN as.

where

FN = FNTXi + FNTY] + FNTZk

FNTX = -K(AV]_ VNTH

FNTY = -K(BV) VNTM

FNTZ - ;-K(CV) - VNTM

The force vector tangential to the terrain (friction force) is

FT = -(KK)(UXIV)

where UXIV is defined by equation (D-8) and,

-KK = (SSTIFF)(DLTVG)(FRFAC)

Note: FRFAC = Friction factor between vehicle and terrain

For convenience, re-define FT as,

FT = FRFCXi + FRFCYj + FRFCZk

150

(D-13)

Page 165: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

where

FRFCX --(KK)(AVNT) VNTIM

FRFCY = -~KK2~BVNT~ (D-14) VNTIM

FRFCZ = - ~KIQ ~CVNT2 VNTIM

The resulting force vector on vehicle-point "I" when terrain contact

oceurs can be expressed as

FRES = FN + FT = (FXVG)f + (FYVG)j + (FZVG)k

where

FXVG = FNTX + FRFCX

FYVG = FNTY + FRFCY (D-15)

FZVG = FNTZ + FRFCZ

Since the mass of the vehicle-structure is concentrated at a point

(the center of gravity), it is necessary that any force applied to the

vehicle-structure be transferred to that point. This transfer is

accomplished by applying the forces defined in equations (D-15) plus

an additional moment vector defined as

XMV = r x FRES

where

r = (XVP(I))i + (YVP(I))j + (ZVP(I))k

151

Page 166: Highway Vehicle Object Simulation Model User's Manual · Hayes E. Ross, Jr. 9. Performing Organization Name and Address 2. ... of the Highway-Vehicle-Object-Simulation-Model. Since

i j

XMV XVP(I) YVP(I)

FXVG FYVG

k

ZVP(I)

FZVG

If XMV is re-defined as

then,

XMV = (XMVGX)i + (XMVGY)j + (XMVGZ)k

~WGX = (YVP(I)(FZVG) - (FYVG)(ZVP(I))

XMVGY (FXVG)(ZVP(I)) - (XVP(I))(FZVG)

XMVGZ (XVP(I))(FYVG) - (FXVG)(YVP(I))

(D-16)

Therefore, in summary, the forces and moments. defined by equations

(D-15) and (D-16) are applied to the center of gravity of the vehicle

when contact occurs between some point on the vehicle-structure and the

terrain.

152