hochschule geisenheim university - oenobio project...title powerpoint-präsentation author georg...

27
HOCHSCHULE GEISENHEIM UNIVERSITY

Upload: others

Post on 30-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • HOCHSCHULE GEISENHEIM UNIVERSITY

  • www.hs-geisenheim.de

    Could organic viticultureMitigate effects of climatechange?

    M. Sc. Yvette WohlfahrtDr. Johanna DöringDepartment of General and Organic Viticulture, Geisenheim University

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    • annual atmospheric CO2-increase of 1.5-3 ppm according to several emission-scenarios

    • mid of 21st century +20 % CO2 (IPCC, 2013)• studies on plant response to CO2 enrichment are

    of high interest regarding future crop productionIs viticulture sensitive to elevated CO2?

    ↓VineyardFACE experiment

    • started as part of the LOEWE research cluster FACE2FACE

    • investigation of consequences of climate change, adaption to climate change and reduction of greenhouse gas emissions to 2050

    Climate changeCO2 - concentration

    WohlfahrtMax-Planck-Institut fürterrestrische Mikrobiologie

    Multiple observed indicators of a changing global carbon cycle:atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa(19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black)since 1958

    Atmopspheric CO2, as simulated by Earth System Models ofIntermediate Complexity (EMICs) for the four RepresentativeConcentration Pathways (RPC) up to 2300 (Zickfeld et. al 2013). Thedashed line indicates the pre-industrial CO2 concentration.

    3

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Experimental setup -VineyardFACE @ HGU

    Wohlfahrt

    eCO2

    eCO2

    eCO2

    aCO2 - ambienteCO2 - elevated

    aCO2

    aCO2

    aCO2

    • Geisenheim, Rheingau, Germany (50°N, 8°E)• sandy loam• temperate oceanic climate:

    • 10.5 °C, 543 mm (Ø 1981-2010)

    • ring system with two treatments:• aCO2 ambient CO2 400 ppm• eCO2 elevated CO2 + 20 %

    • CO2 enrichment started 2014• 365 days from sunrise to sunset• two varieties:

    • Riesling cl. 198-30 Gm, SO4• Cabernet Sauvignon cl. 190, 161-49 Couderc

    • spacing: 1.8 m x 0.9 m / 1.6 m2 per vine• cane pruned 5 nodes/m2

    • management following GAP and IPM

    eCO2

    eCO2

    eCO2

    aCO2 - ambienteCO2 - elevated

    aCO2

    aCO2

    aCO2

    Wohlfahrt et al., 2018

    4

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Experimental setup -VineyardFACE @ HGU

    Wohlfahrt

    eCO2

    eCO2

    eCO2

    aCO2 - ambienteCO2 - elevated

    aCO2

    aCO2

    aCO2

    Time [CET] 00

    :00 03

    :00 06

    :00 09

    :00 12

    :00 15

    :00 18

    :00 21

    :00 00

    :00

    CO

    2 con

    cent

    ratio

    n [p

    pm]

    350

    400

    450

    500

    550

    600

    650

    elevated ambient

    Time [date]15/7/15 16/7/15 17/7/15 18/7/15 19/7/15 20/7/15 21/7/15 22/7/15

    CO

    2 con

    cent

    ratio

    n [p

    pm]

    350

    400

    450

    500

    550

    600 1.7 m

    CO

    2 con

    cent

    ratio

    n [p

    pm]

    350

    400

    450

    500

    550

    600

    650

    0.75 m

    • diurnal CO2 concentration• 05/02/2017

    Fig.: Daily averaged carbon dioxide concentration of the soil efflux analyzer (Li-Cor LI-8100/8150 Multiplexer) from 14-22/07/2015 measured at heights of 0.75 m and 1.7 m from sunrise to sunset. Means ± sd.

    • daily CO2 concentration• 14-22/07/2015

    Wohlfahrt et al., 2018

    5

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Climatic conditions -VineyardFACE @ HGU

    6

    • daily mean air temperature (solid line) and rainfall (black bars) at Geisenheim in 2014, 2015, 2016 and 2017

    • annual average temperature:• 2014: 12.2 °C• 2015: 11.7 °C• 2016: 11.2 °C• 2017: 11.3 °C• 2018: 12.3 °C

    • annual rainfall:• 2014: 599 mm• 2015: 396 mm• 2016: 583 mm• 2017: 590 mm• 2018: 470 mm

    DOY

    0 50 100 150 200 250 300 350-10

    -5

    0

    5

    10

    15

    20

    25

    0

    10

    20

    30

    40

    502018

    Dai

    ly m

    ean

    tem

    pera

    ture

    (°C

    ) -10-5

    0

    5

    10

    15

    20

    25

    Dai

    ly m

    ean

    rain

    fall

    (mm

    )0

    10

    20

    30

    40

    502015-10

    -5

    0

    5

    10

    15

    20

    25

    30

    0

    10

    20

    30

    40

    50

    60

    2014

    -10

    -5

    0

    5

    10

    15

    20

    25

    0

    10

    20

    30

    40

    502017-10

    -5

    0

    5

    10

    15

    20

    25

    0

    10

    20

    30

    40

    502016

    vegetation period

    Wohlfahrt et al., unpublished

    6

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    VineyardFACELeaf biomass

    Wohlfahrt

    Year

    2015 2016 2017 2018

    biom

    ass

    [g v

    ine-

    1 ]

    0

    500

    1000

    1500

    2000

    2500 RieslingaCO2eCO2

    Year

    2015 2016 2017 2018

    biom

    ass

    [g v

    ine-

    1 ]

    0

    500

    1000

    1500

    2000

    2500 Cabernet SauvignonaCO2eCO2

    • increased leaf biomass under eCO2 • increased lateral leaf area under eCO2• supported by higher photosynthesis rates under eCO2 higher water uptake (transpiration), even though WUE increased under eCO2

    Wohlfahrt et al., unpublished

    7

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    VineyardFACEYield

    Wohlfahrt

    Year

    2014 2015 2016 2017 2018

    yiel

    d [g

    vin

    e-1 ]

    0

    1000

    2000

    3000

    4000

    5000

    RieslingaCO2eCO2

    Year

    2014 2015 2016 2017 2018

    yiel

    d [g

    vin

    e-1 ]

    0

    1000

    2000

    3000

    4000

    5000

    Cabernet SauvignonaCO2eCO2

    • bunch number not affected by eCO2• yield & bunch weight increased under eCO2• 2014 did not differ significantly fruit set 2013

    (no eCO2)

    Wohlfahrt et al., unpublished

    Bunch number [bunches vine-1]

    Year CS aCO2 CS eCO2 R aCO2 R eCO22014 14.3 ± 0.1 13.1 ± 0.9 18.5 ± 0.5 18.2 ± 0.82015 14.0 ± 0.2 13.7 ± 0.4 19.4 ± 0.3 19.0 ± 0.22016 12.2 ± 0.7 12.4 ± 0.3 17.2 ± 0.5 17.6 ± 0.6

    8

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    VineyardFACEFruit quality

    Wohlfahrt

    • no differences in total soluble solids under eCO2• higher sugar yield under CO2 due to higher crop load• organic acids (malic acid) mostly affected in warmer

    years under eCO2

    • no differences in must and wine quality

    Wohlfahrt et al., 2018

    9

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Climate Change ↔ Viticulture

    Döring 10

    Climate Change

    Viticulture

    Enhanced growth

    Direct CO2emissions

    Indirect CO2emissions

    Soil derivedgreenhousegas emissions

    Enhanced yields

    Enhanced berry weights

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Organic Viticulture Affecting Growth

    Döring et al. (2019)

    Döring 11

    • Pruning weights in organic and biodynamic viticulture comparedto integrated and conventionalviticulture

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Organic Viticulture Affecting Growth

    Döring et al. (2019)

    Döring 12

    • Pruning weights in organic and biodynamic viticulture comparedto integrated and conventionalviticulture

    21 % lower growth in organic and biodynamic systems across different environments

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Organic Viticulture Affecting Yields

    Döring et al. (2019)

    Döring 13

    • Yields in organic and biodynamic viticulturecompared to integrated and conventional viticulture

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Organic Viticulture Affecting Yields

    Döring et al. (2019)

    Döring 14

    • Yields in organic and biodynamic viticulturecompared to integrated and conventional viticulture

    18 % lower yields in organic and biodynamic systems across different environments

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Organic Viticulture Affecting Bunch Weights

    Döring et al. (2015)

    Döring 15

    • Bunch weight in organic and biodynamic plots is significantlylower compared to integratedviticulture (Geisenheim trial)

    int

    bio-dyn

    Bunc

    hw

    eigh

    t[g]

    ver

    aiso

    n20

    12

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Organic Viticulture Affecting Bunch Weights

    Döring et al. (2015)

    Döring 16

    • Bunch weight in organic and biodynamic plots is significantlylower compared to integratedviticulture (Geisenheim trial)

    int

    bio-dyn

    Bunc

    hw

    eigh

    t[g]

    ver

    aiso

    n20

    12

    21 % lower bunch weights in organic and biodynamic systemsin the Geisenheim trial

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Hypothesis: Organic Viticulture Mitigates Effects ofClimate Change on Growth, Yield, and Bunch Weight

    17

    leaf biomass yield bunch weight

    [%]

    0

    20

    40

    60

    80

    100

    120

    140

    160

    RieslingVineyardFACE

    aCO2eCO2

    av 2015-2018 av 2014-2018av 2014-2018

    + 32 %+ 7 %+ 9 %

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Climate Change ↔ Organic Viticulture

    Döring 18

    Climate Change

    Organic Viticulture

    Enhanced growth

    Direct CO2emissions

    Indirect CO2emissions

    Soil derivedemissions

    Enhanced yields

    Enhanced berry weights

    Mitigation of…

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Agriculture Affecting Climate Change (1)

    Mäder et al. 2002 – inputs of pesticides and energy

    • Amount of pesticidesand amount ofenergy used in therespective systemsof the DOK long-term trial 1985-1991 (modified accordingto Mäder et al. 2002)

    Döring 19

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Agriculture Affecting Climate Change (1)

    Mäder et al. 2002 - inputs of pesticides and energy

    • Amount of pesticidesand amount ofenergy used in therespective systemsof the DOK long-term trial 1985-1991 (modified accordingto Mäder et al. 2002)

    Döring 20

    Energy to produce a crop dry matter unit was 20 to 56 % lower in organic systems in the DOK long-term trial in Switzerland

    → 36 to 52 % lower per unit of land area

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Agriculture Affecting Climate Change (2)

    Mäder et al. 2002 – nutrient inputs

    • Inputs of N, P, K used in therespective systemsin the DOK long-term trial (modifiedaccording to Mäder et al. 2002)

    Döring 21

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Agriculture Affecting Climate Change (2)

    Mäder et al. 2002 – nutrient inputs

    • Inputs of N, P, K used in therespective systemsin the DOK long-term trial (modifiedaccording to Mäder et al. 2002)

    Döring 22

    Nutrient input 34 to 51 % lower in organic and biodynamic systems in the DOK long-term trial in Switzerland

    Yields were only 20 % lower over a period of 21 years (different crop rotations) → efficient production

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Agriculture Affecting Climate Change (3)

    Skinner et al. 2019 – soil derived greenhouse gas emissions

    • Annual data of CH4: grass clover, silagemaize, green manure

    ↑ CH4: • Solid manure

    application andploughing + fertilization of maize(CONFYM)

    Döring 23

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Agriculture Affecting Climate Change (4)

    Skinner et al. 2019 – soil derived greenhouse gas emissions

    Annual data of N2O-N: Grass-clover, silage maize, green manure

    ↑ N2O :• Solid manure application

    + ploughing (CONFYM)

    • Mineral fertilization + sowing (CONMIN)

    • Fertilization of silagemaize (all systems)

    • Dependent on soilmoisture + Nmin

    Döring 24

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Hypothesis: Organic Viticulture Mitigates Climate Change

    Döring 25

    • Organic viticulture is expected to reduce inputs due to denial of herbicides, mineral fertilizers, and synthetic spray agents (low input system; Mäder et al. 2002)

    • It exclusively relies on products of natural origin

    • Organic viticulture is expected to use slightly higher amounts of fuel compared toconventional/ integrated systems

    • Organic viticulture is expected to reduce gas emissions from the soil• No mineral N fertilizers: ↓ N2O emissions (Skinner et al. 2019)• Cover crop with legumes: ↑ N2O emissions (Muhammad et al. 2019)• Higher microbial activity: ↑ CO2 emissions (Muhammad et al. 2019)• Higher carbon sequestration, higher SOC: ↓ CO2 emissions (Longbottom, Petrie 2015)• ↓ NO emissions (preliminary results Hieber 2011)• NH3, CH4, NOx emissions? Herbicide application under-vine area?

  • HOCHSCHULE GEISENHEIM UNIVERSITY

    Climate Change ↔ Organic Viticulture

    Döring 26

    Climate Change

    Organic Viticulture

    Enhanced growth

    Direct CO2emissions

    Indirect CO2emissions

    Soil derivedemissions

    Enhanced yields

    Enhanced berry weights

    Mitigation of…Reduction of…

  • HOCHSCHULE GEISENHEIM UNIVERSITY I

    Literature cited

    • Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Appl. Sci. 2020, 10, 2486.

    • Döring J, Collins C, Frisch M, Kauer R. Organic and Biodynamic Viticulture Affect Biodiversity and Properties of Vine and Wine: A Systematic Quantitative Review. Am. J. Enol. Vitic. 2019; 70(3): 221-242.

    • Skinner C, Gattinger A, Krauss M, Krause H-M, Mayer J, van der Heijden MGA, Mäder P. The impact oflong-term organic farming on soil-derived greenhouse gas emissions. Scientific Reports 2019; 9:1702. https://doi.org/10.1038/s41598-018-38207-w

    • Wohlfahrt, Y., Collins, C., & Stoll, M. (2019). Grapevine bud fertility under conditions of elevated carbon dioxide. OENO One, 53(2).

    • Wohlfahrt Y., Smith J.P., Tittmann S., Honermeier B, Stoll M. (2018). Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE). European Journal of Agronomy, 101, 149-162.

    • Döring J, Frisch M, Tittmann S, Stoll M, Kauer R. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management. PLoS One 2015. https://doi.org/10.1371/journal.pone.0138445

    • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Science 2002; 296: 1694-1697.

    https://doi.org/10.1038/s41598-018-38207-whttps://doi.org/10.1371/journal.pone.0138445

    Foliennummer 1Foliennummer 2Climate change�CO2 - concentration�Experimental setup - VineyardFACE @ HGU�Experimental setup - VineyardFACE @ HGU�Climatic conditions - VineyardFACE @ HGU�VineyardFACE�Leaf biomass�VineyardFACE�Yield�VineyardFACE�Fruit quality���Climate Change ↔ ViticultureOrganic Viticulture Affecting GrowthOrganic Viticulture Affecting GrowthOrganic Viticulture Affecting YieldsOrganic Viticulture Affecting YieldsOrganic Viticulture Affecting Bunch WeightsOrganic Viticulture Affecting Bunch WeightsHypothesis: Organic Viticulture Mitigates Effects of Climate Change on Growth, Yield, and Bunch WeightClimate Change ↔ Organic ViticultureAgriculture Affecting Climate Change (1)Agriculture Affecting Climate Change (1)Agriculture Affecting Climate Change (2)Agriculture Affecting Climate Change (2)Agriculture Affecting Climate Change (3)Agriculture Affecting Climate Change (4)Hypothesis: Organic Viticulture Mitigates Climate ChangeClimate Change ↔ Organic ViticultureLiterature cited��