horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its dna virus...

32
Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published online May 18, 2009 Brune Justine Carturan Bruno M1 BEM COM Le 10/12/09

Upload: benjamine-etienne

Post on 04-Apr-2015

107 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Horizontal gene transfer of an entire metabolic pathway

between a eukaryotic alga and its DNA virus

Genome Res. 2009 19: 1441-1449 originally published online May 18, 2009

Brune JustineCarturan BrunoM1 BEMCOM

Le 10/12/09

Page 2: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Transfert horizontal de gènes d’une voie métabolique complète entre une

algue eucaryote et son virus à ADN

Auteurs: Adam Monier, Anto´nio Pagarete, Colomban de

Vargas, Michael J.Allen,Betsy Read, Jean-Michel Claverie,et Hiroyuki Ogata

Page 3: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Cadre de l’étude•Organismes photosynthétiques de l’océan : ½ de l’O2 total de la planète.

Cyanobactérie (Anabaena sperica)

Diatomées

•Rapidité de cycles de reproduction et de mort

Haptobiontes( Scyphospahaera apsteeinii)

Page 4: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

L’organisme eucaryote concerné: Emiliana huxleyi

Emiliana huxleyi

EucaryotesChromalvéolésHaptobiontes

Nommée algue ou microalgue

Endosymbiose secondaire « voie rouge »

ScanningElectron Microscopy picture of Emiliania huxleyi

Page 5: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published
Page 6: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

L’organisme eucaryote concerné: Emiliana huxleyi

Emiliana huxleyi

EucaryotesChromalvéolésHaptobiontes

Nommée algue ou microalgue

Endosymbiose secondaire « voie rouge » ScanningElectron Microscopy picture of

Emiliania huxleyi

Page 7: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published
Page 8: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

L’organisme eucaryote concerné: Emiliana huxleyi

Emiliana huxleyi

EucaryotesChromalvéolésHaptobiontes

Nommée algue ou microalgue

Endosymbiose secondaire « voie rouge » ScanningElectron Microscopy picture of

Emiliania huxleyi

Page 9: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published
Page 10: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Importance écologique d’Emiliana huxleyi

Bloom planctonique àEmiliana huxleyi en 1999(Al Said, 2005)

•Coccolithophoridés le plus présent: formation de gigantesques blooms.

•Les craies du Crétacé sont formées de coccolithes sédimentés: puits decarbone dans l'océan.

Falaises de Douvres(Angleterre)

Page 11: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Interactions eucaryotes océaniques et virus

•Virus éliminent chaque jour 20 à 40 % masse des micro-organismes marins de surface

Emiliania huxleyi couverte par ses exosquelettes en carbonate de calcium et le virus géant EhV icosaédrique (© Miguel FRADA et Glynn GORICK)

•10 23 infections virales / seconde (Cours Claverie, 2009)

•Renouvellement du phytoplancton tous les 4 jours

Page 12: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Carte d’identité du « tueur »

•EhV souche EhV86•Virus géant à morphologie icosahedrale•Groupe monophylétique dans Phycodnaviridae •Coccolithovirus •Coccolithovirinae( CLAVERIE,2008)

Page 13: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

•ADN double brin (après Acanthamoeba polyphaga, LA SCOLA B ET AL, 2008)

•407 kilos paires de bases•Code pour 472 protéines

Acanthamoeba polyphaga

Page 14: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

SPT Serine palmitoyltransferaseLAG1 Dihydroceramide desaturaseFAD Dihydroceramide desaturaseLPP Sphingosine 1 phosphate

phosphataseDsD1-Like Fatty acid desaturaseAco1-like Fatty acid desaturaseSterol desaturase3KSR 3-Ketosphinganine reductase

Les enzymes sphingolipidiques

Page 15: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

A model of de novo sphingolipid/ceramide biosynthesis pathway.

ROUGE: Enzymes présentes chez E.huxleyi ET EhV86.

VERT: Enzymes présentes SEULEMENT chez E.huxleyi.

Page 16: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Rôles des sphingolipides

Très étudiés chez les mammifères et les levures:

•Régulation cellulaire

•Apoptose(= mort cellulaire programmée)

Page 17: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Questions soulevées par les scientifiques

• Gènes présents chez TOUS les eucaryotes mais présent QUE chez EhV : suggère un HGT (Prochlorococcus et Myoviridae, Ostreococcus tauri et son virus OtV5).

• L’hypothèse :HGT serait à l’origine des gènes de la biosynthèse des sphingolipides chez EhV.

• Quel est le sens du transfert?(hôte-virus ou virus-hôte)

• Quel est le rôle des sphingolipides chez EhV 86, quel est l’avantage selectif?

Page 18: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Preuves d’un transfert Horizontal de gènes

Recherche de ces gènes chez Eh V-86

Étude de similarité entre les gènes de Eh V-86 et E.huxleyi

Page 19: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

PCR

SPT LAG1 Dsd1-like FAD

LPP

Transmembrane fatty acide elongation proteine Sterol desaturase

Aco-1 like

3-KSR ?

Page 20: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

LAG1 : 100 %

SPT (LCB1) : 96%

Dsd1-like FAD : 100%

LPP : 60%

Transmembrane fatty acide elongation proteine : 91%

Sterol desaturase : 100%

Aco-1 like : 59%

GenBank

LAG1

Transfert horizontal de gènes

Page 21: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Rôle des enzymes sphingolipidiques de Eh V

Etude de leur fonctionnalité

Hypothèses de leurs fonctions chez Eh V

Page 22: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Etude du taux d’évolution des gènes en fonction de l’origine géographique (PCR pour 6 des gènes)

Eh V : 2 groupes

Gpe I :3 Manches 19993 Norvège 2000&2003

Gpe II :5 Manches 2001

E.Huxleyi : grande similarité

Fjord d’Oslo 1959Golfe de Maine 1989Large Pérou 1991Méditerranée (Espagne) 1998 (France) 2006Mer du Japon 2006

SPT

N

Page 23: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Etude pression sélective

Comparaison Ka/Ks entre Eh V-86 et Eh V-163 (gpe I)

SPT

LAG1

Dsd1-like FAD

LPP

Page 24: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Etude pression sélective

Comparaison Ka/Ks entre Groupe 1 et 2 de Eh V

SPT

LAG1

Dsd1-like FAD

Aco1-like FAD

LPP

Page 25: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Pression de sélection négative

Gènes fonctionnels et nécessaires à Eh V

Page 26: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Sens du Transfert :

?Eh V E.huxleyi

Page 27: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

E.huxleyi

E.huxleyi

Eucaryotes primitifs

Eucaryotes primitifs

Autres lignées

eucaryotes

Autres lignées

eucaryotes

Eh Vprimitif

Eh Vprimitif

VH

-Théorie de l’Eucaryogénèse

-Moins d’étapes de transferts (génome virus plus petit)

- Nécessité de co-évolution

HV

-Acquisition des gènes par étapes

-Gènes non présents chez autres virus

Plus parcimonieux

Page 28: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Rôle des sphingolipides: Solution d’adaptation de Eh V

• Contrôle du cycle de vie de l’hôte : prolonger l’infection + lyse cellulaire

• Interactions membranaires : facilitent l'infection et la libération des nouveaux virions

Page 29: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Conclusion

•Transfert horizontale de ces gènes entre les ancêtres de Eh V et E.huxleyi.

•Probablement de E.huxleyi à Eh V.

•Evolution du génome par étapes.

•Phénomène d’adaptation de Eh V.

Page 30: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

www2.cnrs.fr/presse/communique/1435.htm

Communiqué Presse , Paris 16 octobre 2008

Cellule diploïde calcifiante et cellule haploïde, non-calcifiante et flagellée permet d'échapper à l'attaque des virus. Le sexe est donc une stratégie anti-virale chez le coccolithophore Emiliania huxleyi.

Page 31: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

Red Queen / Cheshire Cat (Roman Lewis Caroll)

Course à la survie Phase haploïde d’Emiliana huxleyi

« Mais, Reine Rouge, c'est étrange, nous courons vite et le paysage autour de nous ne change pas ? » Et la reine répondit : « Nous courons pour rester à la même place. »

Page 32: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus Genome Res. 2009 19: 1441-1449 originally published

• Claverie J-M.Short report Giant viruses in the oceans: the 4th Algal Virus Workshop.

• COLOMBAN DE VARGAS, MARIE-PIERRE AUBRY, IAN PROBERT, JEREMY YOUNGOrigin and Evolution of Coccolithophores: From Coastal Hunters to Oceanic Farmers.

• J.B. Larsen, A. Larsen, G. Bratbak, and R.-A. Sandaa.Phylogenetic analysis of members of the Phycodnaviridae virus family using amplified fragments of the Major Capsid Protein gene.Department of Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway.

• Jose´ F. Fahrni,* Ignacio Bolivar,* Ce´dric Berney,* Elena Nassonova, Alexey Smirnov, and Jan Pawlowski*. 2003. Phylogeny of Lobose Amoebae Based on Actin and Small-Subunit Ribosomal RNA Genes, Mol. Biol. Evol. 20(11):1881–1886.

• LA SCOLA B., DESNUES C., PAGNIER I., ROBERT C., BARRASSI L., FOURNOUS G., MERCHAT M., SUZAN-MONTI M., FORTERRE P., KOONIN E., RAOULT DIDIER. 2008. The virophage as a unique parasite of the giant mimivirus. Nature, 2008, 455 (7209), p. 100-NIL_65.

• Michael J. Allen, Declan C. Schroeder, Matthew T. G. Holden and William H. Wilson. Evolutionary History of the Coccolithoviridae.

• Michael J Allen, Julie A Howard, Kathryn S Lilley and William H Wilson .Proteomic analysis of the EhV-86 virion.

• Michael J Allen, Declan C Schroeder, Andrew Donkin,

Katharine J Crawfurd and William H Wilson. Genome comparison of two Coccolithoviruses. • Michael. J. Allen, D. C. Schroeder, andW. H.Wilson. Preliminary characterisation of repeat families in the

genome of EhV-86, a giant algal virus that infects the marine microalga Emiliania huxleyi.