human body modeling with ansys software · pdf file1 © 2011 ansys, inc. october 24, 2011...

53
© 2011 ANSYS, Inc. October 24, 2011 1 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS, Inc.

Upload: duongtuong

Post on 09-Mar-2018

245 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20111

Human Body Modeling with ANSYS Software

Marc Horner, Ph.D.Technical Lead, HealthcareANSYS, Inc.

Page 2: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20112

Overview

This talk is motivated by the following observations:1. Our understanding, and thus our ability to mathematically describe, the 

human body is to the point where one can assemble human body models as “boundary conditions” for  biomedical simulations.

2. Improvements in ease‐of‐use and stability of multiphysics modeling tools.3. Computational capabilities are continually increasing.

Page 3: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20113

Types of Human Body Models

Application areas:• Coronary stents• Peripheral stents• Artificial organs

Application areas:• Transdermal• Inhalers• Oral• Intrathecal

CARDIOVASCULAR DRUG DELIVERYMUSCULOSKELETAL

Human Body Modeling

• CFD, FEA, and emagmodels coupled to lumped parameter representations of the human body

Parametric System Level

• DOE for HBM• Fully automated process

EMAG

Application areas:• Medical imaging• Cardiology• Drug delivery• Cancer treatments

Application areas:• Orthopaedic implants• Exercise equipment

Page 4: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20114

Types of Human Body Models

Application areas:• Coronary stents• Peripheral stents• Artificial organs

Application areas:• Transdermal• Inhalers• Oral• Intrathecal

CARDIOVASCULAR DRUG DELIVERYMUSCULOSKELETAL

Human Body Modeling

• CFD, FEA, and emagmodels coupled to lumped parameter representations of the human body

Parametric System Level

• DOE for HBM• Fully automated process

EMAG

Application areas:• Medical imaging• Cardiology• Drug delivery• Cancer treatments

Application areas:• Orthopaedic implants• Exercise equipment

Page 5: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20115

Geometry

Material propertiesCan typically assume density and viscosity at average hematocrit and high shear.

= 1.05 g/cm3

= 0.035 g/cm-s

Resting ConditionQtot = 6.8 L/min, 75 bpm**

Exercising ConditionQtot = 12.8 L/min, 117 bpm**

* Stevens et al., Math Biosciences (2003)

Inflow conditionsLiterature a good source for inflow data*

** Murgo et al., Circ Res (2003)

Idealized Blood Flow

Page 6: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20116

Material propertiesCan take a blood sample and measure the patients hematocrit, protein content, etc.

Inflow conditionsTaken from on-line measurements***

*** Huntsman et al., Circulation (1983)** Cho & Kensey, Biorheology (1991)

vs H* vs **

* Hinghofer-Szalkay, ?? (1986)Geometry(courtesy Materialise Inc.)

Patient‐Specific Blood Flow

Page 7: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20117

My Flow Patterns

speed

wall shear

pressure

Page 8: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20118

One complicating factor in aortic flow modeling is the application of accurate outflow boundary conditions.

Specialized conditions are required because the flow split at a bifurcation is controlled by downstream organ demand, not the bifurcation geometry.

Without a specialized condition, an analyst will not have a proper understanding of the baseline flow patterns and how an implanted device affects those patterns.

+5.5 L/min

-0.3 L/min

-0.8 L/min

-1.1 L/min

-1.1 L/min

-2.2 L/min

Flow Rate Reqs for Human Organ Circuits1

1Rhodes & Tanner, Med Physiology (1995)

Outflow Conditions For Aortic Flows

Page 9: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 20119

Create a detailed geometric model of the entire cardiovascular system, extending from the heart to the capillaries.  The problems with this approach are obvious:• Large geometric model required to 

capture full geometric details• Accuracy of the geometry will be at 

question, esp. below 0.5 mm

* Image from Texas Heart Institute web-site

Modeling Options for Outflow BCs

Page 10: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201110

Electrical Circuit Model of theHuman Cardiovascular System*

* Westerhof et al., J Biomech (1969)

Modeling Options for Outflow BCs

Create a detailed geometric model of the entire cardiovascular system, extending from the heart to the capillaries.  The problems with this approach are obvious:• Large geometric model required to 

capture full geometric details• Accuracy of the geometry will be at 

question, esp. below 0.5 mmUse a lumped parameter approach to 

alleviate the need for detailed geometry at all length scales.• The image to the right is an electrical 

circuit model of the human circulatory system, extending from the heart to the small arteries.

• Each box contains a lumped parameter representation of an artery section.

Page 11: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201111

The circuit on the lower left can be used to model the flow rate and pressure losses in each artery section. This circuit is referred to as a 3‐element Windkessel.

R RD

C

resistance term – accounts for downstream flow resistance (primarily in the capillary beds)

compliance term – accounts for artery expansion/contraction (primarily in the large arteries)

inertance term – accounts for inertial effects (primarily in the large arteries)

Lumped Parameter Model Details

Page 12: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201112

The Westerhof Circuit in Simplorer

Page 13: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201113

0.00 2.00 4.00 6.00 8.00 10.00 12.00 0.00

100.00

200.00

300.00

400.00

500.00

mag

(1/E

1.I)

Ansoft LLC total input imedance magnitudeCurve Info

mag(1/E1.I)AC

Impedance Comparison

Westerhof Model Simplorer Model(Inverted L Network)

0.00 2.00 4.00 6.00 8.00 10.00 12.00F [kHz]

-75.00

-50.00

-25.00

0.00

25.00

-ang

_deg

(E1.

I) [d

eg]

Ansoft LLC total input imedance phaseCurve Info-ang_deg(E1.I)

AC

Page 14: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201114

Insert FLUENT into the Simplorer HBM

Page 15: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201115

The Windkessel boundary condition was applied to an idealized representation of the abdominal aorta.  Transient values for the inlet flow rate and outlet pressures were culled from a literature source*.  The geometry and boundary conditions were symmetric in this case.  As seen in the figure on the right, there was excellent agreement between published and computational results for the outlet pressure.

Qin

Pout

Iliac RCR parameters

RD = 3.22 mm Hg-s/cc

R = 0.55 mm Hg-s/cc

C = 0.001 cc/mm Hg

* Wan et al. (preprint)

Outlet pressure from SI[mplorerr compared well with the results of Taylor

Validation‐ Flow Past a Symmetric Bifurcation

Page 16: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201116

A Non‐Symmetric Case

velocity

pressure

Page 17: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201117

Types of Human Body Models

Application areas:• Coronary stents• Peripheral stents• Artificial organs

Application areas:• Orthopaedic implants• Exercise equipment

Application areas:• Transdermal• Inhalers• Oral• Intrathecal

CARDIOVASCULAR DRUG DELIVERYMUSCULOSKELETAL

Human Body Modeling

• CFD, FEA, and emagmodels coupled to lumped parameter representations of the human body

Parametric System Level

• DOE for HBM• Fully automated process

EMAG

Application areas:• Medical imaging• Cardiology• Drug delivery• Cancer treatments

Page 18: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201118

Anybody for Implant Loads

AnyBody: Determine spine kinematics

ANSYS: FEM analysis of a

spine implant based on the

spine kinematics

AnyBody provides a detailed description of the loads and joint forces occurring in the human body in daily activity. ANSYS Mechanical can import loads from Anybody,

providing critical information for testing orthopaedic implants and the like.

Page 19: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201119

Medical images

CAD/Mesh Finite Element Analysis

FEA loads for activities of daily living

Musculoskeletal Simulation

Optimization

Activities of daily living

Orthopaedic Workflow

Page 20: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201120

Activities of daily living

Boundary conditionsPatient

information

FE-model

Functional Patient‐Specific Modeling

Page 21: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201121

Unique Open Body Model Library

Page 22: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201122

Daily Activity Analysis

Page 23: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201123

Dynamic Physiologic Loads

Page 24: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201124

Thielen et al. 2009

In vivo validation‐ Hip forces

Page 25: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201125

A Hip Simulator

video from: http://edp.tkk.fi/en/research/tribology/research_projects/biotribology/

Page 26: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201126 Upper fig: Calonius and Saikko, Acta Polytechnica (2003)

waveforms whole head patterns flattened patterns

- Slide tracks represent the relative motion of the ball and cup

Slide tracks on the head are determined by mounting pens to fixed points on the cup and vice versa for slide tracks on the cup.

Lower fig: Calonius and Saikko, J Biomech (2002)

Slide Track Patterns

Page 27: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201127

Variation in Slide Track Patterns

Page 28: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201128

-27

-17

-7

3

13

23

2.84 3.84 4.84

Ang

le in

Deg

rees

Time (S)

HipAbduction

HipFlexion

HipExternalRotation

Walking

Model Inputs 

Geometry • Femur and implant provided in STL format

• Acetabular cup was created in ANSYS Mechanical

-20

0

20

40

60

80

100

120

140

0 0.5 1

Flexion

Abduction

Ext. Rotation

Cycling

Initial STL geometry Implant and cup assembly

• Kinematic joint conditions provided by AnyBody:

dhead = 20 mmdcup = 22 mm

Page 29: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201129

Implementation

Geometry• Head, cup (rigid), and stem

Material properties• Default material properties used for all parts

Boundary Conditions• Angular data entered as displacement BC’s for the cup in tabular format

Solver• ANSYS Mechanical 12.1 transient solver• Rigid‐flexible contact maintained between the head and the cup

Post‐processing• Slide tracks are calculated using an APDL script which is inserted as a command object

cup

headstem

Page 30: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201130

Creating Slide Tracks using APDL

Choose location of the “pen”

Get the node number for the pen location

Track the node during the transient cycle

Report (x,y,z) vs time for the node at the end of simulation

Use point locations to create keypoints

Join keypoints to form a spline

Display the spline with initial geometry to see the slide tracks

Page 31: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201131

Slide Tracks on the Cup‐Walking Profile

Side of cup Top of cup

Page 32: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201132

Slide Tracks on the Cup‐ Cycling Profile

Side of cup Top of cup

Page 33: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201133

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

2 2.2 2.4 2.6 2.8 3 3.2

MediolateralForce ProximoDistalForce

AnteroPosteriorForce

29

5064

6987

Force vs time data

Slide track with time-step locations

Slide Tracks on the Cup‐Walking Forces

Page 34: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201134

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

2 2.2 2.4 2.6 2.8 3 3.2

MediolateralForce ProximoDistalForce

AnteroPosteriorForce

147

168182

187205

Force vs time data

Slide track with time-step locations

Slide Tracks on the Cup‐Walking Forces

Page 35: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201135

Slide Tracks on the Cup‐ Kinematics

Side of cup Top of cup

Page 36: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201136

Archard’s Law defines the effect of sliding distance (v) and contact pressure () on the per cycle wear depth (w):

Which can be approximated as:

• where,– kw is the wear coef. (which is material and surface dependent) = 1.066E‐6

– is the contact stress, and– S is the sliding distance

dttvtkwcycle

),,(),,(),(

cycle

w Skw

Wear Calculation

Page 37: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201137

Cumulative Wear(after 1 cycle)

walking cycling

wear depth reported in (mm)

Page 38: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201138

Hall et al (Proc Instn Mech Engrs, 1998) measured wear of UHMWPE acetabular components retrieved from 200 patients.

Validation‐ Clinical Data

Page 39: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201139

Types of Human Body Models

Application areas:• Coronary stents• Peripheral stents• Artificial organs

Application areas:• Transdermal• Inhalers• Oral• Intrathecal

CARDIOVASCULAR DRUG DELIVERYMUSCULOSKELETAL

Human Body Modeling

• CFD, FEA, and emagmodels coupled to lumped parameter representations of the human body

Parametric System Level

• DOE for HBM• Fully automated process

EMAG

Application areas:• Medical imaging• Cardiology• Drug delivery• Cancer treatments

Application areas:• Orthopaedic implants• Exercise equipment

Page 40: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201140

Pharmacokinetic (PK) Modeling

• PK models utilize a compartmentalized approach to model drug distribution in the body over time. The compartments represent organs and other drug depots.

• PK models simulate drug/chemical:• Absorption• Distribution• Metabolism• Excretion

• Coupling the PK model to the drug delivery model enables the designer to further refine the delivery system to work together with the human body, understand dependence on patient variability, disease state, etc.

Page 41: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201141

The system consists of a cylindrical patch applied to the skin.  The drug reservoir (in the patch) contains a mixture of drug and permeation enhancer.  Diffusion is the only mode of transport out of the patch and through the skin.  The far boundary of the skin is the inlet to the microcirculation, which acts as a drug sink.

• Two boundary conditions are tested at the far wall:1. zero flux condition – which 

assumes the plasma is an infinite sink

2. PK condition – to account for drug build‐up in plasma

patch

skin

microcirculation

Transdermal Delivery Model

Page 42: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201142

Axisymmetry is assumed

Drug and enhancer are modeled as  user‐defined scalars in FLUENT

A transient diffusion equation models transport through the skin and patch:

, where i = drug, permeation enhancer

iii cDtc

Kcc patchdrugskindrug ,, /skiniskinipatchipatchi cDcD ,,,,

r = 0.925 cm

50.8 m

50.8 m

patch

skin

r = 0.9 cm

• The interfacial conditions at the patch‐skin interface are continuity of flux and a partitioning (jump) condition:

, where K is the partition coefficient

Transdermal Model Details

Page 43: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201143

The permeation enhancer increases the drug flux through the skin.  The level of enhancement is typically a function of the local enhancer concentration.  Two typical situations are:

Ddrug,skin = Ddrug,0+*Cpe Kdrug,skin = Kdrug,0+*Cpe

The permeation enhancer increases the diffusivity of drug in the skin

The permeation enhancer increases drug solubility in the skin

increasing increasing

Transdermal Model Details‐ Formulation Effects

Page 44: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201144

Validation Case‐ Fentanyl Patch, No PK Model

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

simulation

experiment

reference

Time (hr)

Drug

Flux (µ

g cm

‐2hr

‐1)

Comparison of drug  flux through  lower boundary of epidermis.  Initial concentration of drug and enhancer 0.06, 0.04(gm cm‐3). dt=100, ncells=58400, µ=1.8e‐4, η=0.0

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

simulation

experiment

reference

Time (hr)

Drug

Flux (µ

g cm

‐2hr

‐1)

Comparison of drug  flux through  lower boundary of epidermis.  Initial concentration of drug and enhancer 0.06, 0.04(gm cm‐3). dt=100, ncells=58400, µ=0.0, η=19.0

flux when Ddrug=f(Cenhancer) flux when K = f(Cdrug)

Reference: Rim et al., Annals of BME, (2005)

Rim et al. examined the effect of enhancement type on drug flux.  These plots compare FLUENT results to their experimental and computational results.

Page 45: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201145

• BC between epidermis and dermal vasculature:

)](),[ tCftlcPzcD pu

• The ODE’s for the three compartment PK model are:

MOTIVATION: Understand/optimize patch performance by including the physiologic processing of drug.

)()()(][

)](),[

33312221

1312

tCktCktCkkk

tCftlcdtdC

pel

pup

)(/)( 2212122 tCktCkdtdC p

)(/)( 3313133 tCktCkdtdC p

plasma:

well-perfused compartment:

poorly perfused compartment:

• Patch model extensions:

CFD

Mod

elP

K M

odel

Pharmacokinetic (PK) Analysis of a Fentanyl Patch

Page 46: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201146

• BC between epidermis and dermal vasculature:

)](),[ tCftlcPzcD pu

• The ODE’s for the three compartment PK model are:

)()()(][

)](),[

33312221

1312

tCktCktCkkk

tCftlcdtdC

pel

pup

)(/)( 2212122 tCktCkdtdC p

)(/)( 3313133 tCktCkdtdC p

plasma:

well-perfused compartment:

poorly perfused compartment:

• Patch model extensions:

Pharmacokinetic (PK) Analysis of a Fentanyl Patch

MOTIVATION: Understand/optimize patch performance by including the physiologic processing of drug.

CFD

Mod

elP

K M

odel

Page 47: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201147

Types of Human Body Models

Application areas:• Coronary stents• Peripheral stents• Artificial organs

Application areas:• Transdermal• Inhalers• Oral• Intrathecal

CARDIOVASCULAR DRUG DELIVERYMUSCULOSKELETAL

Human Body Modeling

• CFD, FEA, and emagmodels coupled to lumped parameter representations of the human body

Parametric System Level

• DOE for HBM• Fully automated process

EMAG

Application areas:• Medical imaging• Cardiology• Drug delivery• Cancer treatments

Application areas:• Orthopaedic implants• Exercise equipment

Page 48: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201148

HFSS‐Workbench Link for Modeling Cancer Treatment

Hyperthermia cancer treatment used to accelerate effects of chemotherapy

RF power applied to tumor using phased array antenna• Eight strip dipole antennas connected in parallel pairs and printed on inner surface of cylindrical plastic shell

MRI Cross Section of Lower Leg with Tumor (Courtesy Duke University Medical Center)

HFSS Model of Patient with Phased Array Applicator on Lower Leg

Page 49: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201149

HFSS Model of RF Phased Array Applicator

Device operates at 138 MHz• Element excitations optimized to concentrate power inside tumor 

HFSS Model of Applicator on Leg Tumor (shown in green)HFSS Model of RF Phased Array

Applicator

Electric Field Magnitude with Optimized Array Weights

Local Specific Absorption Rate (SAR) with Optimized Array Weights

Page 50: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201150

Transient Thermal Analysis in ANSYS Workbench

• Electromagnetic power is a function of time

– 28 W used to reach desired temperature and 9 W to maintain temperature

• Transient analysis used to determine temperature rise inside tumor

– Reaches 47° C in 6 minutes and is maintained there for 14 minutes

Geometry in ANSYS Workbench

Results of Transient Thermal Analysis(max/min temperature in the tumor)

Results of Transient Thermal Analysis

Page 51: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201151

Closing Remarks

Coupling detailed simulations to lumped parameter models can provide more rigorous prediction of device performance.

Page 52: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201152

Closing Remarks

Coupling detailed simulations to lumped parameter models can provide more rigorous prediction of device performance.

V&V is possible.

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

simulation

experiment

reference

Time (hr)

Drug

Flux (µ

g cm

‐2hr

‐1)

, µ , η

Pout

Page 53: Human Body Modeling with ANSYS Software · PDF file1 © 2011 ANSYS, Inc. October 24, 2011 Human Body Modeling with ANSYS Software Marc Horner, Ph.D. Technical Lead, Healthcare ANSYS,

© 2011 ANSYS, Inc. October 24, 201153

Closing Remarks

ANSYS provides flexible and open solutions that can be adapted to solve even the most challenging problems facing the biomedical engineers of today.

The ANSYS vision for this industry includes collaborating with other software vendors to enable one‐way and/or cosimulationwith the highest fidelity models available.