histology and embryology 1 . general histology cells smallest structures, varies in size, shape and...

Download Histology and Embryology 1 . General Histology Cells  Smallest structures, varies in size, shape and surface.  Cells posses properties

If you can't read please download the document

Upload: samson-newman

Post on 25-Dec-2015

219 views

Category:

Documents


2 download

TRANSCRIPT

  • Slide 1
  • Histology and Embryology 1 www.dentalelle.com
  • Slide 2
  • General Histology Cells Smallest structures, varies in size, shape and surface. Cells posses properties that permit: Excitability nerve cells conduct an impulse Synthesis aiding in the bodies function, such as glands Membrane transport nutrients are transported Reproduction union of sperm and ovum can lead to the formation of an offspring 2
  • Slide 3
  • Cell Junctions 3 Desmosomes cell-to-cell attachments; between ameloblasts and cells of stratified squamous epithelium that lines the oral cavity. Tight junctions cells attach to each other by fusion of their cell membranes; adjacent odontoblasts form tight junctions that prevent substances in the pulp from passing into the dentin. Gap junctions channel that runs between cells for communication of cell electrical impulses and passage for molecules; present amount some odontoblasts, allowing to coordinate their activity. Hemidesmosome attachment of a cell to a noncellular surface; basal layer cells of stratified squamous epithelium attach to the basement membrane by hemidesmosomes; present in epithelial attachment of the tooth
  • Slide 4
  • 4 The Cell
  • Slide 5
  • 5 Cells are surrounded by a cell membrane that separates them from the outside environment. 1. cytoplasm 2. organelles 3. inclusions 4. nucleus Specialization A) differentiation cells that recognize one another will group together B) organization of chemicals chemicals appear earlier in the embryo. Endocrine substances are produced by one type of cell and can affect other types of cells C) Cells tissues organs organ systems
  • Slide 6
  • Cell Membrane 6 Cell membrane A) Called a plasma membrane or plasmalemma; selectively permeable because it controls passage of materials in and out of the cell. Uses active transport, passive transport, or facilitated diffusion. Lipids and proteins are the major components (3:2 ratio of proteins) Structure is trilaminar, with bipolar membrane and a central core of lipids between two layers of protein Diffusion of small lipid-insoluble substances
  • Slide 7
  • 7
  • Slide 8
  • Fluid Mosaic Model 8 Shown on the previous slide Trilaminar structure composted of two facing layers of lipid molecules, into which larger globular proteins are inserted. Lipid bilayers consist mainly of phospholipid molecules; hydrophilic ends face the outer and inner surfaces of the cell; the hydrophobic ends attract and face each other. Globular proteins are integral proteins and peripheral proteins. Integral extend through the full width of the cell membrane and protrude and may have carbohydrate units attached to them. Peripheral are linked or attached to the cell membrane surface.
  • Slide 9
  • Cytoplasm 9 Translucent, aqueous, homogeneous gel enclosed in the cell by the cell membrane. The cytoplasm has three major elements; the cytosol, organelles and inclusions. All metabolic activities of the cell occur in the cytoplasm which include: Assimilation (digestion) Synthesis of substances such as proteins, proteoglycans, and glycoproteins A transport medium in which all nutrients and metabolites are carried from one organelle to another Presence of enzymes and electrolytes where specific metabolic reactions take place (glycolysis)
  • Slide 10
  • Nucleus 10 In cell biology, the nucleus is a membrane-enclosed organelle found in eukaryotic cells. It contains most of the cell's genetic material, organized as multiple long linear DNA molecules in complex with a large variety of proteins, such as histones, to form chromosomes. The genes within these chromosomes are the cell's nuclear genome. The function of the nucleus is to maintain the integrity of these genes and to control the activities of the cell by regulating gene expression the nucleus is, therefore, the control center of the cell. The main structures making up the nucleus are the nuclear membrane, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm, and the nucleoskeleton (which includes nuclear lamina), a mesh work within the nucleus that adds mechanical support, much like the cytoskeleton, which supports the cell as a whole.
  • Slide 11
  • Nucleus 11 Nuclear pores are required that regulate Nuclear transport of molecules across the envelope. The pores cross both nuclear membranes, providing a channel through which larger molecules must be actively transported by carrier proteins while allowing free movement of small molecules and ions. The interior of the nucleus does not contain any membrane-bound sub compartments. The best-known of these is the nucleolus, which is mainly involved in the assembly of ribosomes. After being produced in the nucleolus, ribosomes are exported to the cytoplasm where they translate mRNA.
  • Slide 12
  • Synthesis Activities 12 Three types of RNA are necessary for protein synthesis: Messenger RNA (mRNA) copies of short segments of deoxyribonucleic acid (DNA) Contains all genetic information of proteins Must pass through the ribosomes attached to the endoplasmic reticulum As it passes through the ribosomes, transfer RNA (tRNA) adds the exact amino acid to the newly forming proteins Protein synthesis can also occur on polyribosomes floating freely in the cytoplasm; proteins synthesized on the ribosomes attached to the ER are transported out of the cell
  • Slide 13
  • 13
  • Slide 14
  • Inclusions 14 Inclusions are nonliving metabolic by-products found in the cytoplasm. May appear as lipid droplets, carbohydrate accumulations, or engulfed foreign substances
  • Slide 15
  • Lysosomes 15 Intracellular digestion is carried out by organelles called lysosomes. There are several contexts in which cells need to carry out digestion. Include the recycling of cellular organelles and the breakdown of viruses and other cellular invaders. Single-celled organisms use lysosomes to digest their food as they have no process for extracellular digestion. The pH within a lysosome is very acidic and the enzymes within work most effectively in this environment. The components of a lysosome have evolved specific conformations that make them resistant to break down by the enzymes within the lysosome. During phagocytosis, lysosomes fuse with engulfed substances to form a secondary vesicle; the vesicle may then remain in the cell as a residual body or discharged outside the cell
  • Slide 16
  • Golgi Complex 16 The Golgi apparatus receives protein and/or lipid-filled vesicles that bud from the ER. The Golgi apparatus contains enzymes that modify proteins and lipids. For example, it can add a chain of sugars to proteins and lipids, thereby making them glycoproteins and glycolipids, which are molecules found in the plasma membrane. The vesicles that leave the Golgi apparatus move to other parts of the cell. Some vesicles proceed to the plasma membrane where they discharge their contents. Because this is secretion, note that the Golgi apparatus is involved in processing, packaging, and secretion. Other vesicles that leave the Golgi apparatus are lysosomes. The Golgi complex is the storage site for newly synthesized proteins and of course packaging and transporting many cell products. Also produces large carbohydrate molecules and lysosomes.
  • Slide 17
  • Mitochondria 17 Although the size and shape of mitochondria (sing., mitochondrion) can vary, all are bounded by a double membrane. The inner membrane is folded to form little shelves called cristae, which project into the matrix, an inner space filled with a gel-like fluid. Mitochondria are the site of ATP (adenosine triphosphate) production involving complex metabolic pathways. As you know, ATP molecules are the common carrier of energy in cells. A shorthand way to indicate the chemical transformation that involves mitochondria.
  • Slide 18
  • Mitochondria Continued 18 Mitochondria are often called the powerhouse of the cell: Just as a powerhouse burns fuel to produce electricity, the mitochondria convert the chemical energy of carbohydrate molecules into the chemical energy of ATP molecules. In the process, mitochondria use up oxygen and give off carbon dioxide and water. The oxygen you breathe in enters cells and then mitochondria; the carbon dioxide you breathe out is released by mitochondria. Because oxygen is used up and carbon dioxide is released, we say that mitochondria carry on cellular respiration.
  • Slide 19
  • Endoplasmic Reticulum 19 The endoplasmic reticulum (ER), a complicated system of membranous channels and flattened vesicles, is physically continuous with the outer membrane of the nuclear envelope. Rough ER is studded with ribosomes on the side of the membrane that faces the cytoplasm. Here proteins are synthesized and enter the ER interior where processing and modification begin. Some of these proteins are incorporated into membrane, and some are for export. Smooth ER, which is continuous with rough ER, does not have attached ribosomes. Smooth ER synthesizes the phospholipids that occur in membranes and has various other functions, depending on the particular cell. In the testes, it produces testosterone, and in the liver it helps detoxify drugs. Regardless of any specialized function, ER also forms vesicles in which large molecules are transported to other parts of the cell. Often these vesicles are on their way to the plasma membrane or the Golgi apparatus.
  • Slide 20
  • Filaments and Tubules 20 Associated with contractility in cells thread-like structures about 7-10nm thick Microfilaments act as a support system for the cell cytoskeleton Bundles of microfilaments form tonofibrils and become part of the attachment apparatus between cells (desmosomes)
  • Slide 21
  • Microtubules 21 Delicate tubes, 20-27 nm wide, found in cells that are undergoing mitosis and alterations in cell shape They have an internal support function, especially in long cellular processes such as neurites or odontoblastic processes They have the capacity to direct intracellular transport through the cytoplasm
  • Slide 22
  • Centrioles 22 Cylindrical structures composed of microtubule like components Centrioles function in cell replication and the formation of cellular extensions
  • Slide 23
  • Internal Environment and Homeostasis 23 Extracellular fluid Circulates outside and between cells Intracellular fluid Fluid located inside the cells of the body Homeostasis The delicate balance maintained between the two fluid compositions
  • Slide 24
  • Transport through the Cell Membrane 24 Diffusion - is the random movement of simple atoms or molecules from area of higher concentration to an area of lower concentration until they are equally distributed. To illustrate diffusion, imagine putting a tablet of dye into water. The water eventually takes on the color of the dye as the dye molecules diffuse. The chemical and physical properties of the plasma membrane allow only a few types of molecules to enter and exit a cell by simple diffusion. Lipid-soluble molecules such as alcohols can diffuse through the membrane because lipids are the membranes main structural components. Gases can also diffuse through the lipid bilayer; this is the mechanism by which oxygen enters cells and carbon dioxide exits cells. For example, consider the movement of oxygen from the lungs to the bloodstream.
  • Slide 25
  • Transport Continued 25 When you inhale, oxygen fills the tiny air sacs, or alveoli, within your lungs. Neighboring lung capillaries contain red blood cells with a very low oxygen concentration. Oxygen diffuses from the area of highest concentration to the area of lowest concentration: first through alveolar cells, then lung capillary cells, and finally into the red blood cells. When atoms or molecules diffuse from areas of higher to lower concentration across plasma membranes, no cellular energy is involved. Instead, kinetic or thermal energy of matter is the energy source for diffusion.
  • Slide 26
  • Osmosis 26 Osmosis is the diffusion of water across a plasma membrane. Osmosis occurs whenever an unequal concentration of water exists on either side of a selectively permeable membrane. (Recall that a selectively permeable membrane allows water to pass freely, but not most dissolved substances.) In a solution, water is more concentrated when it contains fewer dissolved substances, or solutes, (and thus is closest to pure water). Water is less concentrated as solute concentration increases. Osmotic pressure is the force exerted on a selectively permeable membrane because water has moved from the area of higher water concentration to the area of lower water concentration(higher concentration of solute).
  • Slide 27
  • Osmosis Continued 27 Tonicity is the degree to which a solutions concentration of solute-versus-water causes water to move into or out of cells. Normally, body fluids are isotonic to cells that is, there is an equal concentration of solutes (dissolved substances) and solvent (water) on both sides of the plasma membrane, and cells maintain their usual size and shape. Medically administered intravenous solutions usually have this tonicity. Body fluids which are not isotonic to body cells are the result of dehydration or water intoxication. Solutions (solute plus solvent) that cause cells to swell or even to burst due to an intake of water are said to be hypotonic solutions. If red blood cells are placed in a hypotonic solution, which has a higher concentration of water (lower concentration of solute) than do the cells, water enters the cells and they swell.
  • Slide 28
  • Continued 28 The term lysis refers to disrupted cells: hemolysis, then, is disrupted red blood cells. Solutions that cause cells to shrink or to shrivel due to a loss of water are said to be hypertonic solutions. If red blood cells are placed in a hypertonic solution, which has a lower concentration of water (higher concentration of solute) than do the cells, water leaves the cells and they shrink.
  • Slide 29
  • 29
  • Slide 30
  • Active Transport 30 Process used by the cell when large quantities of a substance are needed inside the cell and only a small amount of the substance is present in the extracellular fluid. Pumps the substance against its concentration gradient. ATP Sodium pump; important for the transmission of nerve impulses Almost all monosaccharides are actively transported into the body. Phagocytosis movement of a solid particle into the cell Pinocytosis movement of fluid into a cell, the cell invaginates around fluid
  • Slide 31
  • 31
  • Slide 32
  • 32 The Cell Cycle
  • Slide 33
  • 33
  • Slide 34
  • Cell Replication - Mitosis 34 Interphase: During interphase, the cell carries on its regular activities, and it also gets ready to divide if it is going to complete the cell cycle. For these cells, interphase has three stages, called G1 phase, S phase, and G2 phase. G1 Phase - it is best to think of G as standing for growth. Protein synthesis is very much a part of these growth phases. During G1, a cell doubles its organelles (such as mitochondria and ribosomes) and accumulates materials that will be used for DNA synthesis.
  • Slide 35
  • Continued 35 S Phase Following G1, the cell enters the S (for synthesis) phase. During the S phase, DNA replication occurs. At the beginning of the S phase, each chromosome is composed of one DNA double helix, which is equal to a chromatid. At the end of this phase, each chromosome has two identical DNA double helix molecules, and therefore is composed of two sister chromatids. Another way of expressing these events is to say that DNA replication has resulted in duplicated chromosomes. G2 Phase During this phase, the cell synthesizes proteins that will assist cell division, such as the protein found in microtubules. The role of microtubules in cell division is described later in this section.
  • Slide 36
  • Prophase 36 Several events occur during prophase that visibly indicate the cell is about to divide. The two pairs of centrioles outside the nucleus begin moving away from each other toward opposite ends of the nucleus. Spindle fibers appear between the separating centriole pairs, the nuclear envelope begins to fragment, and the nucleolus begins to disappear. The chromosomes are now fully visible. Spindle fibers attach to the centromeres as the chromosomes continue to shorten and thicken. During prophase, chromosomes are randomly placed in the nucleus.
  • Slide 37
  • Prophase Continued 37 At the end of prophase, a cell has a fully formed spindle. A spindle has poles, asters, and fibers. The asters are arrays of short microtubules that radiate from the poles and the fibers are bundles of microtubules that stretch between the poles. (A spindle resembles a lopsided bicycle wheel; the asters are the spokes.) Centrioles are located in centrosomes, at opposite poles of the cell. Centrosomes are believed to organize the spindle.
  • Slide 38
  • Metaphase 38 During metaphase, the nuclear envelope is fragmented, and the spindle occupies the region formerly occupied by the nucleus. The paired chromosomes are now at the equator (center) of the spindle. Metaphase is characterized by a fully formed spindle, and the chromosomes, each with two sister chromatids, are aligned at the equator
  • Slide 39
  • Anaphase 39 At the start of anaphase, the sister chromatids separate. Once separated, the chromatids are called chromosomes. Separation of the sister chromatids ensures that each cell receives a copy of each type of chromosome and thereby has a full complement of genes. During anaphase, the daughter chromosomes move to the poles of the spindle. Anaphase is characterized by the movement of chromosomes toward each pole and thus, to opposite sides of the cell.
  • Slide 40
  • Telophase 40 A nuclear membrane forms around each set of chromosomes Centrioles replicate in each cell
  • Slide 41
  • Dental Tissues 41 Organelles play an important role in providing energy (mitochondria) which helps in calcifying dental tissues Cell organelles help maintain tissues after the initial formation by the cell; fibroblasts contain increased numbers of cell organelles; these additional organelles aid fibroblasts in their synthesizing and secretory functions
  • Slide 42
  • Basic Tissues 42 Individual cells multiply and differentiate to perform specialized functions; groups of cells with similar characteristics and functions come together and form tissues. Tissue components Cells Intercellular substance product of living cells, passageway Tissue Fluid blood plasma that transports
  • Slide 43
  • Tissues in the Human Body 43 1.epithelial tissues (covering/lining); 2.connective tissues (support); 3.muscle tissues (movement); 4.nervous tissues (control).
  • Slide 44
  • Epithelial Tissue 44 Many epithelial tissues are classified according to their shape and the number of layers they possess: Some terms used to describe epithelia include: a. simple = single layer of cells; b. stratified = many layers of cells; c. squamous = flattened cells; d. cuboidal = square-shaped cells; e. columnar = elongated cells (i.e. taller than wide);
  • Slide 45
  • Types of Simple Epithelium 45 Simple squamous epithelium: a single layer of flattened cells; generally allows for easy passage (diffusion) of substances; Locations: 1.lining air sacs of lungs, 2.lining capillaries, 3.lining body cavities, 4.covering ventral organs;
  • Slide 46
  • Simple Cuboidal Epithelium 46 Simple cuboidal epithelium: a single layer of square-shaped cells with large centrally located nuclei; Functions: 1.secretion 2.absorption; Locations: 1.lining kidney tubules, 2.lining ducts of glands, 3.covering surface of ovary;
  • Slide 47
  • Simple Columnar Epithelium 47 A single layer of elongated cells with basally located nuclei (near basement membrane); 1.protection, 2.absorption, 3.secretion; 1.lining small intestine, 2.lining uterus; Free Surface Modifications: 1.microvilli (increase surface area) 2.goblet cells (secrete protective mucus);
  • Slide 48
  • Pseudostratified Columnar Epithelium 48 Pseudostratified columnar epithelium: a single layer of elongated cells with scattered nuclei (i.e. look stratified but are not); all cells touch the basement membrane Functions: 1.secretion, 2.protection; Locations: 1.lining trachea, 2.lining fallopian tube; Free surface modifications: 1.cilia (trap debris and aid in passage of mucus up and out of airway); 2.goblet cells (produce mucus which coats cilia and helps trap debris).
  • Slide 49
  • Stratified Epithelium 49 Stratified squamous epithelium: many layers of flattened cells; Function = protection; Locations: Non-keratinized: 1.lining mouth, 2.lining throat, Keratinized epidermis of the skin
  • Slide 50
  • Stratified Cuboidal Epithelium 50 Stratified Cuboidal epithelium: 2-3 layers of cuboidal cells. Locations 1.mammary glands 2.sweat glands 3.salivary glands 4.pancreas
  • Slide 51
  • Stratified Columnar Epithelium 51 Stratified columnar epithelium: 2-3 layers of elongated cells Locations 1.vas deferens 2.part of male urethra Transitional epithelium: many layers of cells that change shape in response to tension; Function = distensibility (i.e. stretches easily to allow urine to fill bladder); Location = lining urinary bladder and ureters.
  • Slide 52
  • Glandular Epithelium 52 Glandular Epithelium a.usually simple cuboidal columnar ET; b.Function = secretion; c.two major types: Exocrine glands secrete products into a duct, which opens onto: an external surface (i.e sweat gland) or an internal space/lumen (i.e. gastric gland);
  • Slide 53
  • Glandular Epithelium Continues 53 Endocrine glands secrete hormones into the blood. d.Exocrine glands structure varies tremendously Single cells (unicellular) goblet cells Many cells (multicellular) Simple unbranched Compound branched Tubular tube-like Alveolar sac-like e.Exocrine glandular secretions are classified according to whether they consist of cellular products or portions of glandular cells:
  • Slide 54
  • Continued 54 Three types of secretions. Merocrine: secrete fluid through cell membranes into a duct with no loss of glandular cells. Example = salivary glands. Apocrine: lose small portion of cells with secretion. Example = mammary glands; Holocrine: release entire cells into secretion. Example = sebaceous glands in skin (oil).
  • Slide 55
  • Connective Tissue 55 Ground Substance: a.amorphous material that fills the space between cells and fibers; b.Functions as a molecular "sieve" through which nutrients and gases can diffuse between cells and blood capillaries.
  • Slide 56
  • Major Cell Types 56 Major Cell Types: 1.fixed cell in each CT type: maintains constant numbers a.fibroblasts in CT proper b.osteocyte in bone, c.chondrocyte in cartilage. d.blast cells = undifferentiated cells that secrete matrix; fibroblast in CT proper, chondroblast in cartilage; osteoblast in bone;
  • Slide 57
  • Wandering Cells 57 wandering cells; are not always there a.migrating white blood cells that respond to tissue damage (i.e. inflammation) ; 2 types: mast cells: Secrete heparin to prevent excessive blood clotting Secrete histamine to promote inflammation macrophages or phagocytes:See Fig 5.14, page 142. Eat foreign material
  • Slide 58
  • Connective Tissues 58 Connective Tissue Fibers = 3 types: 1.Collagen fibers are composed of the protein collagen. a.provide high tensile strength to matrix; b.stain pink. 2.Elastic fibers are composed of the protein elastin. a.provide rubbery resiliency to matrix; b.stain purple; c.found in skin, lungs, and blood vessels.
  • Slide 59
  • Continued 59 3. Reticular fibers are fine collagenous fibers. a.form delicate networks; b.found in basement membranes; c.stain purple.
  • Slide 60
  • Categories of Connective Tissues 60 Embryonic CT = mesenchyme: from mesoderm a. Location = embryo; b. Function = gives rise to all other types of CT; 2. Connective Tissue Proper All CT with a semi- fluid ground substance a.Loose Areolar CT: gel-like matrix with fibroblasts, macrophages, mast cells and collagen and elastic fibers; Location = beneath epithelium, covering ventral organs; Functions = diffusion of nutrients and gases; wraps & cushions organs.
  • Slide 61
  • Continued 61 Connective Tissue Proper b. Adipose Tissue: closely packed adipocytes (fat-cells) with nuclei pushed to one side within matrix (resemble signet rings); Location = under skin (as subcutaneous layer), around kidneys and eyeballs, breasts; Functions = energy store, insulation, protection;
  • Slide 62
  • Continued 62 Reticular CT: network of reticular fibers within loose ground substance and reticulocytes. Location = basement membranes and lymphatic organs (i.e. lymph nodes, thymus, spleen); Function = support; Dense Regular CT (White Fibrous CT): primarily collagen fibers (pink) with few fibroblasts (you can only see nuclei!); Location = tendons, ligaments; Functions = attachment, tensile strength; Poor blood supply = slow to no healing; Dense Irregular CT: primarily collagen fibers randomly arranged; Location = dermis of skin, heart valves; Function = provides tensile strength; Elastic CT: primarily elastin fibers (purple); Location = lung tissue, wall of aorta; Function = durability with stretch;
  • Slide 63
  • Special Connective Tissue 63 Hyaline cartilage: amorphous (chondroitin and glucosamine) matrix that surrounds cells = chondrocytes (within lacunae); Locations = embryonic skeleton, costal cartilages, cartilage of the nose, trachea, and larynx; Function = support; Avascular = no healing. Elastic cartilage: same as above plus elastic fibers (purple); Locations = external ear, epiglottis; Functions = maintenance of shape plus flexibility; Fibrocartilage: less firm than above; Locations = intervertebral discs, pubic symphysis; Functions = tensile strength plus shock absorber;
  • Slide 64
  • Continued 64 Bone: hard, calcified matrix ([Ca 3 (PO 4 ) 2. (OH) 2 ] = rigidity), with collagen fibers (tensile strength) and cells = osteocytes (within lacunae); Location = bones of the skeleton; Functions = protection, support, movement, calcium store and hematopoiesis; Highly vascular = fast healing; Blood: red cells (erythrocytes), white cells (leukocytes), and platelets (thrombocytes) in a fluid matrix called plasma; Location = within heart and blood vessels; Function = transport of gases, nutrients, wastes.
  • Slide 65
  • Types of Muscle Tissue 65 1. Skeletal Muscle Tissue a.Structure: long thin cells (fibers) with many nuclei; alternating areas of light & dark (striations); Location: attached to bones; Function: move bones of skeleton; Control: voluntary = conscious. 2. Cardiac Muscle Tissue a.Structure: network of cells with one centrally located nucleus; intercalated discs (where 2 cells meet); striations; Location:heart; Function:to pump blood from heart -----> lungs; to pump blood from heart -----> body; Control: involuntary = unconscious.
  • Slide 66
  • Continued 66 3. Smooth Muscle Tissue a.Structure: spindle-shaped cells with one centrally located nucleus; no striations; Location: walls of hollow visceral organs; walls of blood vessels; attached to hair follicles in the dermis Function: movement of food through digestive tract; vasoconstriction; Control: involuntary = unconscious.
  • Slide 67
  • Nerve Tissue 67 1. Primary cells = neurons which respond to changes in their surroundings (stimuli); 2.neurons are surrounded by neuroglia (supporting cells); B.Locations: Brain, Spinal Cord, Nerves C.Function: Coordination or integration of body parts (i.e. to transmit signals from body parts to brain and from brain back to body parts); No reproduction of neurons, only neuroglia can divide.
  • Slide 68
  • Epithelial Membranes 68 DEFINITION: An epithelial membrane is a continuous multicellular sheet composed of at least two primary types of tissue: an epithelium bound to a discrete underlying CT tissue. B. Three Common Types: 1.Cutaneous Membrane: a.skin; consists of keratinized stratified squamous ET firmly attached to a thick layer of dense irregular CT. 2.Mucous Membranes (mucosae): a. line body cavities that open to the outside; b. include lining of digestive, respiratory and urinary tract; c. are "wet" or moist membranes (through secretions of mucus); d. consist of a layer of epithelium (varies depending upon location) firmly attached to a layer of loose areolar CT.
  • Slide 69
  • Three Common Types 69 Serous Membranes (serosae): a.are found in closed ventral body cavities; b.consist of two layers with a potential space (cavity) between them: visceral membrane surrounds an organ; parietal membrane lines a body cavity; c.secrete a thin watery fluid called serous fluid into the cavity between the membranes; function = lubrication; d.each membrane consists of a thin layer of simple squamous ET resting on a thin layer of areolar (loose) CT; e.are named for the organs that occupy each cavity: pleural = lungs; pericardial = heart; peritoneal = abdominal organs.