husky asphalt 1-2-3’s of pgac calgary presentation august 14, 2006

47
HUSKY ASPHALT 1-2-3’s of PGAC 1-2-3’s of PGAC Calgary Presentation Calgary Presentation August 14, 2006 August 14, 2006

Upload: martha-singleton

Post on 22-Dec-2015

219 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

1-2-3’s of PGAC1-2-3’s of PGACCalgary PresentationCalgary Presentation

August 14, 2006August 14, 2006

Page 2: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Properties of AsphaltProperties of Asphalt

• Critical conditions during construction and service– Construction:

• mixing

• spreading appropriate viscosity

• compacting

– Service:

• plastic deformation (rutting)

• fatigue cracking

• thermal cracking

Page 3: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Specifications of Paving AsphaltsSpecifications of Paving Asphalts

• The role of specifications:– specify properties that directly reflect asphalt

behaviour– express these properties in physical units– provide information from which the service

performance can be predicted– establish limits for those properties to exclude

poor performing products

Page 4: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Canadian Federal SpecificationCanadian Federal Specification

Penetration at 25°C [dmm]

Page 5: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Superpave PG SpecificationSuperpave PG Specification

• Superpave specification attempts to measure properties that are directly related to pavement field performance

Handling Pump

Permanent Deformation

FatigueCracking

ThermalCracking

Flow

Rutting

Structural Cracking

Low Temp Cracking

Rotational Viscometer

Dynamic Shear Rheometer

Bending Beam RheometerDirect Tension Tester

TEST EQUIPMENTPERFORMANCE PROPERTY

Page 6: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Superpave Asphalt Binder Superpave Asphalt Binder SpecificationSpecification

PG 58 - 31

Performance Grade

Average 7-day Max pavement temperature

Min pavement temperature

Page 7: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Performance Grade Performance Grade Specifications Specifications

– PGAC specifications explicitly quantify the binder performance at actual in-service pavement temperatures

– PGAC specifications explicitly consider the in-service aging characteristics of the binder once it is placed on the road

– PGAC specifications contain formal protocols for addressing in-service traffic conditions

– PGAC specifications explicitly accommodate the concept of reliability

– PGAC specifications can be used to specify (high performance) modified binder systems

Page 8: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

(Rotational Viscosity) RV

90 90 100 100 100 (110) 100 (110) 110 (110)

(Flash Point) FP

46 52 58 64 70 76 82

46 52 58 64 70 76 82

(ROLLING THIN FILM OVEN) (ROLLING THIN FILM OVEN) RTFO RTFO Mass Loss Mass Loss << 1.00 %1.00 %

(Direct Tension) DT

(Bending Beam Rheometer) BBR Physical Hardening

28

-34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22 -28 -34

Avg 7-day Max, oC

1-day Min, oC

(PRESSURE AGING VESSEL) (PRESSURE AGING VESSEL) PAVPAV

ORIGINALORIGINAL

> 1.00 kPa

< 5000 kPa

> 2.20 kPa

S < 300 MPa m > 0.300

Report Value

> 1.00 %

20 Hours, 2.07 MPa

10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

(Dynamic Shear Rheometer) DSR G* sin

( Bending Beam Rheometer) BBR “S” Stiffness & “m”- value

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

PPerformance erformance GGradesrades

(Dynamic Shear Rheometer) DSR G*/sin

(Dynamic Shear Rheometer) DSR G*/sin

< 3 Pa.s @ 135 oC

> 230 oC

CEC

Page 9: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

(Rotational Viscosity) RV

90 90 100 100 100 (110) 100 (110) 110 (110)

(Flash Point) FP

46 52 58 64 70 76 82

46 52 58 64 70 76 82

(ROLLING THIN FILM OVEN) (ROLLING THIN FILM OVEN) RTFO RTFO Mass Loss Mass Loss << 1.00 % 1.00 %

(Direct Tension) DT

(Bending Beam Rheometer) BBR Physical Hardening

28

-34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22 -28 -34

Avg 7-day Max, oC

1-day Min, oC

(PRESSURE AGING VESSEL) (PRESSURE AGING VESSEL) PAVPAV

ORIGINALORIGINAL

< 5000 kPa

> 2.20 kPa

S < 300 MPa m > 0.300

Report Value

> 1.00 %

20 Hours, 2.07 MPa

10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

(Dynamic Shear Rheometer) DSR G* sin

( Bending Beam Rheometer) BBR “S” Stiffness & “m”- value

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

How the PG Spec WorksHow the PG Spec Works

(Dynamic Shear Rheometer) DSR G*/sin

(Dynamic Shear Rheometer) DSR G*/sin

< 3 Pa.s @ 135 oC

> 230 oC

CEC

58 64

Test TemperatureTest TemperatureChangesChanges

Spec RequirementSpec RequirementRemains ConstantRemains Constant

> 1.00 kPa

Page 10: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

(Rotational Viscosity) RV

90 90 100 100 100 (110) 100 (110) 110 (110)

(Flash Point) FP

46 52 58 64 70 76 82

46 52 58 64 70 76 82

(ROLLING THIN FILM OVEN) (ROLLING THIN FILM OVEN) RTFO RTFO Mass Loss Mass Loss << 1.00 % 1.00 %

(Direct Tension) DT

(Bending Beam Rheometer) BBR Physical Hardening

28

-34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22 -28 -34

Avg 7-day Max, oC

1-day Min, oC

(PRESSURE AGING VESSEL) (PRESSURE AGING VESSEL) PAVPAV

ORIGINALORIGINAL

< 5000 kPa

S < 300 MPa m > 0.300

Report Value

> 1.00 %

20 Hours, 2.07 MPa

10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

(Dynamic Shear Rheometer) DSR G* sin

( Bending Beam Rheometer) BBR “S” Stiffness & “m”- value

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

Permanent DeformationPermanent Deformation

(Dynamic Shear Rheometer) DSR G*/sin

(Dynamic Shear Rheometer) DSR G*/sin

< 3 Pa.s @ 135 oC

> 230 oC

CEC

> 1.00 kPa

> 2.20 kPa

•UnagedUnaged•RTFO AgedRTFO Aged

Page 11: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

Permanent Deformation

Question: Why a minimum G*/sin to address rutting

Answer: We want a stiff, elastic binder to contribute to mix rutting resistance

How: By increasing G* or decreasing

Page 12: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

(Rotational Viscosity) RV

90 90 100 100 100 (110) 100 (110) 110 (110)

(Flash Point) FP

46 52 58 64 70 76 82

46 52 58 64 70 76 82

(ROLLING THIN FILM OVEN) (ROLLING THIN FILM OVEN) RTFO RTFO Mass Loss Mass Loss << 1.00 % 1.00 %

(Direct Tension) DT

(Bending Beam Rheometer) BBR Physical Hardening

28

-34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22 -28 -34

Avg 7-day Max, oC

1-day Min, oC

(PRESSURE AGING VESSEL) (PRESSURE AGING VESSEL) PAVPAV

ORIGINALORIGINAL

> 1.00 kPa

> 2.20 kPa

S < 300 MPa m > 0.300

Report Value

> 1.00 %

20 Hours, 2.07 MPa

10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

(Dynamic Shear Rheometer) DSR G* sin

( Bending Beam Rheometer) BBR “S” Stiffness & “m”- value

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

Fatigue Cracking

(Dynamic Shear Rheometer) DSR G*/sin

(Dynamic Shear Rheometer) DSR G*/sin

< 3 Pa.s @ 135 oC

> 230 oC

CEC

< 5000 kPa PAV AgedPAV Aged

Page 13: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

Fatigue Cracking

Question: Why a maximum G* sin to address fatigue?

Answer: We want a soft elastic binder (to sustain many loads without cracking)

How: By decreasing G* or decreasing

Page 14: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

(Rotational Viscosity) RV

90 90 100 100 100 (110) 100 (110) 110 (110)

(Flash Point) FP

46 52 58 64 70 76 82

46 52 58 64 70 76 82

(ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 %

(Direct Tension) DT

(Bending Beam Rheometer) BBR Physical Hardening

28

-34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22 -28 -34

Avg 7-day Max, oC

1-day Min, oC

(PRESSURE AGING VESSEL) PAV

ORIGINAL

> 1.00 kPa

< 5000 kPa

> 2.20 kPa

20 Hours, 2.07 MPa

10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

(Dynamic Shear Rheometer) DSR G* sin

( Bending Beam Rheometer) BBR “S” Stiffness & “m”- value

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

Low Temperature Cracking

(Dynamic Shear Rheometer) DSR G*/sin

(Dynamic Shear Rheometer) DSR G*/sin

< 3 Pa.s @ 135 oC

> 230 oC

CEC

S < 300 MPa m > 0.300

Report Value

> 1.00 %

PAV Aged

PAV Aged

Page 15: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

Low Temperature Cracking

Question: Why a maximum S value and

minimum m and ƒ values to address low temperature cracking?Answer: We want a soft, creep stiffness relaxing, ductile binder

How: By decreasing S or increasing the m and

ƒ values.

Page 16: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82

(Rotational Viscosity) RV

90 90 100 100 100 (110) 100 (110) 110 (110)

(Flash Point) FP

46 52 58 64 70 76 82

46 52 58 64 70 76 82

(ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 %

(Direct Tension) DT

(Bending Beam Rheometer) BBR Physical Hardening

28

-34 -40 -46 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -40 -10 -16 -22 -28 -34 -10 -16 -22 -28 -34

Avg 7-day Max, oC

1-day Min, oC

(PRESSURE AGING VESSEL) PAV

ORIGINAL

> 1.00 kPa

< 5000 kPa

> 2.20 kPa

S < 300 MPa m > 0.300

Report Value

> 1.00 %

20 Hours, 2.07 MPa

10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31

(Dynamic Shear Rheometer) DSR G* sin

( Bending Beam Rheometer) BBR “S” Stiffness & “m”- value

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24

Miscellaneous Spec Requirements

(Dynamic Shear Rheometer) DSR G*/sin

(Dynamic Shear Rheometer) DSR G*/sin

CEC

< 3 Pa.s @ 135 oC

> 230 oC

FlashPoint

MassLoss

Page 17: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Low Temperature Cracking M320M320--05 05 Table 2Table 2

Page 18: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Performance Grade Performance Grade SpecificationsSpecifications

• Husky supports the use and the specification for Performance Graded Asphalt Cements (PGAC) as written in AASHTO M320-05 Table 1 (MP1) and Table 2 (MP1A).– No adjustment to spec limits (BBR S m DSR

G*/sin δ values) – No additional PG + Specifications– PGAC specifications are based on the science of

rheology, the study of stress and strain and not a consistency measurement such as penetration

Page 19: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Selection ProcessPGAC Selection Process

Weather Database

PAVEMENT DESIGN TEMPERATURES -> (HT, LT)

Grade Selection Matrix

“ENVIRONMENTAL”GRADE -> PG HT-LT

Grade Bumping Protocol(HT Only)

“DESIGN”GRADE -> PG HT-LT

Practical Design Considerations

Special Design Considerations

1. Pavement Design Temperatures2. PGAC Environmental Grade3. PGAC “Design” Grade

PG HT-LT

< L

TP

PB

ind

v2

.1 >

< M

an

ual C

alc

ula

tio

ns >

Specify Site

Reliability, HT Reliability, LTDepth (mm)

Select Model

Pavement Temperature Models

Air Temperatures

•Availability•Storage & Handling•Cost vs, Reliability

1

2

3

A

B

STEP

STEP

STEP

Consid

erat

ion

Consid

eratio

n

Page 20: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

• Starting with the Climatic Data

• It is important for practitioners to:• look at several sites near your design location, • understand the nature of the weather data for

each site, and • apply proper engineering judgment as to

which data set(s) are most applicable to your specific design situation.

“The best weather station may not necessarily be the closest weather station”

Page 21: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

• For each weather station: – the hottest seven-day period was identified

and the average maximum air temperature (for this seven-day period) was computed and used to define the hot temperature design condition, and

– the one-day minimum air temperature was used to define the cold temperature design condition.

Page 22: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

Page 23: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

• Converting Climate Data into Pavement Temperatures– Most practioners in western Canada support the

use of the LTPP High Pavement Temperature Model coded into LTPPBind V2.1, July 1999

• More conservative than the SHRP High Pavement Temperature model

– Most practioners in western Canada support the use of the Revised Low Pavement Temperature Model in TAC Technical Brief #15, October 1998

• Superior correlation to observed field measurements at select Canadian sites

Page 24: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Design Determining Pavement Design TemperaturesTemperatures

• Converting Climate Data into Pavement Temperatures– LTPPBind 2.1 does not support the TAC

model – LTPPBind 2.1 has aggressive grade bumping

protocols (KMC,SHRP)

Page 25: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

• Specifying Reliability– Explicitly Considering Risk– Reliability is defined as the percent probability,

in a single year, that the actual temperature (one-day low or seven-day average high) will not exceed the design temperature

“A higher level of reliability means a

lower level of risk”

Page 26: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

• Specifying Reliability – Explicitly Considering Risk– Level of reliability is a function of the

application• Is this a major highway or low volume road?• What is the implication of a failure?• Reliability must be consistent with Owner Agency

policy.– Reliability of the high temperature grade can

be different for the low temperature– Husky supports a high level of reliability (99%)

on the high temperature• Rutting leading to safety issues i.e. Hydroplaning• In addition to LTPP High Pvm’t Temperature model

Page 27: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

• Specifying Reliability – Explicitly Considering Risk– Husky supports a moderate level (90%) for low

pavement temperature • Failure modes like cracking are a performance cost/

issue and therefore must be set within the context of life cycle cost considerations.

– Consider using 99% reliability on the high temperature and 90% reliability for the low temperature

• Then adjust your reliability thresholds to be consistent with Owner/Agency policy and suit your site specific design requirements and project economics

• Provides reasonable environmental grades for most sites across western Canada

Page 28: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining PGAC Determining PGAC Environmental GradeEnvironmental Grade

Page 29: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design GradeDesign Grade

Page 30: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining Pavement Determining Pavement Design TemperaturesDesign Temperatures

Pavement PG design grade is determined by:

1) climatic statistics of the design site,

2) the pavement temperature model selected,

3) the design reliability,

4) high temperature grade bumping protocol,

Page 31: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining PGAC Determining PGAC Environmental GradeEnvironmental Grade

• Grade Selection Matrix-Customized for Western Canada– Husky supports the splitting of the low

temperature grade into 3 C intervals• The splitting of grades allow you to spec the actual

performance that has been provided by CGSB graded asphalts in western Canada (SGS and Cold Lake crudes)

• PG 64-25 (80/100A)• PG 58-31 (120/150A)• PG 52-34 (200/300A)• PG 46-37 (300/400A)

Page 32: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining PGAC Determining PGAC Environmental GradeEnvironmental Grade

• Grade Selection Matrix-Customized for Western Canada– Husky supports the splitting of the low

temperature grade into 3 C intervals• The slope of the straight run PG grading curve

indicates the high temperature grade increases 1.4 C for every 1 C decrease (worsening) in the low temperature grade

• Depending on the project site, modification in 3 C increments on the low temperature will save costs. May achieve the desired reliability at -37 C instead of -40 C.

Page 33: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining PGAC Determining PGAC Environmental GradeEnvironmental Grade

• Recommended Grade Selection Matrix-Customized for Western Canada– 16 potential grades for western Canada

• Production and inventory considerations• Some grades are redundant in that the lowest

quality straight run asphalt exceeds them• Some grades are too expensive to be practical• Some modified grades can be consolidated into

higher grades with similar cost structures– Maximize grade availability to maximize

design flexibility– Minimize grade availability to limit grade

proliferation

Page 34: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Determining PGAC Determining PGAC Environmental GradeEnvironmental Grade

Page 35: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 36: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Weather Database

PAVEMENT DESIGN TEMPERATURES -> (HT, LT)

Grade Selection Matrix

“ENVIRONMENTAL”GRADE -> PG HT-LT

Grade Bumping Protocol(HT Only)

“DESIGN”GRADE -> PG HT-LT

Practical Design Considerations

Special Design Considerations

1. Pavement Design Temperatures2. PGAC Environmental Grade3. PGAC “Design” Grade

PG HT-LT

< L

TP

PB

ind

v2

.1 >

< M

an

ual C

alc

ula

tion

s >

Specify Site

Reliability, HT Reliability, LTDepth (mm)

Select Model

Pavement Temperature Models

Air Temperatures

•Availability•Storage & Handling•Cost vs, Reliability

1

2

3

A

B

STEP

STEP

STEP

Page 37: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, Alberta PGAC Calgary, Alberta

Page 38: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 39: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 40: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 41: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 42: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 43: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 44: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Page 45: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

Environmental Grade PG 58-31

Page 46: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

PGAC Calgary, AlbertaPGAC Calgary, Alberta

– Environmental Grade PG 58-31• PG 64-31

– Slow traffic where the average traffic speed is between 20 to 70 km/hr

– Design ESAL’s over 0.3 million

• PG 70-31– Standing traffic where the average traffic speed is less

than 20 km/hr– Design ESAL’s over 0.3 million

Page 47: HUSKY ASPHALT 1-2-3’s of PGAC Calgary Presentation August 14, 2006

HUSKY ASPHALT

Questions ?Questions ?