human gait cycle analysis for the improvement of...

1
INTRODUCTION MAYRA, the first biped prototype developed in ITESM-Campus Estado de México, was built in 2004 [1]. Its first implemented gait-cycle was ob- tained by a trial-a-error basis balancing structure weighting each foot se- quentially. Some works reported in the literature have demonstrated that the generation of human-like motions for humanoids based on Human- Motion-Captured-Data (HMCD) is feasible. For MAYRA to walk in a human- like way, modifications on its structure are needed. This work proposes to use HMCD in order to understand the patterns described by the human feet. By this, improvements for MAYRA-biped’s feet design can be sug- gested. METHODOLOGY HMCD was obtained in the Laboratory of Human Performance at the Center for Sensory Motor Interaction at Aalborg University, Den- mark. Two analyses were performed: i) an analysis of variability of the gait cycle at different walking speeds [3] and ii) an analysis of the compensating movements that a human produces when the ankle joint is restricted at ±10° of dorsi-plantar flexion [4]. To analyze the data, the follow- ing assumptions were con- sidered: a) A reduction from three dimen- sional to two dimen- sional movement assuming that all the points of the body are moving parallel to the s a g i t t a l plane, b) Segments of the body are assumed to be rigid, c) U p p e r body and a r m s m o v e - ments do not affect signifi- cantly the g a i t cycle. Trajecto- ries of the center of gravity (CoG ) and the center of p r e s s u r e (CoP) gener- ated by the nature of the human gait cycle were compare to those generated by humanoids when stati- cally stable walking is adopted. Suggestions on how to improve MAYRA’s walking style in this regard were based on how prosthesist use to align transfemoral prostheses (TFPs) within the clinical field. RESULTS -Analysis of the variability of the gait cycle The knee bends at the beginning of the stance phase and the degree of bending is proportional to the walking speed. There is not a voluntary movement in this flexion and it occurs due to the energy absorption when heel impacts with the ground. -Ankle restriction analysis The absence of a full plantar flexion makes the subject to rise his/her foot more than usual at the beginning of the swing phase. The foot landing is modified due to the absence of a full dorsal flexion. The push-off phase at the beginning of the swing phase is modified and that is why it is neces- sary to raise more the foot. This unconscious modification on the foot tra- jectory is not totally reflected on the knee trajectory but it is reflected on the hip movements. There is a knee bounce reduction at the beginning of the stance phase and the ankle’s restriction is compensated with hip ex- aggerated movements. - CoG and CoP analysis In human walking, the CoG rarely belongs to the zone where the sole con- tacts the ground. In contrast, humanoid stable walking needs the biped to balance in such a way the projection on CoG goes to the center of the sup- porting area. The analysis of the position of the CoP, which reflects the po- sition of the CoG, shows that internal-external rotation in the knee- ankle-foot complex is very important for symmetrical gait and good bal- ance [5-6]. CONCLUSIONS Based on the results of the variability analysis, it is concluded that slow walking HMDC has to be adopted for the MAYRA biped. From the second analysis, the small variations that a restricted ankle produces added to the presence of a single pin-type joint at the knee modify the motion of the CoG and introduce some lateral in- stability. Therefore, ankle movements must not be neglected in the MAYRA’s controller design based on HMCD. If the concept of how TFPs are usually aligned is extended to MAYRA, a more human-like walking style could be ob- tained. The re-alignment of MAYRA’s feet will compensate the small inertia forces pro- duced while walk- ing. These modifi- cations will pro- duce a change in MAYRA’s CoP and a better stabil- ity will be obtained. The intro- duction of an-auto- recovery joint will improve MAYRA’s push-off phase. T h i s , a d d e d with the modifica- tions on the feet design may lead to a more elegant walking style. In order to vali- date these re- sults, the con- struction of a new MAYRA prototype is now being performed. Extensions of these ex- periments with dynamically stable humanoid walking will be carried on, and studies to de- velop an appropriate control strat- egy for the dynamic system will be presented in future works. REFERENCES [1] R. Serna, A. Aceves. From mechatronics to construction of a humanoid robot; SBAI-LARS Conference, (2005). [2] R. Ringrose P. Self-Stabilizing Running, PhD thesis, MIT, (1993). [3] A. Meléndez & H. Caltenco, Electronic control for an Electrically Powered Transfemoral Prosthesis. Technical Report. Aalborg University. (2005) [4] A. Meléndez & H. Caltenco, Conditioning for the electronic control for an Electrically Powered Transfemoral Prosthesis. Aalborg University. Technical report. (2005) [5] D. Winter. The Biomechanics and Motor Control of Human Gait: Normal, El- derly and Pathological. University of Waterloo Press, (1991). [6] M. Hefzy,W. Jackson, S. Rademmi, Y.F., and Hsieh. Effects of tibial rota- tions on patellar tracking and patello-femoral contact areas. J. Biomed. Engng., (1992), 329–343. Human Gait Cycle Analysis for the Improvement of MAYRA’s Biped Foot Alejandro Meléndez-Calderón, Alejandro Aceves-López Center Foot trajector y d 2 d 3 d 2 d 3 Slow Fast Walking Speed Center of Gravit y NORMAL PROPOSED 0 20 40 60 80 100 -10 -5 0 5 10 15 20 Degrees Hip Angle 0 10 20 30 40 50 60 Degrees Knee Angle Ankle Unrestricted Ankle Restricted % of Gait Cycle 0 3 6 9 1 2 1 5 1 8 Z Fo o t T rajec t o ry P osi ti on (cm) 0 5 10 15 20 Z position (cm) Foot Trajec tory X position (cm) 0 20 40 60 80 100 Time (s) 0 0.2 0.4 0.6 0.8 1 Ankle Unrestricted Ankle Restricted ANKLE RESTRICTION ANALYSIS MAYRA PROTOTYPE 0 20 40 60 80 100 % of Gait Cycle 0 10 20 30 40 50 60 Degrees Knee Angle -15 -10 -5 0 5 10 15 Degrees Hip Angle VARIABILITY OF THE GAIT CYCLE ....... FIRST IMPLEMENTED GAIT CYCLE HUMAN-MOTION- CAPTURED-DATA MAYRA IMPROVEMENTS ALTERNATIVE SOLUTIONS TRAJECTORY OF THE CoG RTO LHC RHC RHC LTO RHC - Right Heel Contact LHC - Left Heel Contact RTO - Right Toe Off LTO - Left Toe Off ANALYSIS OF CENTER OF GRAVITY AND CENTER OF PRESSURE Lateral View Front View Upper View Lateral View Inne r E dge Out er Edge Auto-recover Joint Leg re-alignment MAYRA’s Foot Left Foot Right Foot TRAJECTORY OF THE CoG TRAJECTORY OF THE CoP TRAJECTORY OF THE CoP Research Article

Upload: others

Post on 29-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Human Gait Cycle Analysis for the Improvement of …homepage.cem.itesm.mx/aaceves/publicaciones/PosterMAYRA.pdf[3] A. Meléndez & H. Caltenco, Electronic control for an Electrically

INTRODUCTION

M AY R A , t h e f i r s t b i p e d p r o t o t y p e d e v e l o p e d i n I T E S M - C a m p u s E s t a d o d e M é x i c o , w a s b u i l t i n 2 0 0 4 [ 1 ] . I t s f i r s t i m p l e m e n t e d g a i t - c y c l e w a s o b -t a i n e d b y a t r i a l - a - e r r o r b a s i s b a l a n c i n g s t r u c t u r e w e i g h t i n g e a c h f o o t s e -q u e n t i a l l y. S o m e w o r k s r e p o r t e d i n t h e l i t e r a t u r e h a v e d e m o n s t r a t e d t h a t t h e g e n e r a t i o n o f h u m a n - l i ke m o t i o n s f o r h u m a n o i d s b a s e d o n H u m a n -M o t i o n - C a p t u r e d - D a t a ( H M C D ) i s f e a s i b l e . F o r M AY R A t o w a l k i n a h u m a n -l i ke w a y, m o d i f i c a t i o n s o n i t s s t r u c t u r e a r e n e e d e d . T h i s w o r k p r o p o s e s t o u s e H M C D i n o r d e r t o u n d e r s t a n d t h e p a t t e r n s d e s c r i b e d b y t h e h u m a n f e e t . B y t h i s , i m p r o v e m e n t s f o r M AY R A - b i p e d ’ s f e e t d e s i g n c a n b e s u g -g e s t e d .

METHODOLOGY

H M C D w a s o b t a i n e d i n t h e L a b o r a t o r y o f H u m a n P e r f o r m a n c e a t t h e C e n t e r f o r S e n s o r y M o t o r I n t e r a c t i o n a t A a l b o r g U n i v e r s i t y, D e n -m a r k . Tw o a n a l y s e s w e r e p e r f o r m e d : i ) a n a n a l y s i s o f v a r i a b i l i t y o f t h e g a i t c y c l e a t d i f f e r e n t w a l k i n g s p e e d s [ 3 ] a n d i i ) a n a n a l y s i s o f t h e c o m p e n s a t i n g m o v e m e n t s t h a t a h u m a n p r o d u c e s w h e n t h e a n k l e j o i n t i s r e s t r i c t e d a t ± 10 ° o f d o r s i - p l a n t a r f l e x i o n [ 4 ] . To a n a l y z e t h e d a t a , t h e f o l l o w -i n g a s s u m p t i o n s w e r e c o n -s i d e r e d : a ) A r e d u c t i o n f r o m t h r e e d i m e n -s i o n a l t o t w o d i m e n -s i o n a l m o v e m e n t a s s u m i n g t h a t a l l t h e p o i n t s o f t h e b o d y a r e m o v i n g p a r a l l e l t o t h e s a g i t t a l p l a n e , b ) S e g m e n t s o f t h e b o d y a r e a s s u m e d t o b e r i g i d , c ) U p p e r b o d y a n d a r m s m o v e -m e n t s d o n o t a f f e c t s i g n i f i -c a n t l y t h e g a i t c y c l e .

T r a j e c t o -r i e s o f t h e c e n t e r o f g r a v i t y ( C o G ) a n d t h e c e n t e r o f p r e s s u r e ( C o P ) g e n e r -a t e d b y t h e n a t u r e o f t h e h u m a n g a i t c y c l e w e r e c o m p a r e t o t h o s e g e n e r a t e d b y h u m a n o i d s w h e n s t a t i -c a l l y s t a b l e w a l k i n g i s a d o p t e d . S u g g e s t i o n s o n h o w t o i m p r o v e M AY R A’ s w a l k i n g s t y l e i n t h i s r e g a r d w e r e b a s e d o n h o w p r o s t h e s i s t u s e t o a l i g n t r a n s f e m o r a l p r o s t h e s e s ( T F P s ) w i t h i n t h e c l i n i c a l f i e l d .

RESULTS

-Analysis of the variabi l i ty of the gait cycle

T h e k n e e b e n d s a t t h e b e g i n n i n g o f t h e s t a n c e p h a s e a n d t h e d e g r e e o f b e n d i n g i s p r o p o r t i o n a l t o t h e w a l k i n g s p e e d . T h e r e i s n o t a v o l u n t a r y m o v e m e n t i n t h i s f l e x i o n a n d i t o c c u r s d u e t o t h e e n e r g y a b s o r p t i o n w h e n h e e l i m p a c t s w i t h t h e g r o u n d .

-Ankle restr ict ion analysis

T h e a b s e n c e o f a f u l l p l a n t a r f l e x i o n m a ke s t h e s u b j e c t t o r i s e h i s / h e r f o o t m o r e t h a n u s u a l a t t h e b e g i n n i n g o f t h e s w i n g p h a s e . T h e f o o t l a n d i n g i s m o d i f i e d d u e t o t h e a b s e n c e o f a f u l l d o r s a l f l e x i o n . T h e p u s h - o f f p h a s e a t t h e b e g i n n i n g o f t h e s w i n g p h a s e i s m o d i f i e d a n d t h a t i s w h y i t i s n e c e s -s a r y t o r a i s e m o r e t h e f o o t . T h i s u n c o n s c i o u s m o d i f i c a t i o n o n t h e f o o t t r a -j e c t o r y i s n o t t o t a l l y r e f l e c t e d o n t h e k n e e t r a j e c t o r y b u t i t i s r e f l e c t e d o n t h e h i p m o v e m e n t s . T h e r e i s a k n e e b o u n c e r e d u c t i o n a t t h e b e g i n n i n g o f t h e s t a n c e p h a s e a n d t h e a n k l e ’ s r e s t r i c t i o n i s c o m p e n s a t e d w i t h h i p e x -a g g e r a t e d m o v e m e n t s .

- CoG and CoP analysis

I n h u m a n w a l k i n g , t h e C o G r a r e l y b e l o n g s t o t h e z o n e w h e r e t h e s o l e c o n -t a c t s t h e g r o u n d . I n c o n t r a s t , h u m a n o i d s t a b l e w a l k i n g n e e d s t h e b i p e d t o b a l a n c e i n s u c h a w a y t h e p r o j e c t i o n o n C o G g o e s t o t h e c e n t e r o f t h e s u p -p o r t i n g a r e a . T h e a n a l y s i s o f t h e p o s i t i o n o f t h e C o P, w h i c h r e f l e c t s t h e p o -s i t i o n o f t h e C o G , s h o w s t h a t i n t e r n a l - e x t e r n a l r o t a t i o n i n t h e k n e e -a n k l e - f o o t c o m p l e x i s v e r y i m p o r t a n t f o r s y m m e t r i c a l g a i t a n d g o o d b a l -a n c e [ 5 - 6 ] .

CONCLUSIONS

B a s e d o n t h e r e s u l t s o f t h e v a r i a b i l i t y a n a l y s i s , i t i s c o n c l u d e d t h a t s l o w w a l k i n g H M D C h a s t o b e a d o p t e d f o r t h e M AY R A b i p e d . Fr o m t h e s e c o n d a n a l y s i s , t h e s m a l l v a r i a t i o n s t h a t a r e s t r i c t e d a n k l e p r o d u c e s a d d e d t o

t h e p r e s e n c e o f a s i n g l e p i n - t y p e j o i n t a t t h e k n e e m o d i f y t h e m o t i o n o f t h e C o G a n d i n t r o d u c e s o m e l a t e r a l i n -

s t a b i l i t y. T h e r e f o r e , a n k l e m o v e m e n t s m u s t n o t b e n e g l e c t e d i n t h e M AY R A’ s c o n t r o l l e r

d e s i g n b a s e d o n H M C D .

I f t h e c o n c e p t o f h o w T F P s a r e u s u a l l y a l i g n e d i s e x t e n d e d t o

M AY R A , a m o r e h u m a n - l i ke w a l k i n g s t y l e c o u l d b e o b -

t a i n e d . T h e r e - a l i g n m e n t o f M AY R A’ s f e e t w i l l

c o m p e n s a t e t h e s m a l l i n e r t i a f o r c e s p r o -

d u c e d w h i l e w a l k -i n g . T h e s e m o d i f i -

c a t i o n s w i l l p r o -d u c e a c h a n g e

i n M AY R A’ s C o P a n d a b e t t e r s t a b i l -i t y w i l l b e o b t a i n e d . T h e i n t r o -d u c t i o n o f a n - a u t o -r e c o v e r y j o i n t w i l l i m p r o v e M A Y R A ’ s p u s h - o f f p h a s e . T h i s , a d d e d w i t h t h e m o d i f i c a -

t i o n s o n t h e f e e t

d e s i g n m a y l e a d t o a

m o r e e l e g a n t w a l k i n g s t y l e .

I n o r d e r t o v a l i -d a t e t h e s e r e -

s u l t s , t h e c o n -s t r u c t i o n o f a n e w

M AY R A p r o t o t y p e i s n o w b e i n g p e r f o r m e d .

E x t e n s i o n s o f t h e s e e x -p e r i m e n t s w i t h d y n a m i c a l l y

s t a b l e h u m a n o i d w a l k i n g w i l l b e c a r r i e d o n , a n d s t u d i e s t o d e -

v e l o p a n a p p r o p r i a t e c o n t r o l s t r a t -e g y f o r t h e d y n a m i c s y s t e m w i l l b e

p r e s e n t e d i n f u t u r e w o r k s .

REFERENCES

[ 1 ] R . S e r n a , A . A c e v e s . Fr o m m e c h a t r o n i c s t o c o n s t r u c t i o n o f a h u m a n o i d r o b o t ; S B A I - L A R S C o n f e r e n c e , ( 2 0 0 5 ) .[ 2 ] R . R i n g r o s e P. S e l f - St a b i l i z i n g R u n n i n g , P h D t h e s i s , M I T, ( 19 9 3 ) .[ 3 ] A . M e l é n d e z & H . C a l t e n c o , E l e c t r o n i c c o n t r o l f o r a n E l e c t r i c a l l y P o w e r e d Tr a n s f e m o r a l P r o s t h e s i s . Te c h n i c a l Re p o r t . A a l b o r g U n i v e r s i t y. ( 2 0 0 5 ) [ 4 ] A . M e l é n d e z & H . C a l t e n c o , C o n d i t i o n i n g f o r t h e e l e c t r o n i c c o n t r o l f o r a n E l e c t r i c a l l y P o w e r e d Tr a n s f e m o r a l P r o s t h e s i s . A a l b o r g U n i v e r s i t y. Te c h n i c a l r e p o r t . ( 2 0 0 5 )[ 5 ] D . W i n t e r. T h e B i o m e c h a n i c s a n d M o t o r C o n t r o l o f H u m a n G a i t : N o r m a l , E l -d e r l y a n d P a t h o l o g i c a l . U n i v e r s i t y o f Wa t e r l o o P r e s s , ( 19 91 ) .[ 6 ] M . H e f z y, W. J a c k s o n , S . R a d e m m i , Y. F. , a n d H s i e h . E f f e c t s o f t i b i a l r o t a -t i o n s o n p a t e l l a r t r a c k i n g a n d p a t e l l o - f e m o r a l c o n t a c t a r e a s . J . B i o m e d . E n g n g . , ( 19 9 2 ) , 3 2 9 – 3 4 3 .

Human Gait Cycle Analysis for theImprovement of MAYRA’s Biped Foot

Alejandro Meléndez-Calderón, Alejandro Aceves-López

Center

Foot trajectory

d2

d3

d2

d3

Slow

Fast

Walking Speed

Center of Gravity

NORMAL PROPOSED

0 20 40 60 80 100

-10

-5

0

5

10

15

20

Deg

rees

Hip

Ang

le

0

10

20

30

40

5060

Deg

rees

Kne

e A

ngle Ankle

Unrestricted

AnkleRestricted

% of Gait Cycle

0

3

6

9

12

15

18

Z Fo

ot T

raje

ctor

yPo

siti

on (

cm)

0

5101520

Z po

siti

on (c

m)

Foot

Traj

ecto

ry

X position (cm)0 20 40 60 80 100

Time (s)0 0.2 0.4 0.6 0.8 1

AnkleUnrestricted

AnkleRestricted

ANKLE RESTRICTION ANALYSIS

MAYRA PROTOTYPE

0 20 40 60 80 100% of Gait Cycle

0

10

20

30

40

5060

Deg

rees

Kne

e A

ngle

-15

-10

-5

0

5

10

15

Deg

rees

Hip

Ang

le

VARIABILITY OF THE GAIT CYCLE

.......

FIRST IMPLEMENTEDGAIT CYCLE

HUMAN-MOTION-CAPTURED-DATA

MAYRAIMPROVEMENTS

ALTERNATIVESOLUTIONS

TRAJECTORYOF THE CoG

RTO

LHC

RHC

RHC

LTO

RHC - Right Heel ContactLHC - Left Heel ContactRTO - Right Toe OffLTO - Left Toe Off

ANALYSIS OF CENTER OF GRAVITYAND CENTER OF PRESSURE

Lateral View Front View

Upper ViewLateral View

Inner Edge

Out

er E

dge

Auto-recoverJoint

Legre-alignment

MAYRA’s Foot

Left Foot

Right Foot

TRAJECTORYOF THE CoG

TRAJECTORYOF THE CoP

TRAJECTORYOF THE CoP

Research Article