holland's formula and volcano.pdf

Upload: chino-jose-san-diego

Post on 02-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 holland's formula and volcano.pdf

    1/36

    -

    AFGL-TR-76-0127

    rnOP

    ~

    ENTM. RESEARO l PAP

    ~~~

    NO.

    566

    ~~

    Rise of

    Volcanic

    Eruption Clouds:

    ~

    Relationship

    Between

    Cloud

    Height and

    ~

    Eruption

    Intensity

    MARK

    S

    ETTLE

    ,

    iLt

    ,

    USAF

    22

    June 1976

    D D C

    APP I

    V.d

    hr

    publi

    c rs

    ~

    sss.

    d

    stv1

    bu t

    ~

    on

    TERRESTRIAL

    SCIENCES

    DIVISION

    PROJECT 8607

    AIR FORCE GEOPHYSICS

    LABORATORY

    HANSCOM

    APS,

    MASSACHUSETTS

    01731

    AIR

    F

    ORCE SYSTEMS

    COMMAND

    ,

    USAF

  • 8/10/2019 holland's formula and volcano.pdf

    2/36

    ;

    ~~~~~~~~

    ~~

    j .

    4

    ~~~

    J

    ~

    I

    ~~~~~~~~~~~~~~~

    4

    This

    technical

    report

    has

    been reviewed

    and

    is

    approved

    for publication

    .

    4

    FOR

    THE

    COMMANDER:

    (

    iAef Scientist

    Qualifled

    requeslors

    may obtain

    additional

    copies from

    the

    Defense

    Documentation Center.

    AU

    others

    should

    apply

    to

    the

    National

    Technical

    Information Service.

    ft

    S

  • 8/10/2019 holland's formula and volcano.pdf

    3/36

    Unclass i

    fied

    S ( CI J R I T V

    CL A S S I F I C Af l O lA OF TI l lS P A G E (WA.,, 0.1 .FnI.,. d)

    ~

    REPORT

    DOCUMENTATION PAGE

    BEFORE

    COMPI

    ET NG

    IORM

    AFGI rR

    ~

    7 G - i .

    27

    ,

    A

    ~

    ~~~~~~~~~~~~~

    3

    R E C I P I E N T

    ~

    s

    C A T A L O G NU M B ER

    S T Y P E OF

    RE PoRT

    A PERIOD

    COVEREy

    ~

    E L A T IO

    ~~

    SHIP BE

    ~~ ~

    E E N c L d

    ~

    D

    H EIG H T

    scientific. Interim.

    A N D E

    ,

    I

    ~

    U P T I O N

    ,

    I

    ,

    NTENS

    IT

    ~~

    6 P E R F O R M I N G OR

    G.

    RE P ORT

    N U M B E R

    t. CONTR

    ACT OR

    GRANT N U M B E R (. I

    C

    ~~~~~~

    ~

    M a r k J

    t t l eJ

    1st

    Lt

    ,

    B

    P E R U OR M IN G

    O R G A N I Z A T I O N

    N A M E

    A N D

    A D D R E S S

    P R O G R A M

    E L E M E N T P R O J E C T

    .

    T A S K

    A i r Force

    Geophysics

    La

    b

    or a t

    or

    y

    (LWW)

    ~

    J

    ~~~~

    ~~~~~~~~~~

    j W O R

    ~~~~~~~~~~~~~~~~~~~~~~

    7

    M assach u se tt s

    01731

    ~~~~

    Th2F

    ~~~~~~~~~~~~~~

    ii C O N T R O L L I N G

    O F F I C E

    N A M E A N D A D D R E S S

    .

    t2. REPfl

    ~~~~~~~~~

    _ --

    1

    A i

    r

    Force

    Geophysics Laboratory (LWW)

    //

    22

    Jun.

    ~~

    76

    Hanscom AFB

    ~~

    R

    UMP

    AG ES

    M assachus e tt s 0 l7

    ~~

    1

    _

    _________________________

    4 M O N I T O R I N G A G E N C Y

    N A M E

    A A O D R E S S ( I I dIfle,.,, 1

    I Co nI o II lng

    Office)

    15. S E C U R I T Y C L ASS.

    ~

    /

    151. ,

    ~

    p

    ~

    rI)

    -

    Unclass i f i ed

    a I

    yes

    ~

    -

    ~~~

    ~~~~~~~

    -

    D E C L A S SI F I C A T I O N DOWNG

    ~~~~~~~~~~~

    ~

    .

    ~~

    L*

    .TB

    ~~~~

    w 0 r .T

    E M E N T (ol fbi.

    R.porI)

    A p p r o v e d

    for u b

    ic

    ~~

    el

    ~~ ~

    e; distribution

    u n l i m i t e d

    .

    ~

    ~~~

    i

    7. D ISTRIBIJ AT E M E N T

    ft

    ~

    ot eflf.,Ad 10

    810Kb

    25 I

    5/l.,on

    f

    frOm

    R.s.o,I)

    It. S U P P L E M E N T A R Y

    N O T E S

    I

    19. KEY

    W R

    ~

    5

    Coofr,,

    ~

    ..,,.

    . . ..

    ,d.

    If n4 c

    ~~

    o4fy

    m.d

    id.nhiVy by

    Slosh n nb.f)

    Volca

    n

    ic er

    u

    p

    t io

    n

    s T

    h er

    m al plumes

    Cloud rise

    Infrared

    sources

    St ra t osp

    he

    re

    Atmospheric dust

    20. A B S T R A C T (Coma,,.. . on

    ,o.,00 Ma . f

    nc y

    .nd Id.nlif

    y b

    y

    SImS

    n..mb.f)

    The

    rise

    of eruption clouds

    is produced

    b

    ~

    y

    the

    up w

    ~

    d

    momentum

    and

    thermal

    buoyancy of volcanic dust and

    gas

    ,

    F

    li.e

    ~

    e procesns

    ~

    .p

    1ay important roles in

    other

    phenomena.

    The

    expansion

    of a

    turbulent

    j e t

    in

    free flow

    ( that

    is

    ,

    uncori f ined

    by

    lateral

    boundaries)cis

    controlled by

    t h e

    rate

    at

    w h ic h th e

    f o r w a r d

    momentum

    of

    the

    jet

    is

    dissipated. Th

    ~

    thermal

    buoyancy

    of industrial

    waste

    gases provides

    a

    mechanism

    for moving

    ~

    iich waste

    Hq

    ~

    teria 1

    ~

    upward through

    the atmosphere

    and ensuring

    their dispersal

    over

    a w i d e area. The

    r isc

    of

    OD

    ~~~~~~~~

    ~

    473

    E D I T I O N

    OF

    I NOV

    ES

    IS

    O B S O L E T E

    Unclassified

    S E C U R I T Y C L A S S I F I C A T I O N OP

    T H I S

    P A G E (WI,.n 0.1.

    PsIsrod)

    ~~~~~~~~~~~~~~

    ~

    .

    ~~

    -

    ~

    0

    ~

    .-

    ~~~~~~~~

    ~

    -

    ~

    ___________ _____________________

    .--

    _ _ _

    _ _ _ _ _ _ S _ _ _ _ _ _ _ _

  • 8/10/2019 holland's formula and volcano.pdf

    4/36

    ,

    -----

    -- -

    ~

    .

    -

    ~~~~~~~~

    ..- aoar

    Unclass ified

    -

    . - .

    -

    .

    20

    . Abstract

    ( C on t i nued) -

    4

    ,

    volca n ic

    eruption clouds can

    be modelled

    after hese a

    ~

    wWana1ogous

    p h e n o m e n a

    .

    I

    n

    t h i s report average

    e j e c t i o n

    velocities

    ~

    at a volcanic vent

    ranging

    f r o m

    20

    rn/sec to 200

    rn / s ec are assumed to represent a w i d e

    range

    of eruption

    in

    t

    e

    n

    si

    t

    y,

    f rom

    S

    t r o

    m bolian t

    o

    V

    u

    lc a

    n ia

    n

    t yp es

    ,

    ef

    er

    u

    p4k

    ~~

    .

    9

    For

    eruption

    veloc i t ies

    vary

    ing f r o m 20

    rn / s ec

    to

    200

    rn / s ee

    ,

    cloud heights estimated by the

    t u r b u l e n t j e t model range

    from

    1500

    m to

    6500

    m

    ( m i d - l a t i t u d e

    e r u p t i o n )

    w hi l e

    c lo u d

    hei

    ghts estimated

    b

    y

    the

    industrial

    plume models range f r o m 900

    m

    to

    10

    ,

    000

    rn

    . These es t imates are

    considered

    to

    be

    roug

    hl

    y co m parabl e in v

    ie w

    of t h e assumptio

    ns

    and extrapolations

    i n v o lv e d in app ly

    in g t

    hese

    m

    odels

    to

    explosiv

    e

    eruption

    c o n d i t i o n s a n d agree

    q u i t e w el l

    with

    reported heights of

    er

    u p t io n clouds.

    The f a c t t ha t comparable es t imates of c lo u d height are pro-

    5

    du

    i

    ~~

    y

    ~

    th

    ~

    t

    wo very

    d i f f e r e

    nt

    model s

    su gges t s t ha

    t

    bo

    t

    h

    mo m

    e

    ntu

    m an d

    ~

    ,

    thermal buoyancy

    play

    an

    i m p o r t a n t

    role t h r o u g h o u t t h e m a i n portion of an

    er

    u p t io n

    c l oud t

    s

    t rajectory.e

    ~

    Fo r these eruption conditions

    (20

    rn/sec

    ~

    w

    0

    ~

    ~~

    200

    rn /see)

    ,

    nei ther

    moinntum

    nor

    thermal

    buoyancy appears

    to

    dominate

    the

    process of cloud rise to altitudes

    of 10 km above an

    actively erupting

    volca

    nic vent. A n

    order

    of

    magnitude

    variation

    in

    eruption velocity

    f rom

    20

    rn/sec to w

    0

    = 200

    rn/sec

    results

    in

    a

    factor of

    3

    to

    4

    increase

    in

    avera

    ge c l oud

    h e i

    gh t

    p r e d i c t e d b

    y

    th e

    t u r b u l e n t volcanic j e t

    model

    and a

    factor

    or 2 5

    i

    ncrease

    in

    median

    c lo u d h e ig h t p r e d i c t e d

    b

    y a selec t g r o u p

    of

    i n d u st r i a 1

    ~

    p lu me

    models

    . H o w e v e r

    ,

    bo th models

    also

    demonstrate t ha t

    changes in

    crossi

    w ind

    v e l o c i t y

    b

    y

    factors of 2 to 5 can result in variations in

    cloud

    h e ig h t

    of

    si m

    i l a r magni

    t u d e . T he r e f o r e

    ,

    reported

    h e i

    gh ts of eruption clouds w i t hou t

    refer-

    ence to local crosswind conditions a t

    th e

    t i m e of an

    eruption

    cannot

    be

    directl

    y

    compared to gau ge the relative exp

    losiveness

    of d i f f e r e nt

    v o l c a n i c

    eruptions

    .

    a

    ~~

    _

    Unclass i f ied

    SE P T . a c ( i r i A, -

    pn .

    .

    5

    ~

    .

    ~~~

    , .::

    .

  • 8/10/2019 holland's formula and volcano.pdf

    5/36

    -

    ~~~~~

    w ;-

    ~

    -

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    .-

    -

    ~~~~

    ~~~

    ~~~~~

    - -

    ~~~~~

    -

    ~

    ~ ~~

    -

    ~~

    ~~~~

    P r e f a c e

    The author is gra te fu l to Torn Webb

    , C h u c k W o o d

    ,

    and John Cronin

    for cr i t i-

    call

    y rev iewing e a r l i e r v e r s i o n s of

    th i s

    repor t

    ,

    and to Elaine Robson for

    h e r effor t

    arid

    pa t ience

    in

    p r e p a r in g

    the m a n u s c r i

    pt .

    Boff

    S.cft

    ~

    oI

    ~~~~~

    I

    D D C

    ---

    --i

    ~

    -..j

    DEC

    22

    ~

    /K

    UPECIAL

    J

    ~~~

    D

    -SuurU

    U

    ~

    ~~~~~~

    -

    . a

    ~~~~ ~~~~

    --

    .-

  • 8/10/2019 holland's formula and volcano.pdf

    6/36

    ____

    C

    ontents

    1.

    IN T R O D U C T I O N

    7

    2.

    P U R P O S E OF TH IS

    STUDY

    9

    3. E R U P T I O N C L O U D RISE

    ESTIMATES

    10

    3.

    1

    Turbulent Jet

    Flow

    in

    t h e Atmosp

    he

    r

    e

    10

    3.

    2 Rise of Industrial

    Plumes

    15

    4 DISCU SSION

    22

    5. C

    O

    NC

    L

    US IONS

    25

    RE FE

    R

    ENCES

    27

    BIBLIOGRAPHY

    31

    APPENDIX A:

    Observe

    d Eruption Cloud

    Heights

    35

    I l tustrat ons

    1. The

    Centerline Velocity

    of a

    Turbulent

    Volcanic

    Jet

    (heavy li

    nes)

    Compared

    w i t h

    Averaged

    Crosswind

    Velocities

    ( l ight lines)

    at

    Variou s Altitudes

    14

    2. Parameters

    Employed in

    the Industrial

    Plume

    Formulae

    Used for

    Predicting

    Plume

    Rise

    17

    5

    -

    ~~~

    ID

    PAGE

    Bt

    2IC

    NO?

    ~~~~~~

    -

    ~~~~~~~~~~

    ~~

  • 8/10/2019 holland's formula and volcano.pdf

    7/36

    ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

    **

    ~~~~~~~~

    Tab les

    1.

    E r

    u p t i o n ( loud Hei

    ght

    Estimates

    21

    A l . Observed Er u p t io n

    (

    loud

    H e i g h t s

    36

    6

    -mc

    ~~~~~~

    .

    ~~~

    ..

    .

    ,

    ~~

    ~~~~~~~~~~~~

    _

    ~~

    _

    _ _ _

    ~

    -

    -,

    ~~~~~~~~~~~~~~

    -

    ~~~~~~~~

    ~

    l

    ~

    .5 -

  • 8/10/2019 holland's formula and volcano.pdf

    8/36

    -

    -

    -

    ---

    -

    -

    -

    Rise

    of

    Vo lcan i c

    Erupt ion

    C lo ud s :

    R ela tio ns h i

    p

    Between

    Cloud

    Heig

    ht

    and

    Eruption Intensity

    I.

    I\TQtH)

    (: T IO\

    E xp

    losive

    volcanic e

    ruptions inject

    large

    q u a n t i t i e s of ash and

    gas

    i n to

    th e

    ea

    r t h

    s a t

    mosphe r e

    . The

    l eng th

    of t ime these

    d i f f e r e n t volcanic

    products reside

    i

    n the

    at mosp

    here can vary

    f r o m

    several

    hours

    to several years . A s

    a result

    ,

    an

    individual

    er

    u

    p

    t ion

    ca

    n p r odu

    c

    e

    m et eorolog

    ical e f f e c t s t ha t

    range

    in t ime from

    several days

    to

    several

    years

    and

    can

    range in

    space

    f r o m a localized

    region to

    the

    entire

    planet

    .

    R e g i o n a l

    meteorology

    can be

    significantl

    y altered b

    y a maj o r

    ex p

    losive

    erup-

    t ion

    .

    Airborne

    ash and

    volcanic

    gases can

    e f f e c t i v e l y

    insulate

    the

    earth

    s

    surface

    ,

    modif

    y

    ing

    diurnal

    temperature

    variations

    and

    producing a shor t - te rm

    warming of

    the

    region.

    R a i n w a t e r from clouds

    contaminated

    wi th

    volcanic

    gases can

    be

    highly

    acidic and

    may

    pollute local ground

    water

    .

    The

    long

    term

    atmospheric

    effects

    of an

    eruption

    are

    produced

    by particulate

    dust and

    gases

    t ha t have

    much

    longer atmospheric

    residence

    times. Major

    explo-

    sive

    eruptions

    can

    have a

    significant

    impact on the

    chemical budget

    and

    radiation

    budget of

    d i f f e r e n t

    portions of the

    atmosphere.

    Volcanic

    eruptions

    appear

    to be

    the dominant

    source

    of

    atmospheric

    chlorine

    1

    w h i c h plays an

    important role in

    (Received for publication

    22 June

    1976)

    1.

    R y a n

    ,

    J .A . ,

    and

    Mukherjee

    ,

    N . R .

    (1975)

    R evs .

    Geophys. and

    Space

    Sci.

    13:650-688.

    7

    I

    I

    --

    -

  • 8/10/2019 holland's formula and volcano.pdf

    9/36

    T

    ~~

    .

    T-

    .

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    5-

    ~~

    ~

    r3

    ~~~~~~~~~~~~~~~~~~~~~~~~~

    -

    ----5..

    1/I I I IC

    c h e m i c a l

    r e z a - t I I l f l . s

    in the s t r a t

    I

    .5phere

    .

    Sulp

    h u r diox

    ide

    ga

    s produced b

    y

    t o1 I

    ~~

    I t ) Z (

    a - r u p o ,n

    ~

    is

    ti i

    -d

    a t

    i v - l v I l I n l a r sour c e

    of

    a t m o s p h e r i c sul p

    hu r

    3

    hut ca n

    si

    g n i f i c a n t l y

    inc

    c:

    - a- 1

    ~

    -

    Ii

    n -

    ~

    tv

    of

    the

    s t ra tosp

    h e r i c

    aerosol layer b

    y

    gas

    phase

    \ u I

    : a tj o f l

    t I

    .50l 1)1 1

    1tt I : a r t i

    ~~~

    The

    i n j e c t i o n

    of

    l a r ge

    quant i t ie s

    of s i l i c a t e

    dust part id

    a -

    -. . j t 1 p

    h it r ga -o-

    . i n t o t h e a t m o s p h e r e can produce a cooling

    of

    th e

    E:a

    r U s s u rt : o

    a

    I \

    r t - -

    ,- :

    ~

    -

    OIL

    g

    lobal

    albedo

    or

    an

    i n c r eas ed greenhouse w a r m i n g

    III Ih e -, ux t a I e due t i h a -

    j I l l i t . thesc

    volcanic

    producL. t o i n f r a r e d

    r a d i a t i o n

    a n i t t e d f t a

    h . I t t

    I , ( ja

    ,-

    .

    Th e ore t t e a l

    c a l c u l a t i o n s

    of

    Pollack et al

    7

    m d i

    c a N - t h a t

    a- ,

    Ia

    ~~

    I

    - I ) ,

    .1

    ~~

    j I

    lt

    - . t - t t l t

    o u t

    of the a t m o s p h e r e

    ,

    global cooling

    l a c on es Ut a

    ~~~

    I

    -t -

    I tn

    1

    1 1 1

    ~~

    .

    The

    i t n - , I - x

    II

    f l p : I ( - t

    of a

    p a i - t o - u l a r

    e r u p t i o n

    is

    la rge l

    y

    d e t e r m i n e d

    b

    y

    the

    : a l t i

    ~

    ttde.s at w h i c h

    , l l - t a i i

    Iu

    ~

    t

    I l l

    ga

    ~

    en ter and are mixed into the

    a t m o s p

    he r e

    .

    P r e c i

    pi ta t ion

    in

    t h e

    t r o p o sp h e r e e f fec t i ve l

    y

    \Y

    ashes these ma ter i a l s out of t h e lower

    a t m o s p

    he

    re.

    T r o p o s p h e r i c

    w e a t h e r

    s

    st e

    ii

    ~

    i

    also

    mix

    l a rg e

    a i r

    mas s e s over

    rela-

    t ively

    shor t per iods of t ime

    rap

    id l y reducing

    t h e concen t r a t ion of volcanic produc ts .

    The

    lower

    boundary

    of

    the

    t roposp

    h e re is the e a r th s

    su r f a c e

    which provides a

    v a r i e t y

    of geologica l

    ,

    biolog

    ical and anthropogenic

    s inks

    for

    a i r bor ne

    volcanic

    product s .

    Long t e r m a tm o sp

    her ic e f fec ts f rom individual erup t ions a re

    t h e r e f o r e

    l imi ted

    to erup t ions tha t succeed in penet ra t ing

    the

    upper levels of the

    t r o p o s p h e re

    and introduce

    volcanic

    dust and

    gas i n t o

    the s t r a t o s p h e r e

    .

    8

    ,

    9

    The a ve r a ge

    heig h t

    of

    the

    t ropopause

    var ies

    lat i tudinal l

    y

    f ro m a p p r o x im a te l

    y

    9

    km at

    the

    poles to

    ap p ro x i m a t e ly 16

    km

    at the

    equator

    .

    The r i s e of an erupt ion cloud is controlled b y the

    upward

    m o m en t u m

    of

    ash an d

    gas

    at the mouth of

    a volcanic vent

    and b

    y

    the

    t h e rm a l buoyancy of the volcanic

    gases.

    The

    init ia l r i s e of dust and gas in an eruption cloud is largely d e t e rm i n ed

    by

    the

    exit veloci ty

    of the

    mater ia l .

    A t higher

    a l t i tudes

    the init ia l m o m en t u m of th e

    volcanic

    dust and

    gas

    has

    been

    subs tant ia l l

    y

    diss ipa ted

    and the

    subsequent r i s e of

    the eruption cloud is predominant l

    y

    dete rmined by the

    re la t ive

    buoyancy of

    the

    hot

    volcanic

    gases

    .

    This t r ans i t ion

    is s o m e t i m e s

    ref lected

    in

    the

    mor p

    hology of th e

    2.

    Rowland

    , F. S.

    ,

    and Molina

    ,

    M . J .

    (1975)

    Revs,

    Geoph

    ys. and

    Space

    Sd.

    13:135.

    3. Kellogg, W

    .

    W .

    ,

    Cadle

    ,

    R. .

    ,

    A l l e n

    ,

    E

    .R.

    ,

    Lazarus

    ,

    A

    .

    L.

    ,

    and Martell

    ,

    E.K

    .

    ( 1 9 7 2 )

    Scie

    n ce

    175:587-596.

    4.

    Harker

    ,

    A

    .B. 1975) J.Geophys.Res.

    24:3399-3401.

    5. Lazru s

    ,

    A

    .L .

    ,

    and Gand ru d

    ,

    B.

    W . ( 1 9 7 4 )

    J . G eop

    h

    ys.Res.

    79:3424-3431.

    6.

    Dyer

    ,

    A.J . and Hicks

    ,

    B , B .

    ( 1 9 6 8 )

    Q u a r t . J .R o y . M e te or o l . Soc. 94:545-5

    ~

    4.

    7

    .

    Po

    ~~

    ek

    ,

    J .B .

    ,

    Toon

    ,

    O . B .

    , Sagan

    ,

    C. ,

    Summe r s

    ,

    A.

    ,

    Baldwin

    , B. ,

    an d

    Van Camp, W. 1976)J.

    Geophys.

    Res.

    81:1071-1083

    .

    8

    .

    Lamb

    ,

    H,

    -

    1. 1970) Phil. Trans.

    Roy.

    oc. London 266:425.

    9 .

    C

    ronin

    ,

    J.F.

    1971)

    Science

    172

    :847-84fl

    .

    8

    _ _

    ~~~~~~

    _

    --

    ~~~~~

    .-_

    -

    ~~~~~~

    . --

    -

    ~~~~

  • 8/10/2019 holland's formula and volcano.pdf

    10/36

    -

    ~~~~~

    - -

    ~~~~~

    ~~~~~~~~~~~~~~~~~~

    --

    -

    -----.

    ~~~~~

    - -----

    ~~~~~~~~~~~~~~~~~~~

    ~~~~

    --

    ~~~~~~~

    ~

    .----.

    ---

    ~~~~~

    ,

    ~

    _

    .

    -

    _P

    ~~~

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    e ru p t i o n cloud

    . The

    l o n er

    p i t t i o r t

    of t h e

    cloud I

    o f l t t i l f l . ,

    a

    l a r g e r -

    ( i r t I

    (

    ~

    n t I -

    a t ion of

    ~

    i

    ~

    l

    i 1

    E - ) c -i - t a and

    c a n

    a p p e a r much

    d a r k e r

    than

    t h e

    u p p e r - por t i on

    of

    t i t i

    -

    - I I

    ,u l

    -

    In

    such

    t t S C S the

    l o w e r

    p o r t i o n

    of the

    cloud

    i,s , n : c t t t :

    es

    r - e f er x - a - , I

    t o as t h e ash

    cloud

    s

    w h c - r e a . s the

    uppe r

    ,

    li g h t e r -

    co lo r - ed

    por t ion

    is

    so m e t im e s

    h -

    t e d

    the

    va p

    o

    r

    c l o u d . In oth

    er

    instances

    eruption clouds have a u n i f o r m

    g r e y

    appearance

    .

    H epor ted

    hei

    g

    hts of erup t ion clouds

    genc-ral l

    y

    i - e l i - i -

    to

    he

    m a x i m u m he ig

    h t

    h i t h e

    condensed vapor

    cloud

    observ e d

    a h , v e

    an

    t o - t i v e l y erup t ing vo lcan ic ven t .

    ~

    i g ni f

    i r a l t

    z 1 t : t I

    u t t 5

    of

    p a r t i c u l a t e

    dust and gas may ac tua l l

    y

    r i s e

    beyond t h e t o p of

    t h e

    I se r v a h l e cloud.

    The m a x i m u m

    height

    of an

    eruption cloud

    is

    r e l a t e d to

    the i n t e n s i t y

    of the

    exp los ive e rup t ion .

    The

    mo st

    in tense

    exp los ive

    e ru p t i o n s

    a r - c

    c h a r a c t e r i z e d

    b y

    e j e c t i o n velo c it i e

    ~

    on

    the or de r of h u n d r e d s of

    me te r s pe r

    second and

    la rge

    m a s s

    f l u x

    r a t e s .

    In the

    past the

    c l a s s i f i c a t i o n of

    d i f fe ren t

    s ty

    les of

    exp

    losive

    erup t ion

    has been q u a l i t a t i v e l

    y

    based upon a

    var ie ty

    of

    par -amete r s

    ,

    inc luding

    t h e

    v i sc o s i t y

    and chemica l compos i t ion of t h e

    e r - u p t e d

    m a g m a

    ,

    and

    the vio lence of

    a

    p a r t i c u l a r

    e rupt ion

    m eas u red in

    t e r m s

    of h

    iss

    of l i fe

    or

    the extent of p ro p e r t y

    d c - s t r u c t i l h n .

    10

    M o s t c l a s s i f i c a t i o n

    sc he me s

    include a g en e ra l d e s c r i p t i o n of

    the

    size and s t r u c t u r e

    of the

    e rup t ion

    cloud

    as s o c i a t ed w i t h a

    part icular-

    t

    ~

    pe o f exp

    losive e rupt ion

    . Such

    d e sc r ip t i o n s sugges t t h a t the

    s i z e

    of an

    erupt ion cloud is a p p r o x im a te ly

    c or r e l a t e d

    w i t h erup t ion in tens i t

    y,

    w i t h

    sma l l clouds

    ,

    r - i s i n g

    to heig

    hts of

    se ve r a l

    hundred

    m e t e r s

    ,

    as s o c i a t ed

    with

    weakl

    y - e x p

    los ive St rombol ian-s ty

    le erup t ions

    ,

    and

    larger-

    cl oud s

    ,

    r i s i ng

    to hei

    ghts

    of

    s evera l k i l o m e t e r s

    ,

    associa ted

    w i t h vi

    olent l y-explosive

    Vulcan ian-stvle eruptions. Thus

    the

    height of an

    eruption

    cloud can be

    considered

    to

    he

    an

    approximate index

    of eruption

    i n t ens i t y . R e p o r t s

    of

    t h e

    he ights

    of erup t ion

    clouds

    observed in remote areas

    ,

    where ground-based observat ions of active

    erup t ions ar

    e

    h aza rd o u s

    or-

    imposs ib le

    ,

    have

    been used

    t o

    qua l i ta t ive l y gauge

    th e

    r e l a t i v e

    in tens i ty

    of such erup t ions

    .

    -

    P1

    RP O

    4 OF This

    STi

    U\

    The ph

    ysica l

    processes

    which are

    respons ible for

    the rise

    (If

    e r u p t i o n clouds

    the upward mOmentum and thermal bu

    oyancy

    of

    the erupted m ator i a l

    p

    lay impor-

    t a f l l

    - e I c - --

    ~

    in

    othe r phenomena .

    The expansion of a

    tu rbulent

    je t in f ree flow

    ( t h a t

    i s ,

    unconfined b

    y

    l a t e r a l boun daries)

    is control led b

    y the ra te a t

    which

    the fo rward

    ~~

    ,

    ) ; ( f l t U f l 1

    of

    the

    jet

    is diss ipa ted

    .

    The s t r u c t u r e

    of

    tu rbu len t j e t s

    is a c las s ica l

    10

    .

    MacDonald

    ,

    G . A .

    ( 1 9 7 2 )

    Volcanoes, Pr e n t i c e - H a l l

    ,

    Englewood

    Cliffs

    ,

    N

    . J .

    ,

    i10 op.

    -

    I

    _____

    5---

    .5-

    --

    -

    ----

    -

    ~~~~~

    - -

    ~~~~~

    ~~~~~~ ~~~~~~~~~~~~~~~~~~~

    --

  • 8/10/2019 holland's formula and volcano.pdf

    11/36

    -

    ~

    ~~~~~

    zr

    ~~~~

    - 5 -

    --1.--- ;,

    ------,,,-

    ~~

    --, -

    ~

    ..---

    ~~~~~~~~~

    -

    ---- --- - - - - -

    -

    -

    ------ -

    --- -

    ~

    ---

    I t f l u i d

    ) I ( & t i a ) i i ( s . i i i e -

    tb

    ~~

    r n n i

    il h o o v a n i - v

    of

    r n d u . s t r - i a l

    wash-

    ~~~~~

    p

    -

    -v

    I d a

    -

    ,

    a

    n

    - a - i - h t m

    l

    i i i

    h r

    ii l o v i n g

    such

    n : -

    ~~

    e- m a t e r i a l s u p w a rd s

    t h r - o u g h

    t l i t

    at

    :l ,

    - i t i s -

    e :i

    ~~

    1 e n s u r i n g t h i e l

    ,

    d i

    ~

    p - r . s : i 1

    o v e r a w i d e a r e a . T h e r e l e a se

    and

    di s

    p a - c

    -

    j : i

    of

    such

    i n d u s t

    - i a l

    e l l h t i c -

    i t s

    i n t h e : m t r n o s p

    l t c - r e h a v e been desc r ibed b

    y

    a

    i t t

    .

    a

    i i t v of t h a

    n

    i - t i c n t l an d

    a - c : p t i O a l

    ~

    t u I t i ( - 5

    ( s i c

    ,

    f o r -

    t- x : i i t

    p

    le

    ,

    .su xi I l a v h

    ~

    J3 r

    ~~~~

    1 2

    )

    1 } :

    r

    i s e

    of v o l c a n i c

    , - r u n

    i

    j O

    - h

    ulL

    i - t i n t

    i c -

    m o d

    el led

    a f t e r t h e se

    t n l

    i

    a n al - g e u

    p h e n o m en a .

    d o - h i

    ~~~

    - 1

    t i l l -

    tI - \ -

    a -l - ) a -

    h

    i n his

    - i t i d v

    t o investigate

    lie

    - i - h t m l

    i1 1 i

    ~~

    hi

    p

    between

    c- i -o p t

    u i

    c - I , i i i I - i d

    tu

    tu c

    t-t

    O condi t io n s

    at a

    volcanic

    vent

    .

    T h e pu

    - p o s e

    of

    t h i s

    s tud i

    ~

    t n I -h - i t :

    ( I )

    to

    i c - I I - d -

    : t I i r I e

    if t h e

    r - m -

    ,e

    of

    erup t ion c louds

    e d ,

    r n n i n a n t l v

    c o n t i - o l l e d

    l i v

    ( l i e

    i n i t

    ,

    ~

    it n : a - i t u m or

    t h e r - nal

    b u o y a n c y of vol-

    canic p r o d u c t s ; and

    2 )

    to I c - t i -

    t i - i i i -

    if t h e I c - i g h t - of e r u p t i o n

    clouds

    are

    an

    a c c u

    - a t e r-e

    flect ion

    of

    r e l a t i v e ecu p t i o n

    I

    it e i t - it

    I

    F

    ~~

    Pli lJ\

    1 1 1 1

    I)

    RI

    I

    I RI

    ~

    I I-

    :1. 1

    1 urba,

    I

    -nt

    j . - t

    F

    a,

    ~

    s

    in t h e-

    ~

    t r11aa

    ~

    p

    Ii i ra -

    D e s c r i p t i o n s of t h e s t r u c t u r e

    of

    er-option

    clouds have been made

    pr inc i

    pall

    y

    b

    y g r o u n d - b a se d o b s e r v e r s who have

    r e p o r t e d the

    shape

    and s i ze of such

    clouds .

    Hi

    g

    h l y

    v a r - i a h l e

    ~

    inds

    ,

    la rge

    quan t i t i es of p a r t i c u l a t e ash

    ,

    and

    o ccas io n a l e l ec t r i ca l

    ( i r a

    -i

    a s s o c i a t e d w i t h

    e rupt ion c louds make ae r i a l o b s e rv a t i o n s

    d i f f i c u l t

    (see

    ,

    f o r

    c - x : c i : :

    p le

    ,

    T h o r - a m - i n s s o n

    and Vonnegut

    13

    ).

    As

    a

    r - e s u lt

    ,

    v e ry

    l i t t le is k n o w n about

    t h e i n t e r n a l

    s t r - u c t u r e o f erup t ion

    clouds

    or

    about

    v a r i a t i o n s

    in

    local m et eo ro l o g i ca l

    c i

    I i t i

    n i

    ( t o r

    e x a m p

    le

    ,

    t e m p e r a t u r e

    gr - ach i e n t s

    ,

    humid i ty ,

    or wind

    s t r u c tu r e )

    in

    the v i c i n i t y o f erup t ion c louds .

    A n a p p r o x i m a t e model of

    t h e

    in te rna l

    s t ru c t ure

    of e rupt ion

    clouds

    may

    poss ibl

    y

    he

    t , i - o v i d c - I

    by

    t u d j e

    ~

    of s i m i l a r

    l

    y shaped

    c lo u d - f o r m

    s t ru c t u re s s u ch as

    experi-

    menta l conver t

    i v , -

    plumes

    (Benech

    14

    )

    ,

    models

    of

    cumulus c loud format ion

    (Squires

    and

    T u r n i - r

    1

    ~~

    )

    ,

    a n d e x p e r i m e n t a l

    l e t s

    ( 1- f i d

    y

    and

    F r i e dla n d e r

    16

    ;

    M or r is

    17

    ).

    E jec t ion

    11. S c h h i c h t i n g ,

    II

    .

    ( 1 9 6 8 )

    Boundary

    Layer

    T h e o ry , Mc G ra w -H i l l

    ,

    N e w York

    ,

    7 14

    pp .

    12

    . Br i g g s

    ,

    G . A .

    ( 1 9 6 9 )

    Pl u m e

    R i s e , AEC

    Cr i t i ca l

    R e v i e w

    Series

    USAEC

    ,

    Report

    TID-25075

    ,

    Il l

    pp .

    13

    . T h o ra r i n s s o n ,

    a.

    ,

    and

    Vonnegut

    ,

    B.

    ( 1 9 6 4 )

    B u l l . A m . 1\ Ieteor ol. Soc. 45:

    440-444

    .

    14

    . Benech

    ,

    B.

    ( 1 9 7 6 )

    J . A p p

    l.

    Me te o r

    .

    15:127-137

    .

    15

    .

    Squires

    ,

    P.

    , and

    T u r n e r

    ,

    J .

    5

    .

    ( 1 9 6 2 )

    Tel lus

    1 4 : 4 2 2 - 4 3 4 .

    i i ;

    . ru d

    y,

    G . M . ,

    and

    F r i e d l a n d e r

    ,

    D. K .

    ( 1 P 6 4 )

    J. A m . I n s t .

    Chem.

    E n g i .

    10:

    11

    5-124

    .

    17

    .

    M o r r i s

    ,

    D

    .

    c.

    .

    ( 1 h 6 8 )

    Bu ll

    .

    Am

    . Me t e o r . Soc.

    4 ( 1

    :1054- 1058

    .

    10

    ---

    --

  • 8/10/2019 holland's formula and volcano.pdf

    12/36

    -

    -

    -

    ~~~

    .

    5-

    ~~~~~~~

    ~

    -

    -

    -

    -

    --

    -

    -

    --

    ~~~

    --

    ~~

    ~~

    v t - b c

    i t i e

    ul ,

    erv - u l

    d u r i n g

    e x p l o s i v e v o l c a n i c eruption .s

    ((

    houet et al

    i

    )

    a

    r -c

    t

    ~

    - p i i

    - tu

    1l

    ~

    m u c h

    g re tm ti - m- t h o u

    u p

    d r a f t v c - l o c i t i e s produced

    b

    - o n v e c t i v e

    p r o c e s s e s

    i n

    h i -

    : a t i u i , s p h e r e

    . Erup t ion ve lo

    - i t i e ;

    c u r - r e s p o n d l i t o r c c

    l o s e l y

    to e x i t

    c o n d i t i o n s

    at

    the

    m o u t h

    of

    a

    c- t

    t h a n t o u p

    d r : c t t v e l o c i t i e s

    at

    t h e base

    o f

    cumulus clouds

    o r-

    e x p e r i m e n t a l

    t h e r - m a l

    plumes .

    In

    addition

    ,

    the t e m p e r a t u r e c o n t r a s t

    b e t w e e n

    volcanic g a. -

    1es

    and

    the

    ar tibi ent

    atmosp

    here

    is more nearly

    approximated b

    y s o m e

    types of e x p e r i m e n t a l j e t s

    ( fo r

    e x a m p

    le

    ,

    (

    al laghan

    and

    Rugger i

    19

    ) than

    by

    uprl raf ts

    as s o c i a t e d w i t h cumulus cloud formation

    .

    The

    expans ion of a

    t u rbu l en t j e t

    in

    f r ee

    f l o w ( t h a t

    is

    unconfined

    b

    y

    l a t e r a l

    boundar ie s )

    is

    t h - t - r - r i t i n e d

    by

    the

    rate at w h i c h the

    f o r w a r - d

    m o m e n t u m

    of t h e jet is

    d i s s i p a t e d .

    11

    ,

    2 0

    S i m i l a r l

    y the i n i t i a l

    r i s e

    of an erupt ion cloud

    i s

    pr inc i

    pall

    y

    d e t e r m i n e d

    b

    y the upward m o m e n tu m

    of dust

    and

    gas

    e jec ted

    f rom a volcanic vent

    .

    The

    i n t e r n a l

    s t r u c t u r e of

    a

    tu rbu len t

    je t may

    s e r v e as a

    s i m p l e

    ,

    f i r - s t -o rder

    model

    of the

    internal

    structu i- e of

    an explosive

    eruption

    cloud

    near

    the

    volcanic vent

    w h e r

    e

    t

    h

    e

    r

    ise

    of

    d u

    st

    and

    gas is contro l led b

    y

    the

    i n i t i a l upward

    m o m e n tu m of

    these

    materials

    . One me

    thod

    of ext imating

    the atmosp

    heric penetration

    of

    a

    turbulent volcanic

    let

    IS to

    compare the

    upward

    veloci ty of t h e

    jet w i t h

    c r o s sw in d

    veloc i t i es above the volcanic vent at

    var ious

    a l t i tudes . The in i t ia l

    upward

    momen-

    tum

    of the volcanic

    dus t

    and

    gas

    can

    be cons idered to be

    ef fec t ive l

    y

    a r r e s t e d

    at

    t h e a l t i

    tude a t which the ve

    r

    t ic al ve lo

    ci

    t

    y

    of t

    he je

    t

    ,

    a

    ,

    becomes

    co m p arab l e

    to

    the local crosswind velocity,

    u

    . Experimental

    studies

    of t h e ac tua l

    behaviour

    of

    a

    t u r b u l e n t j e t in

    a c r o s s w i n d

    h a v e

    b e e n

    r e p o r t e d

    b

    y K e f f e r and Baines

    21

    and

    - 22

    P a t r i c k

    .

    The variat ion of v e r t i ca l velocity

    w w i t h

    range

    f r o m a volcanic vent

    can

    be

    ~

    e5cr ibed

    b

    y an ex p res s i o n for

    tu rbu len t

    jet f l o w :

    11

    w (x

    ,

    z)

    i

    ~~~~

    2

    ( 1)

    i+ f l

    ~~

    )

    18

    . Chouet

    , B.

    ,

    Hamisev icz

    ,

    N

    .

    ,

    and

    McGetch in

    ,

    T . R . ( 1 9 7 4 ) J . G e o p

    h

    y

    s . Res .

    79:4961-4976

    .

    19. Callaghan

    ,

    E.

    E.

    ,

    and

    Rugger i

    , H . S. ( 1 9 4 8 ) Inves t iga t ion

    of

    the

    Pen e t r a t i o n

    of

    an

    A i r

    Je t Directed

    Perp

    ~~

    dicul to

    an

    A i r

    Stream,

    Repor t N A CA -

    TN -l 6 1 5

    ,

    National A d v is o r y

    C o m m i t t e e for A e r o n a u t i c s .

    20. P

    ai

    ,

    S.

    ( 1 9 5 4 )

    Fluid Dynamics

    of

    Je ts

    ,

    Van

    Nostrand

    ,

    New York

    ,

    2 2 1

    pp .

    21.

    Keffer

    ,

    T.

    F.

    ,

    and

    Baines

    ,

    W

    ,

    D.

    ( 1 9 6 3 )

    J. Fluid Mech.

    15:481-497

    .

    22. Pa t r i ck

    ,

    M

    . A .

    ( 1 9 6 7 )

    Trans . Inst. Chern.

    Eng.

    (

    L o n d o n )

    45:16-3 1

    .

    11

    --

    ~~~~~~

    -

    ~~~~~~

    ~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~

    ,

    ~~~~~~

    - L

    ~~

    :

    ~r

  • 8/10/2019 holland's formula and volcano.pdf

    13/36

    n

    it - i - c -

    K

    ( 1 .

    1)

    F 0

    .

    0 2 5 6 b \i

    I I

    1

    3K x

    ~~

    .5

    ~~~~~~~~

    x h i c , r i i o n t a l

    d i -

    ~

    t

    o n c e

    m e a s u r e d

    f r o n t

    et

    c c n t e r lj n e

    ( m e t e r - )

    z =

    ~~

    rt i ca l d i s tance i t i e a s u

    - a- d

    f rom t h e

    n i c , u t h

    of

    t h e

    vent

    (meter )

    ave-rage

    e x i t

    v e - l o d i t \ at the vent

    ( m i t e t i -

    -

    se c )

    b h a l f w i d t h o f t h e

    t

    ,

    taken h e re as one -ha l f

    t i n -

    vent

    d i a m e t e r

    (me te r )

    This equat ion is app

    l i c ab l e

    to t h e

    reg

    ion in w h i c h

    t u rbu l en t

    f l o w

    is

    f u l l y developed

    ,

    w h i c h

    n o r m a l l

    y oc c u r s

    at

    a

    hu

    -

    , i n s t r - e a n t r - a n g e

    t ,f

    a p p ro x i m a t e l y 10 vent

    d i a m e t e r s .

    2

    A l o n g the cen t e r l i n e of t h e

    je t

    ,

    (t

    h a t is

    ,

    d i r e c t l y

    tm h o v c - t h e volcanic v e n t )

    x

    = 0 and

    E

    q.

    ( 1 )

    r educes to

    3 K

    -

    w ( z )

    ~~~

    (2 )

    B i n

    ~

    z

    0

    In or de r to app ly t h i s

    t u rbu l en t j e t

    i n i o d , )

    to -x p

    los

    i v e

    erup t ion cond i t ions

    ,

    it

    is

    nece ssar-y

    to a s s u m e an av e rag e e x i t v

    ~

    - 1 o c i t v

    for

    t h e

    e t - u p t e d

    ash and eas

    .

    Q u a n t i t a t i v e d e sc r ip t i o n s of d i f f e r e n t t

    ~

    pea-

    of

    t - x p lo .-

    ~

    i

    vt

    i - r u j t i nis in terms of

    e jec t ion v e l o c i tL - s

    or

    m as s

    f l u x ra tes are

    l i m i t e d

    . Q

    u : i h i t a t i v e l y

    ,

    erup t ion

    in tensi ty

    i.

    ~

    cons idered

    to he r e l a t e d

    to the ex p los iveness of d i f f e r e n t

    v p u -

    s of e ru p t i o n s

    .

    10

    (

    houet et a118 have

    o b se r v e d

    gas

    e x i t

    v e l o c i t i c - s dur ing i nd iv idua l ex p los ive b u r s t s

    of

    Stron iho l ian - tvpe e rup t ions t h a t

    r

    ange

    f rom

    110 m sec t o 2 0

    m

    -

    a-c

    . In the

    past

    ,

    p a r o x y s m a l e x p l o s ive erup t ions have been accompan ied

    by r -

    ~

    - p e r - t s of

    repeated

    thunder and t h e f i r i n g

    of ships

    guns

    at some

    d i s t a n c e

    f rom

    h e : t c t i v - l

    ~

    e ru p t i n g

    -

    ~

    u , 1 r an e

    ,

    su g g e s t i n g that

    gas

    exit

    v e l o c i t y

    f luc tuated

    around

    t h e

    s ; u -

    of sound

    ~~

    300 rn s e - i - . Such r - e p o r t . s

    o ccu r r ed

    dur ing

    the 1883

    K r a k : m t t

    e r u p t i o n s

    1

    a n d t h e

    1902

    eruption

    of Santa Maria Volcano

    in

    Guatemala.

    4

    Thus

    ~~~

    a

    ~~~

    a

    ~~

    e x i t vc

    l c , r i t i c

    of a p p r o x im a te l

    y

    300 itt see

    may

    be

    t en ta t ive l

    y assoc

    iated

    w i t h

    m a s s i v e P l i n i a n

    sc a l e e r u p t io n s .

    23. Symons

    ,

    G . J .

    (1888)

    The Erupt ion of Kraka toa

    and

    Subs equen t P h e n o m e n a ,

    Repor t of

    t h e Kraka toa co m m i t t ee of the Royal Sccict v

    ,

    r e p r i n t e d

    by

    I

    I e l i o

    l

    s -i ociates

    ,

    Inc.

    ,

    Tucson

    ,

    A r i z o n a

    ,

    1974.

    24

    .

    R ose

    ,

    W. . 1972) Bulletin Volcanologique 36: 2 5-4

    .

    12

    -

    ~~~

    - - -

    ~~~~~~

    -

    ~~~~~

    ~-

  • 8/10/2019 holland's formula and volcano.pdf

    14/36

    In this

    s t u d y

    t h e

    m m l a x i r l m u t i c

    heig

    ht of an e r u p t i o n c l o u d

    a

    i l l

    Is -

    :c ,

    ~~

    m u i e c I to

    be

    i-

    e l :i

    t ed to

    liii- ti m e a

    ~

    -

    -

    r : c g c - c I c

    -up t

    ion

    vt -b

    - i ty c c f

    g:c

    and f i n e

    a ,}c

    at

    t he i r to u t h m

    of

    :i

    vok -anic ven t

    . In otiier

    ac

    r-ds

    ,

    f l u c t u a t

    1 105

    in e rupt ion

    y e cc

    i t t -

    a r - c

    m a t e on s id

    em -cd to be im l ) o i - t a n t

    in

    c h - t - mu

    i r i i r i g t i m e he i

    g

    ht

    ( i f

    a n

    e rup t ion c loud

    .

    A v e r - a g . -

    exit

    velin- itie-i

    ranging fr-omit

    20

    nm / s e - c -

    t o 200 m rm -ec t i r e t i s s u t

    ( - ( h

    to m

    (pr a

    s (n t

    i

    a

    m dc -

    m t c m i g e i t

    erup t ion

    in tens it s-

    ,

    f r - o m i t

    St

    x - m c m ii b o l i a n

    t i c

    V o k - a n i a n

    t

    y i c e

    ~

    of c - t - u p t i o n

    .

    M u c h

    l

    a r g a - r

    e t - u p t i o n

    v e l c c c i t i e s on

    t ime

    em -

    c U r

    If 600 i i i

    /

    ~

    ec

    h a v e

    l i c e - tm

    i n f e r - r e d

    for t i n -

    b a l l i- I

    m u -

    t

    r - a r m s

    lation of

    l a r g e

    h , l c

    ,c

    Ls of

    e

    ~

    cc

    t o a

    r i d

    f o r t i r e f o r ni at ion c

    ~

    f

    ( - c o

    n i c l a

    r \

    c - n - o t t - c s

    c o m r i n i or r l y

    i c h u s t - r e a - c I i t

    h i s t : c r t c e s of

    s e v - c a l

    k i l o m e t e r - s

    Im -

    c c m n

    volcanic

    v -r t t s

    .

    2

    Such

    v c l c c ( i t i e s

    a r e

    p r - o h a b l y

    r io t r e p r e se n t a t i v e

    oh

    aver-age

    e x i t

    c

    onditions

    d u r

    i n g

    air e r u p t i o n

    b u t

    r a t h e r

    are

    a s s o c i a t e d

    w i t h

    t r a n s i e n t explosive pulses

    .

    I - i g i m i - e

    I

    pr-esents

    t h e

    v a r - i a t i o n

    of

    c e n t e r - l i n e

    ~

    c - t v e l o c i t y

    w i t h a l t i tude

    descr ibed

    I c y

    1 : 1 .

    ( 2 ) for

    :m

    c i r c u l a r -

    vent w i t h

    d i a m e t e r

    D 100

    m

    over a

    r

    ange

    o

    f

    e rupt ion

    i n t e n s i t y

    ( t h a t

    is

    ,

    d i f f e r e n t va lues of erup t ion ve loc i ty w

    0

    ).

    Also shown in Figure 1

    is

    a se

    ries

    of ver-tical wind profiles

    repmesenting

    averaged winter crosswind con-

    d

    itions in

    the

    Northern

    Hemisp

    here.

    These

    averaged

    wind

    profiles

    show

    that

    zonal

    w e s t e r l

    y

    f l o w

    is s t r o n g e r

    at

    m id - l a t i t u d e s

    (Washington

    D

    .

    C. and Flor ida) than at

    su b p o ia r l a t i tudes

    (Greenland

    and the

    A l e u t i a n s ) .

    A t

    a p a r t i cu l a r

    a l t i tude the cen t e r l i n e velocity a long the je t

    r e p r e s e n t s

    the

    m a x i m u m u p w a rd

    ve loc i ty

    of any par t

    of

    the e rupt ion

    cloud. The m ax i m u m

    height

    t

    o w h i c h

    vo lcan ic

    dust a n d gas wil l r i se as a result of thei

    r

    ini t ial mo m en tum can

    be

    a p p r o x im a te l

    y

    e s t im a te d

    as the al t i

    tude at w h

    i

    ch the j e t centerl ine

    v e l o c i t y

    equals

    the local

    c

    rosswind

    veloc i ty .

    Fi gure 1 indicates

    that for an eruption

    veloci ty

    of

    -

    ~~~~

    20 m sec Strombolian- scale eruptions) the

    hei

    g

    ht of an e rupt ion cloud may

    vary

    ~

    c c n n n

    ~~

    l 1500

    -

    2000

    m

    at mid-latitudes to

    ~

    H

    ~~

    3500 - 4000 in at

    sub

    polar

    l a t i t u d e s ; w h i l e for an

    erup t ion

    veloci ty of w = 200

    m/sec

    (Vulcanian-scale

    erup-

    t i c , m i s )

    t i s - b m e i g h t of an erup t ion cloud

    may

    vary

    f rom

    iliF

    5000 - 6500

    in

    at m id-

    l a t i i

    u d e

    ~

    ,

    I c ,

    ~

    I l

    - 11000

    -

    17000

    m at

    subpolar

    la t i tudes

    .

    These

    are

    maximum

    e,timates

    of atmospheric penetration based up o n t

    he ce nt

    erl i

    n e

    ve l

    oc i ty

    of the je t

    ,

    not

    t h e

    a v e - r a g e et

    y e l

    c i t y

    at a p a r t i cu l a r

    a l t i tude .

    These

    -l

    oud height

    .st int ate s

    indicate that an order-of-magnitude

    increase

    in

    e ru p t i

    o

    n v e - l c c c i t t - s h o u l d r e - c o l t in

    a fac tor

    of

    3

    increase

    in

    the average

    he igh t

    of an

    erup t ion

    cloud produced

    by

    a

    m i d - l a t i t u d e e rupt ion

    ,

    and a s l ight l

    y

    l a rge r

    fac tor of

    4 increase in the

    avera ge h e ig h t

    of an

    eruption

    cloud produced b

    y an eruption at

    su b pola r l a t i tudes . This method c c f es t im a t ing the he ight of an erupt ion cloud also

    i nd i ca t e s

    the

    impor t an t

    in f luence

    t h a t

    c rossa- inds

    have on cloud

    he ight . For

    a

    p a r -

    t i c u l a r v a l u e

    of

    er

    u p t io n

    v e l o c i t y t h e

    average

    h e ig h t of an e r u p t i o n

    loud

    produced

    at su b p o l a r l a t i t u d e s

    is a p p r o x i m a t e l

    y t w i c e t h e

    average he igh

    t to which an eruption

    cloud

    w o u l d

    r i s e

    in the

    s t r onge r

    w es t e r l

    y

    f l o w

    tha t

    occurs

    at

    m i d - l a t i t u d es

    .

    2 5

    .

    Fudal i

    ,

    H .

    1-

    . ,

    and Melson

    ,

    W . G.

    (1972)

    Bulletin Volcanologique 33:383-402.

    13

    --

    -

    --

    --.---------.--

  • 8/10/2019 holland's formula and volcano.pdf

    15/36

    -

    -

    ~~~~~~

    0

    ~~~~~

    -

    ~~~~

    ~ ~~~~~~~~~~~~~~~~~

    ~~~~~~~~~

    J E

    T

    CE N T ER LI N E V E

    L O C I T Y

    I

    rn/sec

    ______

    10 rn / sec

    100

    rn / sec

    I

    ~

    r

    ~

    y

    r T rv

    7_

    ~

    _T_

    rI

    ~

    r

    I

    T H U L E

    A L E U T I A N

    GREENLAND

    ~~

    I S L A N D S

    FLORIDA

    10

    -

    -

    9 -

    -

    8 -

    -

    WASHINGTON

    .

    DC

    -

    -

    w

    a

    5 -

    -

    4 -

    -

    3 -

    -

    2

    w

    0

    20 0 rn / s e

    w

    0

    .IOO

    rn/sec

    I

    -

    w

    0

    20

    rn/ sec w

    0

    .5

    0 rn/sec

    -

    0

    m c m l

    rn/sec 10 r n / s e c

    100

    rn/sec

    C R O S S W I N D

    V

    EL O C I T Y

    Figure 1.

    The

    Centerline

    Velocity of

    a T u r b u l e n t

    Volcanic

    Jet (heavy

    lines)

    Co rn -

    pared

    w i t h

    Averaged

    Cro s s w i n d Velocit ies ( l i

    ght

    l ines) at

    Var ious A l t i t u d e s .

    Je t

    cen ter l ine ve loci ty is calcu la ted b

    y Eq.

    (2 ) for different

    values

    of w

    ,

    t h e eruption

    velocity

    at a

    volcanic vent. Eruption velocities ranging from 20

    m /

    ~

    ec

    to 200

    rn / s ec are

    as sumed to represent

    a

    w i d e variation in

    e r u p t i o n

    i n t e n s i t y , f

    r

    om

    Strombolian-scale

    erupt ions

    to

    Vulcanian-sca le

    e ru p t i o n s ;

    a

    vent

    d i a m e t e r

    D = 100

    in

    has been as s umed in

    all

    calcu la t ions . Wind

    prof i les a re

    averages

    fo r

    t h e

    win ter season

    in

    th e

    N o r t h e r n

    Hemisphere.

    [ H andbook of

    Geophys.

    and

    Space

    Environments

    1965)

    ,

    Tables 4-12 through 4-18.

    1

    14

  • 8/10/2019 holland's formula and volcano.pdf

    16/36

    -

    -

    -

    -

    -c----

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    -

    -

    --:---

    --------.-------

    - --- - -

    ,

    ----- - --

    - --------- -

    ~

    --

    ~~~~~~~~~~~~~~~~~~~

    --

    ~~

    :

    ~~~~~

    C ross w i n ds

    c a r t

    fo

    r -ce

    an

    e r - u p t i o n

    cloud

    to

    bend o c - r and become h o r i z o n t a l

    downrange

    of

    the volcanic

    vent . Tle

    ac tua l t r a j e c t o r y of an

    erup t ion

    cloud i t m th e

    pr e se nc e of the prevai l ing

    c r - t c s s w i n d s

    sh

    o w n in l-

    i

    gure

    1

    can

    be

    roug

    h l

    y

    a n t i c i pated

    b y

    the

    angle formed b y

    t h e

    in tersec t ion

    of individual

    w i n d profiles and

    je t

    c e n t e r -

    l ine

    ve loc i ty

    c ur ve s . The

    a

    100

    n i /

    sec e rupt ion

    ve loc i ty

    c u r - y e

    shown in

    1- i g u r e

    1 converges at a s m a l l

    ang

    le w i t h the w i n d p r - o f i l e

    for

    Thule

    ,

    Gi-eenland

    at

    an

    a l t i t ude

    of 12

    km. A

    c o m p a r i so n

    of these

    t w c ,

    curves ind ica tes t h a t h o r i z o n t a l

    c r o s sw in d veloci t i es

    a r e

    70

    percent

    as s t ro n g as t ime

    v e r t i c a l

    center- l ine

    ve loc i ty

    of

    the volcanic

    e t

    over

    a l t i tudes

    of

    8 t o 12 km

    . A n e rupt ion

    of t h i i

    in tens i ty

    into

    this

    c x - o s s w i n d

    e n v i r o n m e n t would thus produce an

    e r - u p t n ) n

    cloud t h a t

    bends

    in a

    wide

    a r c

    f r - om

    t h e

    local v e r t i c a l

    d i r e c t i o n . In co n t r a s t

    the

    - 100

    r n / s e c

    e rupt ion

    ~

    - e - l c c it v c ur ve

    in t e r se c t s

    the

    w i n d

    prof i le

    for

    Washington

    ,

    D.

    C. at

    a

    much

    l a r g e r

    ang

    le a t an a l t i tude

    of

    :isoo rn

    .

    In

    th is case

    ,

    the

    eruption cloud would bend

    th rough a niuch s m a l l e r arc in ntaking

    the

    t r a n s i t i o n front

    p redominan t ly

    v e r t i ca l

    to

    p r - e d o m n i n a n t l

    y

    h o r i z o n t a l motion

    .

    F i g u r e

    1

    ind ica tes

    t h a t the

    average

    a t m o s p h e r i c

    penetr-a t ion

    of an erupt ion

    cloud produced b

    y

    a

    tu rbu len t volcanic

    jet should be grea te r

    for

    e ru p t i on s o ccu r r i n g

    at subpola r

    la t i tudes

    ,

    w h e r e zonal w e s t e r l

    y

    f l o w in

    the

    mid- t roposp

    he r e is gener-

    a l l y

    a e a k e r t h a n at

    midd le

    la t i tudes

    .

    As

    nt ent ioned p rev i o u s l

    y,

    the

    a ve r a ge height

    o f t h e

    t ropopause is

    lowest

    n e a r -

    the

    poles

    ~

    9 k m ) so

    that di rec t

    in t roduc t ion

    c cf

    volcanic dus t and

    gas

    i n t o the

    s t r a t o s p

    here

    may,

    on

    the

    a ve r a ge

    ,

    be more eas i l

    y

    acco m p

    l i shed

    b y

    ex p los ive erup t ions at sub

    polar

    la t i tudes (for examp

    le

    ,

    195 ( 1

    B e i v m i a n n

    y e r u p t i o n

    in

    K a m c h a t k a ;

    1912 K a tm a i erup t ion in Alaska) .

    Simi lar l

    y,

    zonal w es t e r l

    y flow

    iii sub t rop

    ical la t i tudes is

    weak

    in c ompa r i son with

    the

    mid-

    l a t i t u d e

    w e

    t c n - l i e s

    .

    However-

    ,

    the

    average

    he i

    ght

    of

    the t ropopause is gr e a t e s t in

    e q u a to r i a l reg ions

    ~

    1( 1

    km). Thus

    mas s ive

    Pl in i a n - s ty l e erup t ions are general l

    y

    requ i red

    to

    d i r e c t l

    y

    in t roduce

    volcanic dust and

    gas

    into

    the

    s t r a to s phere

    at sub-

    t r o p ical

    la t i tudes

    (for example

    , 1883 Krakatoa eruption in

    Indonesia;

    1963 Mt.

    A gtmng

    erupti

    on

    in

    Bali).

    :i.2 h i s . o f

    I

    nc lu

    =1 Ii sI P

    I

    urne

    ~

    Waste gases and fine p a r t i cu l a t e

    m a t e r i a l

    released f rom

    indust r ia l s mokes tacks

    fornt p

    lumes that a r e s o m e t i m e s c lea r l

    y visible.

    The

    r a t e

    at

    which indus tr ia l

    e f f luents en ter the

    atmospher-e

    ,

    though widely var iable

    ,

    is generall

    y

    s imi l a r to

    some

    f o r m s of fumarol ic

    and

    weakl

    y-explos ive

    volcanic

    act ivi ty. The m a x i m u m

    gas

    d i s ch a rg e r a t e s

    of

    c c c m , t m e r c i a l

    power

    p

    l an t s a re on the

    order of

    l0

    ~

    m

    3

    / s ec

    (Table 5. 1

    ,

    R e f

    12)

    in

    c ompa r i son

    to

    a

    peak gas flux of 2

    X

    ~~~

    m

    3

    /sec

    obser

    ved

    in

    the

    in i t ial

    phases of individual exp

    losive

    b u r s t s f ro m a volcanic

    vent at Stromboli

    by C hc iu e t

    et

    al

    18

    The

    r a t e

    a t which t h e r m a l

    energy

    is released b

    y such indus t r i a l

    15

    -

    -

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    ---

    -

    .

    -

    -

    ~~

    - -

    .

    ~

    ~~~~~~~~~~~~~~~~~

    -

    ~

    -

  • 8/10/2019 holland's formula and volcano.pdf

    17/36

    -

    ~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~

    -

    t a c i h i t i e s is t y p i c a l l y

    l ess

    than

    S

    y

    ~~~

    c a l

    se c

    ,

    whereas

    the gas

    pha se t r a nspor t

    c c f t r e a t away f rom t h e

    surface

    of t h e

    permanent lava lake at the

    Nyir-angongo

    -

    -

    8 26

    \

    c

    .

    c l c a r i c c

    has

    been

    e s t im a te d

    to

    be

    10

    ca l / sec

    b

    y

    D el s em m e (see

    also

    m i l ( c z u

    ru

    ~~~~

    .

    E r - o p t i o n

    cloud

    heigh t s

    of

    s evera l

    hundred m e t e r s

    observed

    for Strombolian-

    s ty

    le ct-options

    (see

    A

    ~~ ~

    endix A ) a r e c ompa r a b l e

    to the

    plume he i

    g

    hts repor ted

    for

    a

    v a r i e t y

    of i n d u s t r i a l

    s ou rces

    (see

    ,

    for example

    Briggs

    28

    ).

    In

    the

    case of ma jor

    exp

    losive e rupt ions

    ( t h a t

    is

    , V u l can i an - s ca l e e ru p ti o n s ) exit condi t ions at

    volcanic

    y e n / s

    d i f f e r

    s ign i f i can t l

    y

    f rom those commonl

    y

    found at the mouths

    of

    i n d u s t r i a l

    s m o k e s t a c k s

    .

    1 - x i t

    veloci t i es and m a s s

    flux ra tes

    assoc ia ted

    with majo r

    ex p

    losive

    e r u p t io n s

    grea t l

    y

    exceed the

    r a t e at which indus t r i a l

    e f f luents typ

    icall

    y en t e r th e

    a t r i o s p

    he r e . (Fo r e x a m p

    le

    ,

    T hor a r ins son

    and Vonnegu

    t

    13

    e s t i m a t e

    that

    dur ing

    th e

    in i t ia l

    s t a g e s of the

    19( 13

    S u r t e sy

    et - up t io n i

    ,

    thermal energy was emi t t ed a t a

    ra te

    -

    10

    -

    -

    in

    excess of

    10

    cal sec . ) As a r e su l t

    ,

    e rupt ion

    clouds produced b

    y Vu

    lcanian -

    style

    erup t ions can eas i l y

    dwarf

    most

    in d u s t r i a l

    p

    l u m es

    . The crosswind environ-

    ment

    into

    which

    indus t r i a l

    ef f luen t s

    and

    volcanic

    dust

    and

    gas are emi t t ed may

    also

    be

    qu i te d i f fe ren t .

    Explosive

    erup t ions c o m m o n l

    y

    occur

    at the

    s u m m i t s

    of

    large

    s t r a tovo lc a noe s w h ere

    c ro s s w i n d s are

    l ikely to

    be

    considerabl

    y

    s t ronger

    than

    those typica l l

    y encountered b

    y

    indus t r ia l e f f luents .

    A var ie ty of t h eo re t i ca l and em p i r i ca l

    ex p re s s i o n s

    have

    been proposed

    to

    e s t i m a t e

    the

    maxirnunt r i se

    he i

    g

    hts

    of

    in

    d u s t r i a l

    plumes

    . Appl ica t ion

    of

    t h e s e

    indus t r i a l l

    y- ba se d fo rm u l ae to ex p

    losive

    erup t ion

    c o n d i t i o n s

    involve

    s

    an

    extrapola-

    t i on

    of these

    various

    expressions

    b e y o n d

    t h e range of ex i t c o n d i t i o n s fo r w h i c h t h e y

    w e r e

    developed.

    As ment ioned

    prev ious ly ,

    t h e re is

    an ap p ro x i m a t e

    c or r e spond-

    en ce be t w een the he ights

    of

    p

    lumes produced b

    y

    large

    i n d u s t r i a l sour c e s and

    th e

    he i

    ghts

    of

    erupt ion clouds

    produced

    b

    y

    a e n k l y - e x p

    los ive

    S t r o rnbol ian-s ty le

    erup-

    t ions . A t these

    scales v e r t i c a l

    p e n e t r a t i o n

    of

    the

    a tm o sp

    h e re b

    y indus t r ia l

    l ) l u f l i e s

    and

    e rupt ion clouds

    is

    roughl

    y compar-able. Extr-apola t ion

    of i n d u s t r i a l l

    y-based

    plume r i s e e xpr e s s ions

    beyond

    this

    scale

    to

    m o r e

    explosive

    e rupt ion cond i t ions ia

    employed

    he r e

    as

    a

    me a ns

    of

    inves t i

    ga t ing

    t h e

    r -e la t ionshi

    p

    be tween the

    he igh t s

    of

    erupt ion clouds and e rupt ion

    in tens i ty .

    The

    r i s e of

    i n d u s t r i a l

    p

    lumes is predom-

    inantl

    y cont ro l l ed b

    y

    the

    t he r ma l buoyancy of

    i n d u s t r i a l

    e f f luents .

    E s t im a te s

    of

    the heights of erup t ion

    clouds

    based

    upon

    the

    behavior of i n d u s t r i a l plumes

    can

    be

    co m p ared w i t h

    repor ted cloud hei

    g

    hts and e s t i m a t e s of

    erupt ion

    cloud

    h e i

    ght

    based

    upon

    the

    tu rbulent jet model in order to

    assess

    the r e l a t i ve

    impor tance

    of t h e r t -mt a l

    buoyancy in

    the rise of

    eruption

    clouds.

    26.

    D

    elsemme

    ,

    A , (1960) Centre

    N a t i o n a l

    de

    V o l c a n

    ,

    P

    u

    bl

    .

    7: 1199-70 7

    .

    27.

    Shintozuru

    ,

    D.

    ( 1 9 6 8 )

    Bul le t in

    Volcanologi

    que

    32:383-394

    .

    28 . Br i

    ggs

    ,

    G . A .

    (1971)

    Nuclear

    Safe t

    y

    12:15-24.

    1(1

    -

    - - - - - -

    ------

    ~~

    -- - - -

    - _

    ---

    -- -

    _- -

    --

    - - - _

    -

    --- -

    - - -

    ~~

    --- --

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  • 8/10/2019 holland's formula and volcano.pdf

    18/36

    -

    -

    __

    ~

    w v c

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    .

    __=

    ~~~~

    -,=_-_--__-

    _

    -

    ~~

    ___-

    _

    ~

    _ _-.--,. --_

    _ _____

    -

    --

    __ _ -

    ---

    -

    -------

    .

    --

    --

    -

    -

    -a-

    ~

    _

    -

    ~~

    The

    r i s e of i n d u s t r i a l

    p lumes

    e m a n a t in g f rom smoke s t a c ks has been found to

    d epend

    upon :

    ( I )

    the

    v e l o c i t y of

    the e f f l u e n t

    at

    the mouth of

    the

    stack

    ,

    ( 2 ) th e

    t em p era t u re co n t r a s t

    between

    the

    e

    ffluent and the

    ambient

    a tmosphe r e

    ,

    (3) th e

    m c c

    ss sectional area of the stack

    ,

    4)

    the average crosswind

    speed

    at

    the

    heigh t

    it w h i c h the effluent is

    re leased

    ,

    and

    (5 )

    the thermal s t r u c t u r e of the

    a t m o s ph e r e

    ( t

    h a t is

    ,

    the var ia t ion o f

    envir-on inenta l

    t e m p e r a t u r e

    w i t h

    height) .

    The

    fo l lowing

    f o r m u l a e

    emp

    loy v a r io u s

    combinat ions of t he se pa r a me te r s to es t i m a t e the maxi-

    m u m

    heig

    hts of

    indust r ia l p lume-s

    (see

    al so

    Figure

    2) .

    These fo rmulae have been

    2

    d i s cu s s ed in

    g r - e a t e i -

    d

    e t a i l

    b

    y

    Briggs .

    -

    ERUPTION

    CLOUDS

    THER

    ~

    AL PLUME MODEL

    -

    _

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    -

    ~~~~~~~~~~~~

    ~~~~

    Fi

    gure

    2.

    Parameter-s

    E m p l o y e d i n the I n d u s t r i a l

    P l u m e

    Forntu lae

    Used

    for Pre-

    d i c t i n g

    P l u m e

    R i s e

    .

    29. Briggs

    ,

    G

    . A .

    (116 8)

    M o m e n t u m a n d b u o y a n c y e f f e c t s

    ,

    i

    n

    M e t e o r o l o g y

    and

    Atomic

    E n e r g

    ~

    ,

    D.

    Slade ( E d )

    ,

    U S A E C

    R e p o r t T I D

    24190 .

    17

    -

    ~~~~

    --- -

    --

    -

    -- .---

    _ -

    _--__-

    _--

    -

    -

    --

    ---

    -

    - - - -- - .--_--

    -- - - - - -

    --- -

    -- - -

    _

    _

    ---

    _-------

    -

    --.

    _- -

    -

    ~~~~~~~~~~~~~

    ~~

    ~

  • 8/10/2019 holland's formula and volcano.pdf

    19/36

    -

    _--

    --

    -

    -

    -

    - - _ -

    -

    ;----

    1.

    l c i l l a t m h

    ( O a k

    I t i i .

    l

    gc-) I - i c r t i i i ib i

    1

    ( I

    tV

    c 3 )

    ~~

    h

    I

    .

    - d )

    ~~

    c c

    4 . 0

    ~

    o

    5

    s-

    -

    (Q

    11

    is h e a t

    f l u x in

    i - a l

    s e e )

    2 .

    f ) a v i n l s o n - B r -y a t m h

    _

    i i

    c r n i u l a

    1

    ( I t i S 4 )

    ~~

    I

    I )

    ~~~

    _

    ~

    .

    4

    (I

    .

    .

    B o s an qu c t

    F o r - n m u l a

    32

    f

    Stable

    conditions

    ,

    w i n d

    y

    1957)1

    0

    .

    6 l 5 X

    0

    1

    2

    i

    ~

    l l

    A u

    f

    1

    + f

    2

    2

    1 - 2

    ((;2)

    0 .57 )

    (See

    Bosanque t

    32

    for

    definit ion of var iables

    A and

    X ;

    values

    of

    func t ions

    and

    1

    9

    a r e

    g iven

    in t abu lar

    f o r m a t )

    4 .

    13o-sanquet

    Forn-

    m u l a

    3 2

    [Stable

    conditions

    ,

    calm

    ( 1 9 5 7 ) 1

    ~~i i =

    O

    .

    666

    ( g Q

    ~~~

    T \

    1 4

    ( t + t

    )

    3/4

    - .

    t

    3 / 4

    0 .

    2 8 3 ( Q

    ~

    /2

    2

    ~

    T

    j

    0

    2

    0

    a

    ~

    w

    /

    (See Bo sanque t

    12

    for

    definit ion

    of

    var iables

    a

    ,

    t

    and t

    0

    ;

    Q

    is

    effluent

    d i s ch a rg e

    ra t e

    in

    m

    3

    /

    sec)

    5. Stiimke

    Formula

    3

    ~

    (1963 )

    =

    I

    .

    SD

    (-;

    ~

    --)

    +

    6 5 . 0

    D

    3 12

    ( A

    T )

    l / 4

    30

    .

    Holland

    ,

    J . Z.

    ( 1 9 5 3 )

    USAEC

    Repor t ORO-99

    ,

    Weather Bureau

    , Oak R i d

    ge

    T cnn.

    31.

    Davidson

    ,

    W

    .

    I-

    .

    ( 19 5 4 )

    l

    r - a n s

    . C o n f .

    m d .

    Wastes , 1 4 t h Annua l

    Meeting,

    pp. 38-55

    ,

    Indus t r i a l

    h

    ygiene Foundat ion of A m er i ca .

    32

    .

    B o sa n q u e t

    ,

    C .

    H.

    ( 1 9 S 7 )

    J. I

    nst . Fuel

    30:322328.

    33. St

    ~

    rn k e

    , H.

    ( 1 9 6 3 )

    1

    .

    S. A t o m i c

    Energy

    Co m m i s s i o n

    Repor t

    ORNL-TR-077

    Oak

    R i d g e N a t i o n a l

    Labo

    a t o r y .

    18

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    -

    ~~~

    -

    ~~

    -

    ----

    - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    -

    - -

    ~~~~

    -d

    .

  • 8/10/2019 holland's formula and volcano.pdf

    20/36

    -

    _ _

    ~~~~~~~~~~

    -

    ~~~~~~~~~~~~

    -

    ~~~~~~~~

    i r i

    ~~

    u s

    i - c r

    c i i l a

    1

    (

    ~~

    a d h c 1 c c c c r i c l m t i c c i c - \%

    in ( h

    y

    ( l t l I c

    ~

    d ) J

    ~~

    i

    L 0 (

    ~~

    ~

    7

    . l i i g

    ~

    .

    Ic c i1 l

    u l a

    ~

    t ah c I c - c a c n c h i t I c c r t

    ~~

    c a l r i m

    (

    l d di

    c d ) I

    1

    .

    _ I

    4

    ~~

    h

    . 0

    h i - c e

    ~~

    1 I p lume r i s e h e i g h t

    d cc

    c v i -

    ven t

    (m )

    I)

    v e n t d i a m e t e r

    (

    or )

    v e t - t i c a l

    exit

    v e l o c i t y

    a t

    vc - r r t

    mouth (n t

    see)

    u a v e r a g e c

    r c , s - c w i n d

    speed

    (m u

    sec- )

    ~

    T

    d i f f e m - e n c e in a b s c c l u t e

    t empera tu r -e

    be tween

    a n m b i e n t a i r and

    e f f l u e n t

    gas

    ( K)

    T

    -

    absolu te

    t e m p e r - a t u r - e

    of

    e f f l u e n t s tack

    gas

    (

    K)

    T

    a

    absolu te

    t e n i p e r - a t u r e of ambient a t m o s p h e r e

    (

    K)

    buoyancy

    f l u x

    1-

    -

    g

    ~

    41)

    w

    ( D )

    2

    (n t

    4

    / s e c

    3

    )

    S

    =

    a tm o sp h e r i c

    s t a b i l i t y

    p a r a m e t e r

    -

    ~~~~

    -

    ~~~~~~~

    -_

    (1

    ,

    - s e e

    2

    )

    9 8

    K

    r F

    -

    ~

    1000

    in

    -

    -

    -

    d

    .

    r e n v i r o n m e n ta l l apse

    r a t e

    =

    aT

    : dZ

    (

    K

    n i t )

    g

    grav i ta t iona l a c c e l e r a t i o n

    (9

    .

    8 ru

    see

    2

    )

    These various formulae a r e based upon both

    l a b o r a to r y

    ex p e r i m en t s

    and

    obser-

    vat ions

    of

    t h e ac tua l behav io r of indus t r ia l p

    lumes

    . Each f o r m u la

    produces r eas on-

    ab l y a c c u r a t e

    e s t i m a t e s of

    p lunt e

    r i s e

    w h en

    ap p

    l ied to ce r t a i n

    types of

    meteorolog-

    iea l

    condit ions and

    a

    spec i f ic

    r - a n g e

    o f e f f l u e n t

    s o u r - c - c

    s l r i - n g t h i .

    N o single

    t echn ique

    can

    a c c u r a t e l y

    predic t

    p lume

    he i

    g

    ht in all cases

    .

    h - c r

    e x a m p le

    ,

    t h e Holland (Oak

    H i d g e )

    formula

    i s based

    upon

    w i n d

    tunnel e x p e r i m e n t s and e m p i r i c a l

    o b se r v a t i o n s

    at re la t ive l

    y sm a l l

    power

    p

    lants opera t ing in t h e 1 9 50

    s

    . W h e n ap p

    l i ed

    to

    e x p l o s i v e

    e r - u p t i o n

    c o n d i t i c c .

    t h e

    Holland

    (Oak

    R i d g e ) f o r m u l a

    ; c m - e c h i c t s u n r e a s o n a b l y

    l a rg e

    cloud

    h e i g h t s . (Fo r

    values

    of g r e a t e r t h a n

    l 0

    ~~

    e a l/ se

    t h e h olland formula

    1

    -

    -

    --

    - -

  • 8/10/2019 holland's formula and volcano.pdf

    21/36

    ~~~~~

    -

    ~~~~~~~

    pm -

    (

    -d h

    m ( - ts

    et -up t i on

    c l oud

    h e ig

    h t s o

    n t he order

    of 50 km.

    )

    The

    r e m a i n i n g

    e q u a t i o n s

    p u -

    e

    -

    ~

    ented

    a bc ,v - produce r e a l i s t i c e s t i m a t e s of e rupt ion

    cloud height when ap p

    lied

    t c c

    e x p l o s i v e

    e r u p t i o n

    cond i t ions

    a s su n ed

    in

    this

    s tud

    y.

    By co n s i d e r i n g

    s evera l

    methods

    of

    e s t i m a t i n g plume height

    it

    is

    poss ible to make a meaningful e s t ima te

    of

    e r u p t i o n

    cloud

    he i

    g

    ht based upon the

    behavior

    of indus t r i a l p lume s .

    l able

    I p r e s e n t s the

    c - a l c u l a t e d

    heig

    hts of erupt ion clouds above an activel

    y-

    e r u p t i n g v

    c l r - a n i c

    vent

    for

    the

    case

    of

    a

    volcanic ga-s

    (T

    ,

    = 373

    K)

    en t e r i n g th e

    ambient a t m o s p

    here

    (T

    a

    S

    2 7 3

    K)

    v i a a

    c i r cu la r

    vent

    o

    d ia me te r

    U

    100 in. It

    has

    been

    as s u m ed he r e

    t h a t

    the

    e rupted gases

    expand rap

    id l

    y and cool

    f rom

    th e

    t e m p e r a t u r e

    at w h i c h

    the m ag m a

    is

    e rupted to

    100

    C

    such that they e f fec t ive l

    y exi t

    the

    c r a t e r

    at

    the

    l a t t e r t e m p e r a t u r e. Small changes in

    T

    a

    or

    T

    5

    w i l l not

    gr e a t l

    y

    affec t cloud

    height e s t i m a t e s

    in Table 1. These e s t ima te s

    have been rounded to

    the

    neares t 100 in

    in recogni t ion

    of

    the

    l a rge

    ex t rapo la t ions involved in ap p

    l

    y

    ing

    th e

    i n d u s t r i a l p lu m e f o r m u la e to ex p

    losive

    erupt ion condi t ions.

    Actua l

    observa t ions

    of

    the

    he ig

    hts of

    e rupt ion

    clouds

    are commonly es t imated

    to the

    neares t k i l o m e t e r

    (see

    A ppendix

    A ) .

    A v a r i e ty

    of

    combinat ions of erupt ion veloci ty

    and

    crosswind

    veloci ty

    has been chosen to r ep res en t an i nc rease in erupt ion in tens i ty

    f rom th e

    l e f t

    to r igh t

    of

    Table

    1.

    Exp

    losive erup t ions typ ica l l

    y occur at the s u m m i t s

    of

    l a rge

    s t ra tovolcanoes

    w h ere

    average

    crosswind

    veloc i t ies a re on the order

    of

    10 to 30

    n i s e c .

    Est ima ted he ights of e rupt ion

    clouds

    v a ry

    f ro m 900

    -

    10

    ,

    000

    m for

    Strombolian-

    sc a l e e ru p t i o n s

    (w

    0

    =

    20

    m/sec)

    to

    3 2 0 0

    -

    8500

    m

    for

    Vulcanian-scale eruptions

    W

    ~

    200 m/sec)

    in Table

    1

    . The

    S tn

    ~

    mke formula

    appears

    to

    pred ic t unr e a sona b l

    y

    l a r ge

    cloud

    heig

    hts

    (

    ~~

    H 10

    kin ) for r e l a t i v e l

    y

    sma l l

    ,

    St r omool ian-sca le erup t ions

    (w

    20

    in

    see);

    and the

    Briggs

    and Bosanque t fo rm u l ae

    for calm condi t ions may

    be cons

    idered

    to

    be

    inappropr ia te fo r

    the

    upper

    levels

    of

    the

    a tmosp

    here

    w h ere

    c ro s s w i n d veloc i t ies a re usual ly

    grea te r

    than

    5

    n t / s e c

    .

    A more se lec t ive range

    of

    e s t ima te s can he based upon the

    D a v id so n - B r y a n t

    ,

    Bosanque t (stable condi t ions ,

    w i n d y)

    and

    Brigg s

    ( s tab le

    condi t ions

    ,

    w i n d y )

    fo rmulae

    .

    D is r e ga r d ing

    the

    Stiimke

    f o r m u la

    ,

    e s t i m a t e s of cloud height in

    the

    pres ence of a

    c ro s s w i n d

    vary

    f r o m

    900 -

    4000 in for Strombolian-scale eruptions

    (w

    20

    n-

    c / s e c )

    to

    3200 - 8400

    in

    for

    Vulcanian-sca le e rupt ions

    (w

    0

    =

    200

    rn / s ee ) . Based upon these e s t i m a t e s

    ,

    it

    would

    appear t h a t an order of magni tude var ia t ion in

    e r u p t io n

    veloci ty

    will

    not

    neces s a r i l

    y

    resul t

    in a major change in e rupt ion

    cloud

    heigh

    t

    . A compar i son of the median

    value of c l oud h ei ght selec t ed f r om t he range

    of estimates

    predicted for these tw o

    cases of e ru p t i o n condi t ions

    suggests

    t h a t an

    or de r

    of

    magnitude inc reas e

    in erup-

    Hon

    i n t e n s i t

    y should result in a f a c t o r of

    2.

    5 increase in m e d i a n c l oud h e i g h t .

    A

    c ompa r i son of

    t h e D a v id so n - B r y a n t

    ,

    Bosanque t ( s tab le condi t ions

    ,

    w i n d

    y )

    ,

    and Briggs

    (stable

    conditions

    ,

    windy) fo rm u l ae for an

    eruption velocity

    of

    w

    0

    = 200

    r n / s e c

    under

    d i f fe rent

    c ro s s w i n d cond i t ions

    ind ica tes t h a t

    cloud height

    varies f rom

    20

    -

    - ---

    _______

    -_

  • 8/10/2019 holland's formula and volcano.pdf

    22/36

    --

    -

    ~~~~~~~~~~~~~~~~~~~~~~~~~

    --

    -

    ~~~~~~~~~~~~~~~~~~~~~

    I

    -

    ~~~~~

    I

    -

    o

    ~~~~~~~~~

    -

    ,

    I

    -

    ~

    1

    ~~~

    :

    i

    ~

    C

    nfr

    -

    -

    ~~~~~~~~~~~~

    ~

    ncr

    o c

    ~

    C

    C

    C

    -

    0 - 0

    0 : 0

    7 - .

    0.. I

    C

    ~

    l t- c n- c c

    -

    ~

    : -

    ~~~

    -

    ~~

    -

    -

    ~

    ,=

    C 1 - e

    - e -

    I-.

    - - -

    , - -

    -

    -

    U

    Hr

    :;

    I E

    o ~~~~~~

    0 0

    C

    0. O

    ~~~

    O

    ~~

    -

    ~~

    - ,

    0 1 0

    0

    0

    ~~~~~~~~ =

    ~~~~~~~

    ~~~~

    ,

    ~~

    I

    S~~~

    E

    I

    ~~~~

    e I c l o - o o o

    ~~~

    o

    [ o l o

    o

    I o

    o

    0 - 0 0 - 0 0

    0 0

    l

    0 0 0

    -=

    - c-, -)

    C)

    I

    0 0

    C

    C)

    -)

    f i 4

    0

    ~~

    -t

    I

    I

    0 cc en

    -

    cc

    ~~

    in .f

    ~

    ~~~~

    ~~

    O -

    -

    I

    ~~

    I

    J

    I

    ~~~~~~~~

    -

    ~

    ~~

    ~~~~~~~~~~~~~~~~~~ ~~~~

    n . e

    -

    ~ ~ ~

    ~~~

    -

    ~~

    -

    ~~~~~

    L-.

    .-----

    ~~ ~~~~~~~

    I

    ~

    L

    -

    ~~~~~~~

    -

    -

    -_

    -c

    -

    -

    ~~~~~~~~~~~~~~

    -

    ~~ ~~~~~

    ~

    ~~~~~

    ~~~~~~~~~~~~~~~

    --

    ~ ~~~~~~~~

    5

    ~

    9

    ~~~ ~~~~~~~~

    21

    __

  • 8/10/2019 holland's formula and volcano.pdf

    23/36

    _

    ~

    ~~

    _

    ~

    _

    ~

    z =

    ~~~~~~~~~~~~~~~~~~~~~~

    --

    - _

    ~~~~~~~~~~~~~~~~~

    ~~~~

    -

    ~~

    _

    ~~

    ~~~~~~~~~~~~~~~~~~~~

    -

    -

    -

    ~~

    I

    = 3700

    8 4 0 0 in t c r

    c r c

    ~~

    sWj i td

    u 10

    i t t / s ec

    to

    ~~

    1 = 3200 53

    00

    in

    he i r

    er o s -

    .-

    w

    ind

    u

    20 m

    s e c -

    .

    T h u s v a r i a t i o n s

    in

    c - r m s s w i n d

    condi t ions may potent ia l l

    y

    he

    as

    s ign i f i can t as

    v a r - i a t i o n s

    i n n erup t ion

    velocity

    in

    d e t e r m i n i n g

    the

    hei

    g

    h t

    of an erup-

    t i o n cloud.

    In

    addit ion ,

    Table I d e m o n s t r a t e s that var ia t ions in the t h e rn t a l

    st ruc-

    t u u - e

    of t h e a t m o s p h e r e

    (F)

    can also I t a v e an impor tan t influence on e rupt ion

    cloud

    h e i g h t .

    I.

    I ll

    =

    ~

    I

    The p

    h ys ica l m i t e c h a n i s m s responsible for

    the r i se

    of

    an

    erup t ion cloud

    a re th e

    u p w a u - d n a c n t e n t u m and

    t h e r m a l

    buoyancy

    of the

    volcanic dust and

    ga s .

    Each of th e

    ana logous phenomena

    employed

    l u e r e

    to model the

    r i s e

    of an e rupt ion

    cloud is p r i n -

    ci

    pa l lv dependent on

    c O O

    of

    these

    two ph

    ysica l

    n mec ira n -n i s ms .

    By compar ing

    cloud

    h e i g h t e s t i m a t e s

    produced

    by

    these

    t w o

    ve ry

    d i f fe ren t models

    ,

    i t

    may

    be poss ible

    i r e c - r -

    w h i c h

    c1 t h e t w n m e c h a n i s m s pla s a mor e

    in t ipo r - t an t

    role

    in the

    r i s e

    of

    v c , l can i c

    e r u p t i o n c louds .

    I - : s t i m a t e s of

    e

    r - o p t i o n

    cloud

    height

    based

    upon t h e

    tu rbu len t je t

    model

    a r e a

    - l e a s u r e

    of a t m o s p h e r i c pene t ra t ion produced

    by

    t h e upward

    m o m e n t u m

    of

    volcanic

    dust and gas . Cloud

    height

    e s t ima te s based u p o n the

    i n d u s t r i a l

    p

    l u m e m odels a re

    a m tr e a s u r e

    of

    a tm o sp

    h en - i c

    p e n e t r a t i o n produced b

    y

    t ire thermal buoyancy

    of

    volcanic

    gas . For e rupt ion

    v e lo c i t i e s

    vary

    ing

    f r - o r - n

    20 t o 200

    m

    see

    ,

    cloud

    heights

    e s t i m i t a t e d

    by

    t h - - tu rbu len t j e t model

    r

    ange f rom

    1500

    -

    6500

    rn

    ut-

    rid-latitude eruption in

    Figure

    1)

    ,

    w h ereas cloud

    heigh t s

    e s t im a te d b

    y

    t l t e i n d u s t r i a l plunte models range

    f r o n t 900

    -

    8400 m

    (p re fe r r ed

    models

    neg lec t ing Str i imke

    F o r m u l a and

    calm con-

    dit ions

    in

    Table

    1).

    T he se e s t ima te s

    o f

    cloud heigh t a re

    consider-ed

    to

    be roug

    h l

    y

    contparab le in view of the as s u m p t i o n s

    and

    ext rapola t ions involved in

    appl

    y

    i n g the

    models to exp

    losive

    erupt ion condi t ions . The

    fact

    t h a t g en e ra l l y

    s i m i l a r

    e s t i m a t e s

    of

    cloud hei

    ght are

    produced

    by two very

    d i f fe ren t

    models sugge s t s

    t h a t

    both

    m it o i t i e n -

    t u r n

    and t h e rm a l

    buoyancy

    p lay an impor tan t ro le t h roughou t

    t h e

    u

    ~

    t a i n

    por t ion

    of

    an

    e

    ruption clouds

    traject

    ory.

    For

    these eruption

    c

    onditions 20 i i i sec

    ~

    w

    ~

    200

    n t - s e c t n e i t h e r m o m e n tu m

    nor

    t h e r m a l buoyancy appears to domina te t h e

    ) n a c c ( 5

    S

    ~

    f

    cloud

    r i s e

    to a l t i tudes

    of

    10 km above an ac t ive ly-erup t ing volcanic

    vent .

    Both

    the

    t u rbu l en t jet and the i n d u s t r i a l

    plume

    models ind ica te

    t h a t

    for con-

    s tan t

    crosswind

    condi t ions

    ire

    height

    of

    an e rupt ion cloud should i n c r e a s e

    as erup-

    t ion intensi t

    y

    ( t h a t

    is

    ,

    a ve r a ge erup t ion ve loc i ty

    w

    0

    )

    i nc r e a se s . A n

    o r d e r -

    of rt t a g-

    n i tude

    var ia t ion

    in erup t ion

    ve loc i ty

    front

    w

    0

    20

    n t -

    sec

    to

    =

    200

    n i t

    sec

    r e s u l t s

    in a fac tor

    of 3

    to

    4 inc reas e

    in

    average

    cloud height predic ted

    b y

    t h e tu rbu len t

    volcanic

    j e t model

    ,= n d

    a fac tor

    of

    2. 5

    i nc r e a se

    in median cloud hei

    ght

    pred ic ted

    by

    the se lec t group

    of

    indus t r i a l p

    lume

    models