horikawa chapter 15 (pag. 217-233)

Upload: picado123

Post on 06-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    1/17

    CHAPTER1 5ASTUDYONWAVETRANSFORMATIONINSIDESURFZONE

    KiyoshiHorxkawaAssociateProfessorofCivilEngineeringUniversityofTokyoTokyo,JapanandChin-Tong KuoLecturerofCivilEngineeringChengKungUniversityTainan,TaiwanRepublicofChinaABSTRACT

    Thewavetransformationinsidesurfzoneistreatedanalyticallymthispaperundertheseveralappropriateassumptions. Thetheoreticalcurvescomputednumericallyhaveaconsistantagreementwiththeexperimentaldatainthecaseofwavetransformationonahorizontalbottom. Ontheotherhand,mthecaseofwavetransformationonauni-formlyslopingbeach,theanalyticaltreatmentseemstobeinadequatetoclarifytheactualphenomena. Besidesthemthenumerousdataonwaveheightattenuationandothersarepresentedmthegraphicalforms.

    INTRODUCTIONThephenomenaofwavetransformationmthesurfzonehasbeenamatterofgreatinteresttothecoastalengineers,thereforethenumerousinvestigatorshavetreatedthesameproblemonthebasisoftheappropriateassumptions'.''Theassumptionsaresuchthatthewavehasitscriticalheightasaprogressivewaveateachdepthofwater,orthatthewaveheightdecreasesexponentiallywiththedistanceofwaveprop-

    agationfromthebreakingpoint. Theseforegoingtreatmentsseemtobeinadequatetoclarifythephenomenaofwavetrans-formationinsidethesurfzone,thusmorereasonablemethodisrequiredtobeapplied. Theaimofthispaperistopresentanapproachtothestatedproblemonthebasisoftheanalyticalandexperimentaltreatments.THEORETICALANALYSIS

    Intheanalysisontheattenuationofwaveheightmthesurfzone,thefollowingassumptionsareintroducedasthebasisoftheanalyticaltreatment:a) The2ndorderapproximationofsolitarywavetheoryintroducedbyLaitorT isadoptedtoexpressthefea-turesofthebroken wavesprogressingmthesurfzone. Thatis,thewaveprofile,wavecelerity,

    217

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    2/17

    218OASTALNGINEERINGandhorizontalomponentfwaterparticlevelocity-aregivenyheollowingequationsespectively:

    c = /$A(i+ H / f l . ) 2 )

    where%ssurfaceelevationmeasuredfromthestillwaterlevel,Hwaveheight,H waterdepth, Cwavecelerity,u.orizontalcomponentofwaterparticlevelocity,zverticalaxistakingupwardfromthestillwaterlevel,andx. horizontalaxistakingalongthestillwaterlevel.

    D) Thewaveisattenuatedbytheeffectsofturbulenceandbottomfriction. Theeffectofpercolationontheattenuationofwavesisnegligiblysmall.c )hefrictioncoefficienthasthesamevalueintheentireregionofsurfzone.d)heturbulenceisisotropicanddecreasesexponen-tiallyaccordingastheincreaseofshowewarddis-tancemeasuredfromthebreakingpoint.ENERGYDISSIPATIONDUETOBOTTOMFRICTION

    Inanoscillatoryflowtheshearingstressatbottommaybeexpressedapproximatelybythefollowingequation.T=Cf(Sz)* 4 )

    whereTcisshearingstressatbottom,Cf frictioncoefficientand it amplitudeoftheaveragevelocitymdepth,aTheenergydissipation bybottomfrictionperunitwidth,per unittime,JiE b/dt >isgivenby

    where0C-/(3H/ftf ,X*+ H) 6 )

    ENERGYDISSIPATIONDUETOTURBULENCEWhenthewavebreaksatacertainpoint,agreatamountofairbubbleisentrainedintothewater,causingalarge

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    3/17

    WAVERANSFORMATION19scaledxsturbancemflow. Suchkindofdisturbanceseemstotakethemamroleofenergydissipationatleastattheinitialstageofwavetransformationinthesurfzone. Bytheassumptionthattheturbulenceisstatisticallyisotropic,theenergydissipationduetoturbulenceperunitvolume,perunittime,isgivenby

    W =15H - 7 )where V Vistherateofenergydissipationduetoturbulence,/^coefficientoffluidviscosity, &'fluctuationofhorizontalvelocitycomponent,and A.microscaleofturbulenceordissi-pationlength.

    Thekineticenergyofturbulenceseemstobeinverselyproportionaltothedistancefromthebreakingpoint. There-foreitmaybepossibletoexpressthedecayofturbulenceasfollows:

    U'xoc exp(-j8x/L) 8)where J3 indicatesadampingcoefficientofturbulence,Xdis-tancemeasuredfromthebreakingpointand Lwavelength.Thusthedissipationlengthmaybeexpressedbythefollowingrelation:

    atxHereweassumethatthemixinglength,Jt mthePrandtle'shypothesisisproportionaltotheheightabovethebottom,Zt'=i-=x(Z + A ) - |10)where XistheKarman'suniversalconstant,ftaterdepth,Uhorizontalcomponentofparticlevelocityand Z .axistakingupwardfromthestillwaterlevel. Thereforeweobtainthefollowingexpressionsontherateofenergydissipationduetoturbulence,$ andthelossofenergyduetoturbulenceperunitwidth, oLEt/dt

    W -Hrf e+ u'tiSf11)

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    4/17

    220 OASTALNGINEERING

    4| = fj\Xlz = * *&(4f( I + 3 9 9 -oo -f t

    + 7.2f9*'(#)*0+%f1 3 )

    T h etimerateofenergytransport,dts/dt i s asfollows:

    WAVETRANSFORMATIONON AHORIZONTALBEDT h eruleofenergyconservationi sexpressedinthenextequation:

    3=_(W+Zt"' 1 5 )Substituting Eqs.( 5 ) ,( 1 2 )and( 1 4 )into E q .( 1 5 ) ,wefindthefollowingdifferentialequation:

    c C xowy^wy^smw*wn)(16)where

    5 "

    '1 7 )T h eintegrationoftheaboveequationcannotbedoneanalyti-cally,butbedonenumericallyasshownmP i g .1 . Here J3 i sselected t o beequal t o5 ,andtheeffecto f bottomfric-tion i sincludedma factor o fCfT/Jd/ft selectedas a param-eteroffamilyofcurves.WAVETRANSFORMATIONON A UNIFORMLYSLOPINGBED

    Theslopeofthebottom i s definedby5 = -olk/dx, andthetimerateofenergytransportperunitwidthcanbe

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    5/17

    WAVERANSFORMATION 221

    H 0.5

    P = 5 Symb CfT/g/h

    00.1250.250

    5 ^* ?*^^-

    2Fig.. Numericalntegrationurvesfq.16). (Horizontalbottom)

    Fig.. Laboratorynstallation. (Firstetfxperiments)

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    6/17

    222OASTALNGINEERINGexpressedyhe followxng:

    #-=(-*+#!&s)Takingintoconsiderationthenextrelationships,

    #-$W(*)V)'* V ( 1 9 ) wemayobtainthefollowingdifferentialequation:

    d&_

    ^'/^nri^rF^)+o^q(i+^rw)MI)- '^520)wherethefunctionso f F ( H / R . ) and^WR.) arethesameasgivenmEq.(17). Theintegrationoftheaboveequationcanbedonebythemethodofnumericalcomputation.

    EXPERIMENTALANALYSISHORIZONTALBED

    Theexperimentalstudiesbyusingahorizontalbedwereconductedforthepurposeofdeterminingthedampingcoeffi-cientofturbulence,^ whichwasdefinedmEq.(8). Itseemstobequitereasonabletoassumethattheturbulenceofflowinducedbybreakingofwavestakesthemostimportantroleonthewaveattenuationinthesurfzoneonasmoothhorizontalbedcomparingtothebottomfrictionandothers.Thewavechannelusedforthepresentstudiesis1 7mlong,0.7mwideand0.6mhigh. Atoneendofthechannel,anelevatedwooden horizontalbottomwasinstalledandcon-nectedtothechannelbottom withaslopeof1 /5asshowninPig.2 . Thesurfaceofthehorizontalbottommentionedabovewascoveredwithasmoothrubberplate. Wavesweregeneratedattheotherendofthechannelbyaflaptypewavegenerator. Theincidentwaveswereforcedtobreakthemselvesontheslopingbottomandthen propagatedtotheelevatedhorizontalregion. Amongthevariouskindsofwavesgener-ated,weselectedonlytheparticularoneswhichbrokejustatthecornerbetweentheelevatedhorizontalbottomandtheslopingbed. Thecharacteristicsoftheselectedwaves

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    7/17

    WAVERANSFORMATION23 aregiveninTable1 .

    AsampleplottingoftheexperimentaldataispresentedinFig.3 . Herethetestedwaveshavethesameperiodof1sec,butthewaterdepthabovetheelevatedbottomhasadefferentvalueforeachrun. Figure4givesacomparisonofthelaboratorydatawiththeanalyticalcurvedeterminedbytaking ^8 =5". Fromthisfigureitmayberecognizedthatthewavesteepnessmdeepwaterofincomingwavesseemstohaveverylittleeffectonthewavetransformationmthesurfzone.

    Summarizingtheresultsofourlaboratoryexperiments,weconcludethatthedampingcoefficientofturbulence,^canbetakenacertainvaluebetween4and5mthepresentexperiments.Inordertoinvestigatetheapplicabilityoftheabovetreatmenttothepracticalphenomenamfield,wetookthefielddataof waveheightmthesurfzonewhichwereobtainedbyIjimabymeansofstereophotographyontheNugataWestCoast. Thebottomslopeofbeachatthequestionedsiteissogentle,thereforethebeachslopeisassumedtobehori-zontal. Figure5showsthecomparisonofvariouscurvessuchas( l )laboratorycurve,( 2 )analyticalcurvecalculatedundertheassumptionof = I and. o . o 5 ~ (3) curvepro-posedbyIjimaempirically,and( 4 )meancurveoffielddata.Theagreementbetweentheanalyticalcurveandthecurveof

    fielddataseemstobequiteconsistant. Buthereitisnecessarytoremarkthatthevalueoffimlaboratoryis4~5 ,whilethevaluemfieldis1 . Theabovefactsuggestsustheexistanceofscaleeffectofturbulencemthepresentproblem. Fromthispointofview morefieldworksarecer-tainlynecessarytobedone.UNIFORMLYSLOPINGBED

    Anotherseriesofexperimentswerecarriedouttorevealtheinfluenceofbottomslopeonthewavetransformationinsidethesurfzone. Thefirstsetofexperimentsmwhichwetestedthebottomslopesofl/20andl/30wasconductedbyusingthesamechannelasmthepreviousexperiments. Thesecondsetofexperimentsinwhich wetestedthebottomslopeofl/65andl/80wasdonebyusinganotherchannelatChengKungUniversity,thesizeofwhichwas75m long,1.0 m wideand1 .2m deep. Theslopemthelattertwocaseswasmadeofconcrete. TheconditionsofbothsetsofexperimentaregivenmTable2 .

    Thedimensionalanalysisintroducesthefollowingrela-tionshipamongthewavecharacteristics,waterdepth,andbottomslopeconditionmanon-dimensionalform.

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    8/17

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    9/17

    WAVERANSFORMATION 225

    T-Osec h -5cmRun Symb Ho/Lo 60 006 X 0083

    * 62 A 007363 + 006564 o 008S\+ e-5/A O +i/ +

    + A * XX X

    Ao

    X/T/gF

    Fig.. Comparisonfhexperimentalesultswithheheoreticalurve.(Horizontalottom)

    X/TTgiTFig.. RelationshipetweenH/hnd/T-y/gfiobtainedromvariousources.(Horizontalottom)

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    10/17

    226 COASTALNGINEERING

    Table2 . Experimentalconditionsonslopingbottom

    Bedcondition Wave characteristics Depthd(cm)Surface slope T(sec) H0(cm) o' 0Rubbersurface

    1/20 2.0, 14.1 5.6 -6.9 0.008 .053 43.31/30 2.2, 14.1 4.7 7.2 0.007 0.052 39.0

    Concretebed

    1/65 1.56, 2.02.0, 1.8 5.9 4.5 0.009 0.065 78.0

    1/80 1.6, 1.41.2 5.8 6.7 0.011 .072 75.0

    H( c m )

    28

    24

    20

    1 6

    1 2

    Symt) H% I //'0065 65+ 0053 .**0043 0038 .

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    11/17

    or

    WAVERANSFORMATION 27

    4~t f f e #" f c , S)2 2 )wheresubscriptoandbdenotethevaluesmdeepwaterandatbreakingpointrespectively.Accordingtotheresultofdimensionalanalysistheexperimentaldatawereplottedasshownmthefollowingfigures. Figure6givesseveralexamplesofwavetransfor-mationontheslopingbottomofl/65>andindicatesthatthelimitingconditionofsolitarywave, H = < - 1 8 l l isnotsuita-bletoexpressthewaveheightinsidethesurfzone. InPig.7isshownthecorrelationbetweentherelativewave

    height, H/Hb ,andtherelativewaterdepth,K / k j ,,foreachbottomslope. Scatterofdatamthesefiguresseemstobecausedmainlybytheinstabilityofwavesinsidesurfzone,butthesteepnessofincidentwavesmdeepwaterseemstohavesmallinfluenceonthestatedrelationship. ThereforetheeffectofbottomslopeonthewaveattenuationmthesurfzoneissummarizedmPig.8 ,fromwhichitmayberecog-nizedthatthegentlerthebottomslopebecomes,thesmallertherelativewaveheight,H/Hb becomesatthesamerelativewaterdepth,k / h . b Theabovefactisduetothatthedecaydistancefromthebreakingpointonagentleslopeislargerthanonasteepslope.

    InthesamewayweplottedthedataonthefollowinggraphsasshownmPig.9inordertofindouttherelation-shipbetweentherelativewaveheightwithrespecttowaterdepth, H / h . ,andtherelativewaterdepth,h/hb ~ ?0T eachparticularbottomslope. Thereisalargescatterofdata,butitispossibletodraw meancurvethroughtheplotteddata.AfamilyofcurvesthusdeterminedisgivenmFig.10withtheparameterofbottomslope. Thefigureshowsthattherelativeheight, H / h . hasitsminimumontheconditionofK/hb= F 0 . 6 Theanalyticalresultsobtainedbytheintegra-tionofEq.(20)undertheconditionsof^5=4 and C f= 0.OZarealsoplottedmthesamefigurebydotsanddashes. Theagreementbetweenthecomputedandexperimentalresultsisnotfullysatisfactory,thereforeitisquitenecessarytotreatthepresentproblembymoreregorousapproach.Lastly,itwillbementionedherethattheBoussinesq'sexpressionforwavecelerityhasthebetteragreementwiththeexperimentalresultsasshowninPig.11. Theequationisasfollows:

    C =/#t { I t ( M l ) } { / + to/au} ( 2 3 )

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    12/17

    228 COASTALNGINEERING

    I0090807

    05040302

    Symb "yi 1 0X AVD 0

    AV+

    000800080009001100100130013014010016017

    -^o

    X * A/S I+ + /V

    A /A r*T=22ec

    A* X % o*& J ff0

    fit

    X AS0 yyi*A

    is

    Fig. 7CorrelationetweenH/Hb andh/hbwith1/20,/30,nd/65bottomlopeespec-tively.

    0 0 02 03 04 05 06 07 08 09 10 (a) /hb

    II

    I00908070605040302010

    Symb " X * 1 oX A

    *- - AV

    00170016010 01400120100070009

    ""30

    V V VT = 22sec', X*

    V fr'9 | p e-^rf (A

    ? & A fo0 01 02 03 04 05 06 07 08 09 10 (b )

    /hb

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    13/17

    WAVERANSFORMATION 229

    II

    I0090807

    /Hb605040302

    Symb HKo Q= 1 o X

    4- V D 0V

    006500530046003800320030002500180017

    65

    A /

    vf1 5/T= l56sec X

    V/ v f t 8V

    a ni

    o ^ I io

    o V

    Fig. 7 CorrelationetweenH/Hb andh/hj,with1/20,1/30,nd/65bottomlopeespec-tively.

    (c)0 01 02 03 04 05 06 07 08 09 10

    Vh b

    lnC 0/

    0 ,2 % ,Fig.. Effectfheottomlopenhewaveattenuationnsideurfone.

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    14/17

    230 COASTALNGINEERINGI1

    Fig.CorrelationetweenH/handh/hbwith/20,/30,1/65,nd/80ottomslopeespectively

    X

    I

    10

    05 05 10(b)

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    15/17

    WAVERANSFORMATION 231

    %

    Fig.CorrelationetweenH/handh/hbwith/20,/30,1/65,nd/80ottomslopeespectively.

    w (c) % ..

    H

    I2I

    I0090807

    '/Hh605040302O

    Symb HVL9 1 oX+m \AV a0A V

    00390043004700500054005600600061006500670072

    " 80

    c ? f -ft

    < A

    v/yT-l secV l7 OS*

    VVv X4#\-+

    33

    V"VV X

    0 01 02 03 04 05 06 0.7 08 09 10 (d )

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    16/17

    232 COASTALNGINEERING

    1.5

    0.5

    1 \\\\ \1 \\ \\ \\ \\ \\ \\ \\ \

    HV078 \ v ^^_-/20 --''

    V ___^^Vo^^0.5 1 .0

    Fig.0. Comparisonfheheoreticalandxperimentalesults.

    20

    s= y0 o T= 4secx T22sec

    iX X X "?6o

    *oo_-XOo xo xo x

    0345 078Fig.1. ComparisonfheBoussinesq'sxpressionorwaveeleritywithheexperimentalesults.

  • 8/2/2019 Horikawa Chapter 15 (Pag. 217-233)

    17/17

    WAVERANSFORMATION33 whereC L , isthecrestheightabovethestillwaterlevel.

    ACKNOWLEDGEMENTSTheexperimentalworkswereperformedattheCoastal

    EngineeringLaboratory,UniversityofTokyoandattheHydrau-licsLaboratory,ChengKungUniversity. TheauthorsareindebtedtoDr.MasashiHom-ma,UniversityofTokyo,forhishelpfulguidance,andalsotothepersonnelatthebothlaboratories,whoassistedtheauthorsmcarryingoutthelaboratoryworkssuccessfully.REFERENCES

    1)om-ma,M.andK.Horikawa Waveforcesagainstseawall,Proc.9thConf.onCoastalEngineering,1964.2 )jima,T . Wavecharacteristicsmthesurfzoneobservedbymeansofstereophotograph,ReportofTransportationTech.Res.Inst.,Rept.No.31,1958.3 )ajiura,K . Onthebottomfrictionin anoscillatorycurrent,Bull.EarthquakeRes.Inst.,Univ.ofTokyo,Vol.42,1964.4)aitone,E.V . Thesecondapproximationofcnoidal&solitarywave,Jour,ofFluidMechanics,Vol.9 ,1 9 6 1 , ,5 )ato,S . Designofseawall,Proc.1stConf.onCoastalEngineeringmJapan,1954.(inJapanese)6)awaragi,T . Effectofbottomroughnessonthewaveheightinsurfzone,Proc.9thConf.onCoastalEngineeringinJapan,1963-(inJapanese)