how membrane bioreactor technology can help to solve...

33
Seite: 1 / 33 20.09.2017 How membrane bioreactor technology can help to solve both, German and Russian wastewater problems F. RÖGENER, - TH KÖLN S. THEUS, DAR - DEUTSCHE ABWASSER-REINIGUNGS-GMBH A. CHUSOV, J. LEDNOVA - PETER THE GREAT ST. PETERSBURG POLYTECHNIC UNIVERSITY WATER SUPPLY AND SANITATION

Upload: duongcong

Post on 23-Apr-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Seite: 1 / 33

20.09.2017

How membrane bioreactor technology can help to solve both, German and Russian wastewater problems F. RÖGENER, - TH KÖLN

S. THEUS, DAR - DEUTSCHE ABWASSER-REINIGUNGS-GMBH

A. CHUSOV, J. LEDNOVA - PETER THE GREAT ST.

PETERSBURG POLYTECHNIC UNIVERSITY

W A T E R S U P P L Y A N D S A N I T A T I O N

Seite: 2 / 33

20.09.2017

Today, you will learn about the application ofmembrane bioreactors (MBR)

Climate change in Germany and Russia have a strong impact on existing water problems

MBR can be an approach to solve currentwater related problems in many countries

You ought to know some basics of MBR technology before we proceed

Results and conclusions

[00]

[01]

Seite: 3 / 33

20.09.2017

[2]

G. P

. Brasseur, D

. Jacob, S. S

chuck-Zöller (Hrsg.): K

limaw

andel in Deutschland: E

ntwicklung,

Folgen, Risiken und P

erspektiven. Springer/S

pektrum 2017

Between 1881–2014, the temperature increase was about 1.3 °C Basically, Germany is a country rich in water resources. Per capita, approximately 2,300 m3/a of water are available; regional, but

significant differences exist.

Water saving is widely practiced In 2016, the average per-capita consumption of water was 123 l

Changes of rainfall patterns can be observed In total, the average annual precipitation decreased Especially, the runoff during summer decreased In many regions, heavy winter precipitation has increased; however,

precipitation is the form of rain rather than snow A high runoff is observed earlier in the year and the lowest runoff later in

the year There is an increased potential for extreme weather events with high

importance for agricultural and urban hydrological issues. Between 1970 and 2014, economic losses caused by climate-related

natural hazards amount to 90 billion Euros

.

It is expected that all economic sectors in Germany will be affected by climate change

[2]

Seite: 4 / 33

20.09.2017

These are some of the resulting questions for the German water sector

[2]

Changes of rainfall during the year/ heavy winter precipitation Adopting sewage disposal systems to the varying input flows

Decreasing runoff during summer Securing the industrial water supply

Increased number of visitors in seaside resorts Retrofit of existing plants in densely populated areas

New wastewater treatment plants will not be constructed Retrofitting and enlargement

.

Seite: 5 / 33

20.09.2017

Climate change is expected to have a significant influenceon the environment and socio-economic activity of different Russian regions

https://comm

ons.wikim

edia.org/wiki/File:M

ap_of_federal_cities_of_Russia_(2014).svg

Between 1907–2006, the temperature increase was about 1.3 °CClimate change manifests strong regional non-uniformityWater saving is not commonly practiced In 2013, the average per-capita consumption of water was about 270 l

Water sources and drinking water are highly contaminated by chemical and biological agents

In total, an increase of water resources is observed

Alterations in the river flow due to expected climate change

Changes in the water inflow to reservoirs

Modification of the thermal regime of permafrost regions(=permanent ground freezing; permafrost regions comprise 60 % of the Russian area) Increase of methane emissions to the atmosphere Negative effects of frosting and thawing on buildings

https://ww

w.clim

atechangepost.com/russia/clim

ate-change/

Seite: 6 / 33

20.09.2017

These are some of the resulting questions for the Russian water sector

Water sources and drinking water are highly contaminated by chemical and biological agents Optimization of regional water use is essential Change of the mindset required to save the environment

Currently in Russia, about one-third of the water-supply and sewerage networks have deterioration levels of more than 60 % New construction required

Changes in the water inflow to reservoirs expected Influence on hydro-power industry Revision of their operating mode required

In regions with decreasing water resources Alternative and additional sources of water especially for economic

needs have to be found (in particular, irrigation and hydropower production)

https://ww

w.clim

atechangepost.com/russia/clim

ate-change/

Seite: 7 / 33

20.09.2017

Coarse particles

Sand

CP

N

Fat and oil Salt Dissolvedorganic

substances

VirusesDiscolorations

Temperature pH value

(multi resistant)Bacteria

Radioactivity Microplastics Micro pollutants

[01]

[05] [06] [07]

[08] [09]

[10] [11] [12] [13] [14] [15]

?

Municipal wastewater contains a multitude of organic and inorganic components; 60-70 % of them are dissolved

Seite: 8 / 33

20.09.2017

All over the world, 34 MBR plants for the treatment of > 100.000 m³/d municipal wastewater are operated or are in construction (2015)

https://www.aufkleberdealer.de/images/www.aufkleberdealer.de/product/ai-5150-wandtattoo-weltkarte-2.jpg

1797

1

18 GE Power WTP[4]

The world‘s largest MBR plant is situated in Stockholm/ Sweden. It has a capacity of about 864,000 m³/d

Seite: 9 / 33

20.09.2017

The world‘s largest MBR plant is situated in Stockholm/ Sweden. It has a capacity of 864,000 m³/d (2015)

1

3

4

3

1

1

11 GE Power WTP[3]

Krzem

inskia, P., Leverette, L., M

alamis, S

., Katsou, E

.: Mem

brane bioreactors–

a reviewon

recentdevelopments

in energy, reduction, fouling control, novel configurations, LCA

and market

prospects. Journal of Mem

brane Science, http://dx.doi.org/10.1016/j.m

emsci.2016.12.010

Seite: 10 / 33

20.09.2017

About 400 MBR plants are installed all over Europe

285 industrial units

B. Lesjean, E

.H. H

uisjes/ D

esalination231 (2008) 71–81

105 municipal plants.

Num

bero

fins

talla

tions

Num

bero

fins

talla

tions

Seite: 11 / 33

20.09.2017

21 municipal effluent treatment plants (ETP) based on membranebioreactor technology (MBR) have been constructed or retrofitted in Germany since 1999

[2]

[based on Statistisches Bundesamt]

Seite: 12 / 33

20.09.2017

Krzem

inskia, P., Leverette, L., M

alamis, S

., Katsou, E

.: Mem

brane bioreactors–

a reviewon

recentdevelopments

in energy, reduction, fouling control, novel configurations, LCA

and market

prospects. Journal of Mem

brane Science, http://dx.doi.org/10.1016/j.m

emsci.2016.12.010

These are the market drivers for increased MBR application in wastewater treatment

Stricter legislative demands for discharge/ reuse of the secondary effluent

Discharge of secondary effluent toincreasingly sensitive water bodies

Removal of specific pollutants, such asresistant bacteria, microplastics, andmicropollutants

Space limitations of new or retrofittedwastewater treatment plants

Seite: 13 / 33

20.09.2017

Membrane bioreactors combine activated sludge treatmentand membrane separation

Aerobic biological cleaning oforganically polluted wastewater by

activated sludge

Rejection of particles Filtered effluent

Improved rejection of microrganisms, some micro pollutants, and microplasticsLow space reqirement

[16][13]

Seite: 14 / 33

20.09.2017

The different steps of conventional wastewater treatmentplants can be integrated within one membrane bioreactor

source: DWA-M 227 - Membran-Bioreaktor-Verfahren

PermeateFeed

FeedActivatedsludge

DischargeFiltra-tion

Dis-infection

MBR

Final clarification

Seite: 15 / 33

20.09.2017

Substrate

Bio gas

DigestateFermentation

(discontinuous bio reactor)

This is the prototype of a bioreactor

Bio filter(liver, kidney)

Bio gas

Design of the biological treatment accoding to e.g. ATV-DVWK A131 (German), EPA 625/4-73-003a (US)

Seite: 16 / 33

20.09.2017

Only membrane filtration technologies allow the rejection of particles and microorganisms

DWA-M 227 - Membran-Bioreaktor-Verfahren

Reverse osmosis

colloids

bacteria

viruses

Ions

pesticides

cryptosporidium

particles (≥0,45 µm); German standard

Granular filtermediaSieves

Membrane filtration

Microfiltration

Particle size,cut-off [µm]

Molecular weight (kDa)

Seite: 17 / 33

20.09.2017

Membrane pore structure works like a sieve:

Particles > pore diameter are rejected

Typical pore size (cut-off): 0.02 (UF) – 0.4 µm (MF)

Hydrophilic membranes

Crossflow required

Pore diameter about 0.2 µm

E. coli bacterium ca. 0.5-1 µm

Small particlesca. 0.025 µm

Better effluent quality in terms of Particle load COD Microbial quality (bathing water

quality according to EU directive76/160/EWG)

Microfiltration (MF) and ultrafiltration (UF) combine high filtrate flux and high rejection of particles / microorganisms

Seite: 18 / 33

20.09.2017

Crossflow filtration can minimize membrane foulingAc

cord

ingg

to: w

ww

.inno

chem

-onl

ine.

de/d

ownl

oads

Feed side Permeate side

Pore blocking

Adsorption

Water moleculessaltMacro molecules/biomass

Surface layerformation=transportresistance

Membraneresistance

concentrationpolarisation

Fouling = Interaction between feedcomponents and themembranes

Feed flow

Seite: 19 / 33

20.09.2017

Process conditions influencing the growth and productivity of the used microorganisms at simultaneous minimized formation of byproducts Temperature: Cooling or heating (external/internal)

Substrates: Continuous feeding or feeding at the beginning of the reaction

pH: Control according to the reaction progress

Reaction gases:

aerobic reactions: continuous supply of oxygen required, which promotes an effective agitation of the reactor solution and the stripping of reaction products, such as CO2, at the same time. To promote the solubility of gases in the liquid solution, often overpressure is applied. Gas transfer can be the rate-determining step.

Agitation

Fouling (undesired biological growth in certain parts of the plant, such as membranes or heat exchangers)

The design of MBRs is a complex task

Seite: 20 / 33

20.09.2017

Different designs of membrane bioreactors are available

Externalmembranefiltration

Submergedmembranefiltration

Semi-crossflow, external orsubmerged

Crossflow providedby pumps

Crossflow providedby air injection(required for microbialpollutantdecomposition)

Crossflow providedby both, air injectionand pumps

Source: DWA-M 277, 2014

Seite: 22 / 33

20.09.2017

Largest available module type

ZeeWeed® 500D 1,651 m² / module

ZeeWeed® 500D 1,651 m² / module

BIO-CEL® XL 1,920 m² / module

VRM® 50 9,200 m² / module

U70-003 70 m² / module

LMF 20103 600 m² / module

Puron PSH 1800 1,800 m² / module

Seite: 23 / 33

20.09.2017

The MBR is a key technology for wastewater treatment andwater reclamation

solids 0 mg/LCOD < 30 mg/LMicrobiology: bathing

water quality*

Solids 10 - 15 mg/LCOD 40 - 50 mg/L

solids 3 - 8 mg/LCOD 30 - 40 mg/L

solids 0 mg/LCOD < 30 mg/LMicrobiology: bathing

water quality*

Source: D

WA

-M 277, 2014

Feed

Feed

Feed

Biological treatment

Biological treatment

MBR

Secondaryclarification

Run-off

Run-off

Run-off

Filtration

Membrane tank

* (according to EU directive 76/160/EWG)

Seite: 24 / 33

20.09.2017

The addition of a 4th treatment step is feasible

Mechanische Abwasser-

behandlung

Belebungs-becken

Membran-anlage

Nachklär-becken 4

GAK(Filtrations-

becken)

MechanicalTreatment

Activatedsludgetank

Secondaryclarifier

MBR GAC

Mechanische Abwasser-

behandlung

Belebungs-becken

Membran-anlage

Nachklär-becken 4

Reaktions-becken

(Ozonierung)

GAK(Nach-

behandlung)

MechanicalTreatment

Activatedsludgetank

Secondaryclarifier

MBR Ozonation GAC

GAC granulated activated carbonPAC powdered activated carbon

Mechanische Abwasser-

behandlung

Belebungs-becken

Membran-anlage

Nachklär-becken 4

PAK

MechanicalTreatment

Activatedsludgetank

Secondaryclarifier

MBR

PAC

Seite: 25 / 33

20.09.2017

CP

N

Salt Dissolvedorganic

substances

VirusesDiscolorations

BacteriaMicroplastics Micro pollutants

[16]

[07]

[11] [12]

[13][14] [15]

MBR technology in wastewater technology is a big step forwardto safe and clean secondary effluents

Micro

pollutants

[15]

MBR

MBR + quaternarytreatment

Seite: 26 / 33

20.09.2017

[2]

Retrofitting of existing plants Removal of microplastics and micropollutants In connection with quaternary treatment high quality

water can be processed

New construction of wastewater treatment plantsaccording to the state-of the-art

Water reclamation in arid regions of the country

It can be concluded that MBR technology can contribute to overcome both, German and Russian water related problems

Seite: 27 / 33

20.09.2017

ContactProf. Dr.-Ing. Frank Rögener

office: +49 221 8275 2243Email: [email protected]

I would like to thank my friends and colleagues in Wiesbaden and St. Petersburg for their contribution

Sven Theus Julia Lednova Alexander Chusov

Seite: 28 / 33

20.09.2017

Literature (1)

[1] Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA): Arbeitsblatt DWA-A 131. Bemessung von einstufigen Belebungsanlagen, Hennef, 2016

[2] Bundesstadt Bonn, Tiefbauamt: Abwasserbeseitigungs-konzept 2012-2017, Bonn, 2011

[3] Bundesstadt Bonn, Tiefbauamt: Kläranlagen der Stadt Bonn – Energie 2012, Bonn, 2013

[4] Erftverband: Persönliche Kommunikation mit K. Drensla & A. Janot, Neuss, 28.06.2016

[5] GE Power: Datenblatt ZeeWeed 500D Modul, 2016, URL:https://www.gewater.com/kcpguest/documents/Fact%20Sheets_Cust/Americas/English/FSpw500D-MOD_EN.pdf (accessed 05.09.2016)

Seite: 29 / 33

20.09.2017

Literature (2)

[6] GE Power: Datenblatt ZeeWeed 500D Kassette, 2016, URL:https://www.ecosia.org/search?q=zeeweed+500+d+kassette+factsheet&region=&lang=&f=false (accessed 05.09.2016)

[7] S.J. Judd: The status of industrial and municipal effluent treatment with membrane bioreactor technology, Chemical Engineering Journal (305) 37-45, 2016

[8] K. N. Krebber: Optimierung der Energiebilanz von Membranbioreaktoren, Dissertation, RWTH Aachen, 2013

[9] P. Krzeminski; L. Leverette; S. Malamis; E. Katsou: Membrane bioreactors – a review on recent development in energy reduction, fouling control, novel configurations, LCA and market prospects, Journal of Membrane Science, 2016

Seite: 30 / 33

20.09.2017

Literature (3)[10] Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.

(DWA): Merkblatt DWA-M 227 Membran-Bioreaktor-Verfahren (MBR-Verfahren), Hennef, 2014

[11] SWECO GmbH: Machbarkeitsstudie zur Mikroschadstoffelimination auf der Kläranlage Bonn Salierweg, Abschlussbericht (unveröffentlicht), Köln, 2016

[12] S. Theus: Studie – Ertüchtigungsmöglichkeiten in der kommunalen Kläranlage Bonn-Salierweg mit getauchten Membranmodulen, Masterprojekt, Bonn, 2016

[13] Federal Service for Hydrometeorology and Environmental Monitoring (ROSHYDROMET): Assessment report on climate change and itsconsequences in Russian Federation – General summary. Moscow2008. http://climate2008.igce.ru/v2008/pdf/resume_ob_eng.pdf(accessed 14.09.2017)

Seite: 31 / 33

20.09.2017

Literature (4)

[14] G. P. Brasseur, D. Jacob, S. Schuck-Zöller (Hrsg.): Klimawandel in Deutschland: Entwicklung, Folgen, Risiken und Perspektiven. Springer/Spektrum 2017

[15] Dudarev, A.A., Dushkina, E.V., Sladkova, Y.N., Alloyarov, P.R., Chupakhin, V.S., Dorofeyev, V.N., Kolesnikova, T.A., Fridman, K.B., Evengard, B., Nilsson, L.M.: Food and water security issues in Russia II: Water security in general population of Russian Arctic, Siberia and Far East, 2000–2011. Int. J. Circumpolar Health 72 (1) (2013)

Seite: 32 / 33

20.09.2017

Figures (1)

[00] B. Lesjean, E.H. Huisjes / Desalination 231 (2008) 71–81[01] G. Khailu: In the underground. Museum Erarta, St. Petersburg[02] URL: https://www.scherm.com/images/Rubriken/Bilder/arten/SCHERM_

Deutschlandkarte_grau.jpg, zuletzt abgerufen am 07.01.2017[03] URL:https://www.scherm.com/images/Rubriken/Bilder/Karten/SCHERM_

Europakarte_grau.jpg, zuletzt abgerufen am 07.01.2017[04] URL:https://www.scherm.com/images/Rubriken/Bilder/Karten/SCHERM_

Weltkarte_grau.jpg, zuletzt abgerufen am 07.01.2017[05] https://commons.wikimedia.org/wiki/File:Toilet_Paper.jpg[06] https://commons.wikimedia.org/wiki/File:FD_2.jpg[07] https://commons.wikimedia.org/wiki/File:RealSalt.jpeg[08] https://commons.wikimedia.org/wiki/File:Hotel_Baron_thermometer.jpg

Seite: 33 / 33

20.09.2017

Figures (2)

[09] https://fr.wikipedia.org/wiki/Indicateur_de_pH#/media/File:Papier_pH.jpg[10] https://commons.wikimedia.org/wiki/File:ISO_7010_W003.svg[11] https://www.vagabondjourney.com/what-can-cause-rivers-to-run-red/[12] https://commons.wikimedia.org/w/index.php?curid=2044014[13] https://upload.wikimedia.org/wikipedia/commons/9/9d/Cholera_bacteria_

SEM.jpg[14] https://commons.wikimedia.org/w/index.php?curid=29710934[15] https://upload.wikimedia.org/wikipedia/commons/b/be/Capsules.JPG[16] https://www.mann-hummel.com/de/corp/aktuelles/news/newsdetails/?tx_ttnews%5Btt_news%5D=549&cHash=740dbe4334781c3519f53cf894ef2d67