hydrogen bond catalysis - david a. evansevans.rc.fas.harvard.edu/pdf/smnr_2009_fuller_peter.pdftypes...

39
Hydrogen Bond Catalysis Evans group seminar October 2, 2009 Peter H. Fuller

Upload: others

Post on 18-Mar-2020

41 views

Category:

Documents


0 download

TRANSCRIPT

HydrogenBondCatalysis

EvansgroupseminarOctober2,2009

PeterH.Fuller

Catalysis

OO O+

AlCl3, CH2Cl2

rt, 1.5 min

quantitative

Yates and Eaton (1960)

without AlCl3 ~ 95% conversion after 4800 h (200 d)

Yates, P.; Eaton, P. J. Am. Chem. Soc. 1960, 82, 4436-4437.

OO

O

Prompted an era of intensive research activity on metal-centered Lewis acid catalysis that continues today.

Catalysis

OO O+

AlCl3, CH2Cl2

rt, 1.5 min

quantitative

Yates and Eaton (1960)

without AlCl3 ~ 95% conversion after 4800 h (200 d)

Yates, P.; Eaton, P. J. Am. Chem. Soc. 1960, 82, 4436-4437.

OO

O

Prompted an era of intensive research activity on metal-centered Lewis acid catalysis that continues today.

Wassermann (1942)

O

O

+Phenol or H+ H+ = CH3CO2H, ClCH2CO2H

BrCH2CO2H, Cl3CCO2H

O

O

H

H

> 90%

Wassermann, A. J. Chem. Soc. 1942, 618-621.

Catalysis

OO O+

AlCl3, CH2Cl2

rt, 1.5 min

quantitative

Yates and Eaton (1960)

without AlCl3 ~ 95% conversion after 4800 h (200 d)

Yates, P.; Eaton, P. J. Am. Chem. Soc. 1960, 82, 4436-4437.

OO

O

Prompted an era of intensive research activity on metal-centered Lewis acid catalysis that continues today.

Wassermann (1942)

O

O

+Phenol or H+ H+ = CH3CO2H, ClCH2CO2H

BrCH2CO2H, Cl3CCO2H

O

O

H

H

> 90%

Wassermann, A. J. Chem. Soc. 1942, 618-621.

"Why did the report of Yates and Eaton, and not that of Wassermann, capture the imagination of

the early practitioners of asymmetric catalysis, leading to the current situation where chiral Lewis

acid catalysis, rather than chiral Brønsted acid catalysis, is the dominant strategy for promotion of

enantioselective additions to electrophiles?" Taylor, M. S. and Jacobsen, E. N.

Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520-1543.

Lewis acid vs. Brønsted acid catalysis

R1

Y

R2

[M]Ln

X

Lewis acid catalysis

Pros:- Highly tunable structures (element, ligand framework, counterion)- Low catalyst loadings- Strong Lewis acid/Lewis base interactions

Cons:- Often generated in situ and employed directly- Often water/moisture sensitive

Pros:

- Moderately tunable (structure of A and pKa)

- Exists as the active catalyst (i.e. no in situ preparation required)

- Water/moisture stable/tolerant

- Potentially recoverable/reuseable

Cons:

- Higher catalyst loadings

Selected references:1. "Metal-Free Organocatalysis Through Explicit Hydrogen Bonding Interactions." Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289-296.2. "Activation of Carbonyl Compounds by Double Hydrogen Bonding: An Emerging Tool in Asymmetric Catalysis." Pihko, P. M. Angew. Chem. Int. Ed. 2004, 43, 2062-2064.3. "Recent Progress in Chiral Brønsted Acid Catalysis." Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999-1010.4. "Asymmetric Catalysis by Chiral Hydrogen-Bond Donors." Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520-1543.5. "History and Perspective of Chiral Organic Catalysts," in New Frontiers in Asymmetric Catalysis. Lelais, G.; MacMillan, D. W. C. New Jersey: John Wiley & Sons, Inc. 2007.6. "Small-Molecule H-Bond Donors in Asymmetric Catalysis." Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713-5743.7. "Stronger Brønsted Acids." Akiyama, T. Chem. Rev. 2007, 107, 5744-5758.8. "Brønsted Acids," in Acid Catalysis in Modern Organic Synthesis, Vol, 1. Yamamoto, H.; Nakashima, D. Weinheim: Wiley-VCH. 2008.9. "(Thio)urea Organocatalysis-What can be learnt from anion recognition?" Zhang, A.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187-1198.

R1

Y

R2

Hydrogen bond catalysis

H A

Types of hydrogen bond catalysis

R1

Y

R2

Hydrogen bond catalysis

H A

Specific Acid Catalysis: Reversible protonation of the electrophile in a pre-equilibriumstep prior to nucleophilic attack.

General acid catalysis or Hydrogen bond catalysis: Acid activation of an electrophile,but not full proton transfer.

R1

Y

R2

H A!+!"

type of bonding mostly covalent mostly electrostatic electrostatic

length of H-bond [A] 1.2-1.5 1.5-2.2 2.2-3.2

bond angles [°] 175-180 130-180 90-150

bond energy [kcal/mol-1] 14-40 4-15 <4

example intramolecular NH-H NH-O C in peptide CH donors to N, O

bond in conjugate acid H+ sponge helices and sheets acceptors

Strong Moderate Weak

Properties of hydrogen bonds

interactions we will be discussing today

Connon, S. J. Chem. Eur. J. 2006, 12, 5418-5427.Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520-1543.

Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713-5743.Akiyama, T. Chem. Rev. 2007, 107, 5744-5758.

R1

Y

R2

Y = O, NR

+ H-A Cat.Nu

R1 R2

HY Nu

R1

YH+

R2

R1

Y

R2

Y = O, NR

+ H-A Cat.Nu

R1 R2

HY Nu

A-

What makes a good hydrogen bond catalyst?

R1

Y

R2

H A!+!"

Desired interaction

1) Modest acidity (pKa ~ 30 - 5)

2) Low dimerization potential

3) Induce directionality within the substrate

What makes a good hydrogen bond catalyst?

R1

Y

R2

H A!+!"

Desired interaction

1) Modest acidity (pKa ~ 30 - 5)

2) Low dimerization potential

3) Induce directionality within the substrate

Some of the more priviledged H-bond catalyst structural motifs:

N N

O

R

N N

S

R

R

R

HH

HH

urea

thiourea

- pKa ~ 26

- high propencity to dimerize

due to oxygens ability to

accept an H-bond, i.e. low

cat. TOF N N

O

R R

HH

N N

O

R R

HH

- pKa ~ 20

- low propencity to dimerize,

i.e. increase in TOF for a wide

range of catalysts

What makes a good hydrogen bond catalyst?

R1

Y

R2

H A!+!"

Desired interaction

1) Modest acidity (pKa ~ 30 - 5)

2) Low dimerization potential

3) Induce directionality within the substrate

Some of the more priviledged H-bond catalyst structural motifs:

N N

O

R

N N

S

R

R

R

HH

HH

urea

thiourea

- pKa ~ 26

- high propencity to dimerize

due to oxygens ability to

accept an H-bond, i.e. low

cat. TOF N N

O

R R

HH

N N

O

R R

HH

- pKa ~ 20

- low propencity to dimerize,

i.e. increase in TOF for a wide

range of catalysts

OH

OH

ArAr

Ar Ar

O

O

Me

Me

diol

- pKa ~ 20

- structure enforces a

single H-bond activation

mode (more later)

OH OH - pKa ~ 18

- structure enforces a

double H-bond activation

mode

- One of the earliest H-bond

catalysts investigatedbisphenol

What makes a good hydrogen bond catalyst?

R1

Y

R2

H A!+!"

Desired interaction

1) Modest acidity (pKa ~ 30 - 5)

2) Low dimerization potential

3) Induce directionality within the substrate

Some of the more priviledged H-bond catalyst structural motifs:

N N

O

R

N N

S

R

R

R

HH

HH

urea

thiourea

- pKa ~ 26

- high propencity to dimerize

due to oxygens ability to

accept an H-bond, i.e. low

cat. TOF N N

O

R R

HH

N N

O

R R

HH

- pKa ~ 20

- low propencity to dimerize,

i.e. increase in TOF for a wide

range of catalysts

OH

OH

ArAr

Ar Ar

O

O

Me

Me

diol

- pKa ~ 20

- structure enforces a

single H-bond activation

mode (more later)

OH OH - pKa ~ 18

- structure enforces a

double H-bond activation

mode

- One of the earliest H-bond

catalysts investigatedbisphenol

N

N

OH

OH - pKa ~ 18, 25

- bifunctional capability

- tunable

What makes a good hydrogen bond catalyst?

R1

Y

R2

H A!+!"

Desired interaction

1) Modest acidity (pKa ~ 30 - 5)

2) Low dimerization potential

3) Induce directionality within the substrate

Some of the more priviledged H-bond catalyst structural motifs:

N N

O

R

N N

S

R

R

R

HH

HH

urea

thiourea

- pKa ~ 26

- high propencity to dimerize

due to oxygens ability to

accept an H-bond, i.e. low

cat. TOF N N

O

R R

HH

N N

O

R R

HH

- pKa ~ 20

- low propencity to dimerize,

i.e. increase in TOF for a wide

range of catalysts

OH

OH

ArAr

Ar Ar

O

O

Me

Me

diol

- pKa ~ 20

- structure enforces a

single H-bond activation

mode (more later)

OH OH - pKa ~ 18

- structure enforces a

double H-bond activation

mode

- One of the earliest H-bond

catalysts investigatedbisphenol

N

N

OH

OH - pKa ~ 18, 25

- bifunctional capability

- tunable

N

N

N+ArAr

H H

guanidinium

- pKa ~ 15 (?)

- low propencity to dimerize

- borderline between specific

and/or general acid catalysis

What makes a good hydrogen bond catalyst?

R1

Y

R2

H A!+!"

Desired interaction

1) Modest acidity (pKa ~ 30 - 5)

2) Low dimerization potential

3) Induce directionality within the substrate

Some of the more priviledged H-bond catalyst structural motifs:

N N

O

R

N N

S

R

R

R

HH

HH

urea

thiourea

- pKa ~ 26

- high propencity to dimerize

due to oxygens ability to

accept an H-bond, i.e. low

cat. TOF N N

O

R R

HH

N N

O

R R

HH

- pKa ~ 20

- low propencity to dimerize,

i.e. increase in TOF for a wide

range of catalysts

OH

OH

ArAr

Ar Ar

O

O

Me

Me

diol

- pKa ~ 20

- structure enforces a

single H-bond activation

mode (more later)

OH OH - pKa ~ 18

- structure enforces a

double H-bond activation

mode

- One of the earliest H-bond

catalysts investigatedbisphenol

N

N

OH

OH - pKa ~ 18, 25

- bifunctional capability

- tunable

N

N

N+ArAr

H H

guanidinium

- pKa ~ 15 (?)

- low propencity to dimerize

- borderline between specific

and/or general acid catalysis

Connon, S. J. Chem. Eur. J. 2006, 12, 5418-5427.

Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520-1543.

Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713-5743.

Akiyama, T. Chem. Rev. 2007, 107, 5744-5758.

Bordwell pKaTable

Ar

Ar

O

O

PO

OH

phosphoric acid

- pKa ~ 1

- largely accepted as a

specific acid catalyst

R1

Y

R2

single hydrogen bonding

H A

The three distinct modes of hydrogen bond catalysis will be discussed:

R1

YH

R2

double hydrogen bonding

H

AA

R1

YH

R2

H

AA chiralscaffold

B

H

X

bifunctional catalysis

Hydrogen bond catalysis

Related topics beyond the scope of this seminar include:

- Hydrogen bonding in biological systems (serine proteases, aldolases)- Enantioselective protonation- Hydrogen bonding phase transfer catalysis- Enamine catalysis (that use H-bonding as a stereochemical control element)

e.g., diols, bisphenols, hydroxy acids e.g., ureas, thioureas, guanidinium and amidinium ions, lactams

e.g., thioureas, cinchona alkaloids,phosphoric acids

ArAr

OHOH

ArAr

O

OH

OH

OH

Ar

Ar

OH

Rawal, Yamamoto

Yamamoto

Schaus

N

O

NH

X

NH

R1

R2

tBu

N

ArJacobsen

X = O, S

N

N

N+ArAr

H H

Corey

Ar

ON

H

NH2+

Göbel

N

O

NH

S

NH

R1

Bn

tBu

NH2

Jacobsen

N

N

R

OH

Wynberg

Ar

Ar

Akiyama

O

O

PO

OH

Catalysis by single hydrogen bond activation

Rawal: H-Bond catalyzed Hetero-Diels-Alder reaction (2000)

NMe2

TBSO

CHO

OMe

+solvent

O

TBSO

NMe2

Ar

dielectric relativeentry solvent constant rate

1 THF 7.6 12 benzene 2.3 1.33 acetonitrile 37.5 3.04 chloroform 4.8 305 tBuOH 10.9 2806 iPrOH 18.3 630

Reaction rate does not correlate with dielectric constant. Thus, the increase in rate could arise from a C-H---O H-bond.

~100%

Catalysis by single hydrogen bond activation

Rawal: H-Bond catalyzed Hetero-Diels-Alder reaction (2000)

NMe2

TBSO

CHO

OMe

+solvent

O

TBSO

NMe2

Ar

dielectric relativeentry solvent constant rate

1 THF 7.6 12 benzene 2.3 1.33 acetonitrile 37.5 3.04 chloroform 4.8 305 tBuOH 10.9 2806 iPrOH 18.3 630

Reaction rate does not correlate with dielectric constant. Thus, the increase in rate could arise from a C-H---O H-bond.

~100%

NMe2

TBSO

+

O

H R

OH

OH

ArAr

Ar Ar

O

O

Me

Me

1 (0.2 equiv)

Toluene, -40 °C, 24 h

1 =

Ar = 1-naphthyl

O

TBSO

NMe2

RAcCl, CH2Cl2

-78 °C, 15 min O

O R

R = aromatic, aliphatic

52 - 97% yield; 92 - 98% ee

Huang, Y.; Rawal, V. H. Org. Lett. 2000, 2, 3321-3325.Huang, Y.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 9662-9663.

Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature, 2003, 424, 146.

Rawal: Enantioselective H-Bond catalyzed Hetero-Diels-Alder reaction (2003)

Catalysis by single hydrogen bond activation

Rawal: Enantioselective H-Bond catalyzed all carbon Diels-Alder reaction (2004)

NMe2

TBSO

+

OH

OH

ArAr

Ar Ar

O

O

Me

Me

1 (0.2 equiv)

Toluene, - 80 °C, 48 h

1 =

Ar = 1-naphthyl

TBSO

NMe2

HF/CH3CN

-78 °C to rt, 1 h

O

R = aliphatic

77 - 85% yield; 86 - 92% ee

R

O

H CHOR

RCHO

1) LiAlH4, Et2O- 78 °C to rt, 2 h

2) HF/CH3CN0 °C to rt, 30 min

O

R

OH

77 - 83% yield; 86 - 92% eeWhen R is large (i.e. > H), high enantioselectivity is observed

Catalysis by single hydrogen bond activation

Rawal: Enantioselective H-Bond catalyzed all carbon Diels-Alder reaction (2004)

NMe2

TBSO

+

OH

OH

ArAr

Ar Ar

O

O

Me

Me

1 (0.2 equiv)

Toluene, - 80 °C, 48 h

1 =

Ar = 1-naphthyl

TBSO

NMe2

HF/CH3CN

-78 °C to rt, 1 h

O

R = aliphatic

77 - 85% yield; 86 - 92% ee

R

O

H CHOR

RCHO

1) LiAlH4, Et2O- 78 °C to rt, 2 h

2) HF/CH3CN0 °C to rt, 30 min

O

R

OH

77 - 83% yield; 86 - 92% eeWhen R is large (i.e. > H), high enantioselectivity is observed

Rawal/Yamamoto: H-Bond catalyzed enantioselective Hetero-Diels-Alder reaction (2005)

NMe2

TBSO

+

O

H R 2 (0.2 equiv)

Toluene, -40 °C, 24 hor -80°C, 48 h

2 = Ar = 1-F-3,5-Et2C6H2

O

TBSO

NMe2

AcCl, CH2Cl2

-78 °C, 15 min O

O

R = aromatic, aliphatic

>70% yield; ~95% ee

ArAr

OHOH

ArAr

RR

Thadani, A. N.; Stankovich, A. R.; Rawal, V. H. Proc. Natl. Acad. Sci. USA 2004, 101, 5846-5850.Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336-1337.

Mechanism and stereochemical model

OH

OH

PhPh

Ph Ph

O

O

Me

Me1 =

TADDOL: Over 35 crystal structures of various derivatives of 1 are known (as of 2001).

O OH

OO

Ph

Ph

Ph

H

Ph

HH

Preferred conformations are due to the intramolecular nature of the H-bond that is reinforced by the geminal substitution (Thorpe-Ingold effect).

ArAr

OHOH

ArAr

2 =

Mechanism and stereochemical model

OH

OH

PhPh

Ph Ph

O

O

Me

Me1 =

TADDOL: Over 35 crystal structures of various derivatives of 1 are known (as of 2001).

O OH

OO

Ph

Ph

Ph

H

Ph

HH

Preferred conformations are due to the intramolecular nature of the H-bond that is reinforced by the geminal substitution (Thorpe-Ingold effect).

ArAr

OHOH

ArAr

2 =

Proposed stereochemical model

O O

H

O

O

H

H

H O

H

R

NMe2

TBSO

+ R

O

H

O

RCHO

Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem. Int. Ed. 2001, 40, 92-138.

Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc. Natl. Acad. Sci. USA 2004, 101, 5846-5850.

Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336-1337.

intramolecularH-bond intermolecular

H-bond

!-! interaction

Catalysis by single hydrogen bond activation

- Despite the modest strength of singly H-bonded complex, significant rate accelerations and enantioselectivities canbe obtained.

- Selectivities are potentially reinforced by non-bonding interactions in the transition state.

- Catalyst turnover continues to be a problem.

Catalysis by double hydrogen bond activation

- Despite the modest strength of singly H-bonded complex, significant rate accelerations and enantioselectivities canbe obtained.

- Selectivities are potentially reinforced by non-bonding interactions in the transition state.

- Catalyst turnover continues to be a problem.

R1

YH

R2

double hydrogen bonding

H

AA

- A much more intensely studied area of research.

- Contributors include:

Jacobsen, Bach, Corey, Göbel, Mikami, Johnston,

Catalysis by double hydrogen bond activation

Jacobsen: Thio-urea catalyzed enantioselective addition to imines

N

HR1+ HCN

1) 1 (1 mol%), PhMe- 65 °C, 20 h

2) TFAA R1 CN

NF3C

O

100% conv. 98% ee

N

HAr

BocOTBS

OiPr+

1) 1 (5 mol%), PhMe- 40 °C, 48 h

2) TFA, 2 minAr

O

OiPr

NHBoc

96% conv. 97% ee

1 =

NNH

O

NH

SMe

Ph

N

HO

tBu OCOtBu

tBu

R1 = aryl or alkyl

Catalysis by double hydrogen bond activation

Jacobsen: Thio-urea catalyzed enantioselective addition to imines

N

HR1+ HCN

1) 1 (1 mol%), PhMe- 65 °C, 20 h

2) TFAA R1 CN

NF3C

O

100% conv. 98% ee

N

HAr

BocOTBS

OiPr+

1) 1 (5 mol%), PhMe- 40 °C, 48 h

2) TFA, 2 minAr

O

OiPr

NHBoc

96% conv. 97% ee

1 =

NNH

O

NH

SMe

Ph

N

HO

tBu OCOtBu

tBu

R1 = aryl or alkyl

Mechanistic analysis

- The reaction was found to display first order dependence on catalyst and HCN implying reversible imine-catalyst complexation

- Detailed NMR studies in conjunction with energy minimization (B3LYP) revealed a significant preference for an imine hydrogenbonded to both urea protons in a bridged fashion.

N

HR1

N N

S

N

H H HCNN N

S

H H

N

CNR1

H

+ Cat. 1R1 CN

NF3C

O

TFAA

8.5 kcal/mol 5.0 kcal/mol

Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012-10014.Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964-12965.Wenzel, A. G.; Lalonde, M. P.; Jacobsen, E. N. Synlett, 2003, 12, 1919-1922.

H

R1

R

1) 3A MS or Na2SO4°

2) AcCl (1.0 equiv)2,6-lutidine (1.0 equiv)2 (5-10 mol%), Et2O

-78 °C to -40 °C

2 =

(iBu)2NNH

O

NH

S

N

tBu

Me Ph

Catalysis by double hydrogen bond activation

Jacobsen: Thio-urea catalyzed enantioselective acyl-Mannich reaction and acyl-Pictet-Spengler reactions.

OHCR1+

(1.05 equiv)NH

NH2

R

NH

NAc

R1

65-81% yield; 86-95% eeR1 = alkylR = H, 5-OMe

NH

N

O

HO R

3 (10 mol%), TMSCl

TBDE, -78 °C or -55 °C24 - 72 h

R = H, alkyl, aryl

NH

NO

R

65-94% yield; 88-98% ee

3 =

NNH

O

NH

S

N

tBu

Me Ph

Me

C5H11n

N

1) TrocCl (1.1 equiv)Et2O, 0 °C to rt

2) 2 (10 mol%), Et2O-78 °C to -65 °C

OTBS

OMe+ NTroc

CO2Me

80% yield; 86% ee

R

1) 3A MS or Na2SO4°

2) AcCl (1.0 equiv)2,6-lutidine (1.0 equiv)2 (5-10 mol%), Et2O

-78 °C to -40 °C

2 =

(iBu)2NNH

O

NH

S

N

tBu

Me Ph

Catalysis by double hydrogen bond activation

Jacobsen: Thio-urea catalyzed enantioselective acyl-Mannich reaction and acyl-Pictet-Spengler reactions.

OHCR1+

(1.05 equiv)NH

NH2

R

NH

NAc

R1

65-81% yield; 86-95% eeR1 = alkylR = H, 5-OMe

NH

N

O

HO R

3 (10 mol%), TMSCl

TBDE, -78 °C or -55 °C24 - 72 h

R = H, alkyl, aryl

NH

NO

R

65-94% yield; 88-98% ee

3 =

NNH

O

NH

S

N

tBu

Me Ph

Me

C5H11n

N

1) TrocCl (1.1 equiv)Et2O, 0 °C to rt

2) 2 (10 mol%), Et2O-78 °C to -65 °C

OTBS

OMe+ NTroc

CO2Me

80% yield; 86% ee

Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558-10559.Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2005, 44, 6700-6704.

Raheem, I. T.; Thiara, P. S.; Peterson, E. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404-13405.

Mechanistic analysis

N+

Troc

Cl-

NH

N+

R

O

Me

Cl-

NH

N+

O

R

Cl-

N

HR

N

HR

Boc

NH

N

O

HO R

3 (10 mol%), TMSCl

TBDE, -78 °C or -55 °C24 - 72 h

R = H, alkyl, aryl

NH

NO

R

65-94% yield; 88-98% ee

3 =

NNH

O

NH

S

N

tBu

Me Ph

Me

C5H11n

Hydrogen bond donor catalysis by anion binding

NH

N

O

RCl

NH

N+

O

R

Cl-

N N

S

H H

Path A

Path B

NH

NO

R

+

NH+

N

R

O

Cl-

Product

NH

N

O

HO R

3 (10 mol%), TMSCl

TBDE, -78 °C or -55 °C24 - 72 h

R = H, alkyl, aryl

NH

NO

R

65-94% yield; 88-98% ee

3 =

NNH

O

NH

S

N

tBu

Me Ph

Me

C5H11n

Hydrogen bond donor catalysis by anion binding

NH

N

O

RCl

NH

N+

O

R

Cl-

N N

S

H H

Path A

Path B

NH

NO

R

+

NH+

N

R

O

Cl-

Product

NH

N

O

HO H

3 (10 mol%), TMSX

TBDE, -55 °Ctime

NH

NO

H

Halide effect

entry X time (h) %conv. %ee

1 Cl 23 80 972 Br 23 82 683 I 23 75 <5

Raheem, I. T.; Thiara, P. S.; Peterson, E. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404-13405.

O

OMe

1) BCl3, CH2Cl2, 0 °C to rt

2) 4, (10 mol%), TBME, -78 °COMe

OTMS

R

R

+

R = Me, -(CH2)n-

O

RR

CO2Me

70-95% yield; 88-97% ee

4 =

NNH

O

NH

StBu

1.5 (equiv)

CF3

CF3

Ar

Ar = 4-F-Ph

Hydrogen bond donor catalysis by anion binding

Jacobsen: Enol silane additions to oxocarbenium ions

O+

Cl-

N N

S

H H

O

OMe

1) BCl3, CH2Cl2, 0 °C to rt

2) 4, (10 mol%), TBME, -78 °COMe

OTMS

R

R

+

R = Me, -(CH2)n-

O

RR

CO2Me

70-95% yield; 88-97% ee

4 =

NNH

O

NH

StBu

1.5 (equiv)

CF3

CF3

Ar

Ar = 4-F-Ph

Hydrogen bond donor catalysis by anion binding

Jacobsen: Enol silane additions to oxocarbenium ions

O+

Cl-

N N

S

H H

N

H tBu

Ph2HC

+ HCN 1

Jacobsen ASAP

ON

N

NS Ph

H

H

H

tBuMe

Ph2HC

NC

H

NPh2HC R

ON

N

NS Ph

H

H

H

tBuMe

Ph2HC

NC-

N+Ph2HC R

H

H H

R CN

NHCHPh2

Reisman, S. E.; Doyle, A. G. Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198-7199.Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009, ASAP (9/24/09)

- Due to the recent developments/observations concerning anion binding the previously proposed mechanisms of a bifurcated hydrogen bonding association between the imine and thiourea were challenged.

- Further kinetic, computational, and labeling experiments led to the revised mechanistic hypothesis shown.

Catalysis by double hydrogen bond activation

- Significant advances with regard to reaction development and understanding are being made.

- Catalyst loadings are much less and TOF are higher.

Bifunctional catalysis

- Significant advances with regard to reaction development and understanding are being made.

- Catalyst loadings are much less and TOF are higher.

Bifunctional catalysis:

- Just as active of an area of research as double hydrogen bond catalysis.

- Contributors include:

Jacobsen, Deng, Akiyama, Terada, Tsogoeva

Enamine catalysis:

- Contributors include:

List, Barbas III, Yamamoto, among many others

R1

YH

R2

H

AA chiralscaffold

B

H

X

bifunctional catalysis

Bifunctional catalysis

Hajos-Parrish-Eder-Sauer-Wiechert reaction (1971)

O

OMeO

Me

L-proline (3 mol%)

DMF, rt

O

O

Me

OH

O

O

Me

O

Me

N H

O

O

99% yield; 93% ee

N+

NH

H-OTf

YamamotoBarbas

NH

O

NH

OH

Ph

Ph

NH

O

NH

SO2Ar

NH

NH

N

NN

ListAdolfsson

WuYamamoto

Recently developed unnatural proline catalysts

Bifunctional catalysis

Hajos-Parrish-Eder-Sauer-Wiechert reaction (1971)

O

OMeO

Me

L-proline (3 mol%)

DMF, rt

O

O

Me

OH

O

O

Me

O

Me

N H

O

O

99% yield; 93% ee

N+

NH

H-OTf

YamamotoBarbas

NH

O

NH

OH

Ph

Ph

NH

O

NH

SO2Ar

NH

NH

N

NN

ListAdolfsson

WuYamamoto

Recently developed unnatural proline catalysts

Deng: Cinchona alkaloids as bifunctional hydrogen bond catalysts

RNO2

MeO

O O

OMe+

1 (10 mol%), THF

-20 °C, 1.5 - 4 d

(3 equiv)R

NO2

CO2MeMeO2C

71-99% yield; 91-98% ee

N

N

OH

OH

1 =

R = aryl, aliphatic

RNO2 +

1 (10 mol%), THF

-60 to -20 °C, 1.5 - 4 d

(3 equiv)73-95% yield; 92-99% ee 6:1->20:1 dr

R = aryl, aliphatic

O O

OMe

O

NO2

R

CO2Me

Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471-5569.Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906-9907.

Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem. Int. Ed. 2005, 44, 105-108.

Bifunctional catalysis

Deng: Mechanistic analysis and proposed transition state for enantioselective Michael additions

N

N

OH

OH

1 =PhNO2 +

1 (10 mol%), THF

-60 °C, 1.5 d

(3 equiv)97% yield; >99% ee 96:4 dr

O O

OMe

O

NO2

Ph

CO2Me

PhNO2 +

2 (10 mol%), THF

-60 °C, 1.5 d

(3 equiv)97% yield; >99% ee 97:3 dr

O O

OMe

O

NO2

Ph

CO2MeN

N

OH

2 =O

Me

Bifunctional catalysis

Deng: Mechanistic analysis and proposed transition state for enantioselective Michael additions

N

N

OH

OH

1 =PhNO2 +

1 (10 mol%), THF

-60 °C, 1.5 d

(3 equiv)97% yield; >99% ee 96:4 dr

O O

OMe

O

NO2

Ph

CO2Me

PhNO2 +

2 (10 mol%), THF

-60 °C, 1.5 d

(3 equiv)97% yield; >99% ee 97:3 dr

O O

OMe

O

NO2

Ph

CO2MeN

N

OH

2 =O

Me

N+

O

O-

H

Ph

Catalyst conformation and transition state analysis

N

H

RON

OH

N

H

N

OH

O

Me

N

N

OH

OH

1 = N

N

OH

= 2O

Me

PhNO2 +

O O

OMe OO

MeO

N

O

HHN+

H

H

O

NO2

Ph

CO2Me

- First order with respect to catalsyt, donor, and acceptor

Bifunctional catalysis

Deng: Thio-urea modified cinchona derived catalysts

Ar

NBoc

H RO

O O

OR

1 (20 mol%), Acetone

-60 °C, 1.5 d

(1.5 equiv)81-99% yield; 88-99% ee

+

R = Me, Bn, allyl

Ar

NHBoc

CO2R

CO2R

1 =

N

N

H

MeO

HN

S

HN

Ar

Ar = 3,5-bisCF3Ph-

O

CN

Cl

CN+

1 (10 mol%)

PhMe, rt, 1 h

(3 equiv)

O

CN

CN

Cl

99% yield; 97% ee 10:1 dr

Bifunctional catalysis

Deng: Thio-urea modified cinchona derived catalysts

Ar

NBoc

H RO

O O

OR

1 (20 mol%), Acetone

-60 °C, 1.5 d

(1.5 equiv)81-99% yield; 88-99% ee

+

R = Me, Bn, allyl

Ar

NHBoc

CO2R

CO2R

1 =

N

N

H

MeO

HN

S

HN

Ar

Ar = 3,5-bisCF3Ph-

O

CN

Cl

CN+

1 (10 mol%)

PhMe, rt, 1 h

(3 equiv)

O

CN

CN

Cl

99% yield; 97% ee 10:1 dr

Mechanism and proposed transition state

O

CN

Cl

CN+

N

HNS

N

Ar

ArH

H

N

OH

N

Cl

O

CN

CN

Cl

Song, J.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048-6049.Wang, B.; Wu, F.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768-769.

BrØnsted basic functionality

Hydrogen bond activation(s)

Bifunctional catalysis

1 =

N

N

H

MeO

HN

S

HN

Ar

Ar = 3,5-bisCF3Ph-

O

CN

Cl

CN+

1 (10 mol%)

PhMe, rt, 1 h

(3 equiv)

O

CN

CN

Cl

99% yield; 97% ee 10:1 dr

N

N

OH

OH

2 =RNO2 +

2 (10 mol%), THF

-60 to -20 °C, 1.5 - 4 d

(3 equiv)73-95% yield; 92-99% ee 6:1->20:1 dr

R = aryl, aliphatic

O O

OMe

O

NO2

R

CO2Me

Bifunctional catalysis

1 =

N

N

H

MeO

HN

S

HN

Ar

Ar = 3,5-bisCF3Ph-

O

CN

Cl

CN+

1 (10 mol%)

PhMe, rt, 1 h

(3 equiv)

O

CN

CN

Cl

99% yield; 97% ee 10:1 dr

N

N

OH

OH

2 =RNO2 +

2 (10 mol%), THF

-60 to -20 °C, 1.5 - 4 d

(3 equiv)73-95% yield; 92-99% ee 6:1->20:1 dr

R = aryl, aliphatic

O O

OMe

O

NO2

R

CO2Me

- Significant advances with regard to reaction development have/are being made.

- Due to the bifunctional nature of the catalysts, many substrate(s) - catalyst interactions are possible. Consequently,it becomes very difficult to rationalize reactivity and/or stereoselectivity.

- A greater mechanistic understanding of the subtleties of these processes is necessary for advancement.