hydrolyzable tannins: gallotannins, ellagitannins, and ellagic...

27
435 20 Hydrolyzable Tannins: Gallotannins, Ellagitannins, and Ellagic Acid Michael Jourdes, Laurent Pouységu, Stéphane Quideau, Fulvio Mattivi, Pilar Truchado, and Francisco A. Tomás-Barberán CONTENTS 20.1 Introduction .................................................................................................................................. 436 20.1.1 Occurrence in Food and Medicinal Plants ...................................................................... 437 20.1.2 Antioxidant Activity of Hydrolyzable Tannins and EA .................................................. 437 20.2 HPLC Analysis ............................................................................................................................ 438 20.3 UV Spectrophotometry Detection ............................................................................................... 438 20.4 Quantitative Indirect Analysis of ETs Using HPLC-DAD after Acid Hydrolysis....................... 440 20.4.1 Procedure......................................................................................................................... 440 20.4.1.1 Standards and Solvents .................................................................................... 440 20.4.1.2 Sampling and Extraction of Polyphenols......................................................... 440 20.4.1.3 Sample Preparation .......................................................................................... 440 20.4.1.4 Acid Hydrolysis................................................................................................ 441 20.4.2 HPLC-DAD-ESI-MS Analysis ....................................................................................... 441 20.4.2.1 HPLC-DAD Analysis ...................................................................................... 441 20.4.2.2 HPLC-ESI-MS Analysis .................................................................................. 441 20.4.3 Molar Extinction Coefficients ......................................................................................... 441 20.4.3.1 Molar Extinction Coefficient at Maximal Absorption in Methanol ................ 441 20.4.3.2 Molar Extinction Coefficient at 260 nm in Methanol...................................... 442 20.4.3.3 Molar Extinction Coefficient for HPLC Analysis ........................................... 442 20.4.4 UV Quantification ........................................................................................................... 442 20.4.5 Principle and Application of the Method ........................................................................ 442 20.4.5.1 Presence of ETs and EACs in Rubus Extracts ................................................. 442 20.4.5.2 Four Products Are Obtained from ETs Using Acid Hydrolysis in Methanol ........................................................................... 442 20.4.5.3 Detailed Composition of Blackberries............................................................. 443 20.4.5.4 Data Interpretation ........................................................................................... 443 20.4.5.5 Computation and Interpretation of mDP ......................................................... 445 20.5 HPLC-MS-MS Analysis .............................................................................................................. 447 20.6 NMR Analysis.............................................................................................................................. 447 20.6.1 Gallotannins .................................................................................................................... 447 20.6.1.1 Isolated Gallotannins ....................................................................................... 448 20.6.1.2 Enzymatically and Chemically Synthesized Gallotannins ............................. 448 20.6.2 Ellagitannins.................................................................................................................... 450 20.6.2.1 Absolute Configuration of ET Axially Chiral Biaryl Groups ......................... 450 20.6.2.2 Determination of the Position of ET Galloyl-Derived Acyl Units ...................451 20.6.2.3 Determination of the Absolute Configuration of the Anomeric Carbon..............................................................................................451

Upload: others

Post on 02-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 435

    20Hydrolyzable Tannins: Gallotannins, Ellagitannins, and Ellagic Acid

    Michael Jourdes, Laurent Pouységu, Stéphane Quideau, Fulvio Mattivi, Pilar Truchado, and Francisco A. Tomás-Barberán

    CONTENTS

    20.1 Introduction.................................................................................................................................. 43620.1.1 OccurrenceinFoodandMedicinalPlants...................................................................... 43720.1.2 AntioxidantActivityofHydrolyzableTanninsandEA.................................................. 437

    20.2 HPLCAnalysis............................................................................................................................ 43820.3 UVSpectrophotometryDetection............................................................................................... 43820.4 QuantitativeIndirectAnalysisofETsUsingHPLC-DADafterAcid Hydrolysis....................... 440

    20.4.1 Procedure......................................................................................................................... 44020.4.1.1 StandardsandSolvents.................................................................................... 44020.4.1.2 SamplingandExtractionofPolyphenols......................................................... 44020.4.1.3 SamplePreparation.......................................................................................... 44020.4.1.4 AcidHydrolysis................................................................................................ 441

    20.4.2 HPLC-DAD-ESI-MSAnalysis....................................................................................... 44120.4.2.1 HPLC-DADAnalysis...................................................................................... 44120.4.2.2 HPLC-ESI-MSAnalysis.................................................................................. 441

    20.4.3 MolarExtinctionCoefficients......................................................................................... 44120.4.3.1 MolarExtinctionCoefficientatMaximalAbsorptioninMethanol................ 44120.4.3.2 MolarExtinctionCoefficientat260nminMethanol...................................... 44220.4.3.3 MolarExtinctionCoefficientforHPLCAnalysis........................................... 442

    20.4.4 UVQuantification........................................................................................................... 44220.4.5 PrincipleandApplicationoftheMethod........................................................................ 442

    20.4.5.1 PresenceofETsandEACsinRubus Extracts................................................. 44220.4.5.2 FourProductsAreObtainedfromETsUsing AcidHydrolysisinMethanol........................................................................... 44220.4.5.3 DetailedCompositionofBlackberries............................................................. 44320.4.5.4 DataInterpretation........................................................................................... 44320.4.5.5 ComputationandInterpretationofmDP......................................................... 445

    20.5 HPLC-MS-MSAnalysis.............................................................................................................. 44720.6 NMRAnalysis.............................................................................................................................. 447

    20.6.1 Gallotannins.................................................................................................................... 44720.6.1.1 IsolatedGallotannins....................................................................................... 44820.6.1.2 EnzymaticallyandChemicallySynthesizedGallotannins............................. 448

    20.6.2 Ellagitannins.................................................................................................................... 45020.6.2.1 AbsoluteConfigurationofETAxiallyChiralBiarylGroups......................... 45020.6.2.2 DeterminationofthePositionofETGalloyl-DerivedAcylUnits...................45120.6.2.3 DeterminationoftheAbsoluteConfigurationofthe AnomericCarbon..............................................................................................451

  • 436 Handbook of Analysis of Active Compounds in Functional Foods

    20.1 Introduction

    Thechemicalstructuresofthehydrolyzabletanninsarebasicallycomposedofacentralsugarcore,typically a glucose unit, to which gallic acid moieties are esterified.β-Glucogallin is the simplestglucosylgallateknownandservesasagalloylunitdonorinthebiosynthesisofthefullygalloylatedβ-d-glucopyranose (β-PGG), which is itself considered to be the immediate precursor of the twosubclassesofhydrolyzabletannins,thatis,gallotanninsandellagitannins(ETs)(Figure20.1)(Gross1999, 2008; Niemetz and Gross 2005; Quideau et  al. 2011). Gallotannins are the result of furthergalloylationsofβ-PGGandarecharacterizedbythepresenceofoneormoremeta-depsidicdigalloylmoieties, as exemplified with the hexagalloylglucose 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucopyranose(1ainFigure20.1).Alternatively,β-PGGcanbesubjectedtointra-andintermolecular

    20.6.2.4 AbouttheC-GlucosidicEllagitannins..............................................................45320.6.2.5 AbouttheFlavano-Ellagitannins..................................................................... 454

    Acknowledgments...................................................................................................................................455References.............................................................................................................................................. 456

    CO2H

    Gallic acidGallotannis

    1a(an example of

    hexagalloylglucose)

    Meta-depsidebond formation

    OH

    OHOH

    OH

    O

    O

    Digalloylmeta-depside

    O

    HO

    HO

    OH

    OH

    OH

    + 4 G

    + n G

    –n [H]

    IntramolecularC–C coupling

    Ellagitannins

    Geraniin

    O

    O

    OO

    3

    OG

    OG

    OGOG

    S

    HO OH

    OHOH

    OH

    HO

    HO

    HOHO

    HO

    HO

    O OHHDPunit HO

    4

    4 3 2

    64C1

    1C4

    OOO

    O

    R

    OGO

    GO

    GO

    OG

    OGOG

    GO

    GO

    + UDP-Glc– UDP

    HO

    HO

    OHOHOH

    OG

    O

    O

    O

    H

    OH

    OHOH

    O

    O

    ODHHDP

    unit

    HHDPunit

    O HO

    HO

    O

    O

    OO

    R

    O

    O

    H

    HO

    HO

    HO

    β-glucogallin(G donor)

    β-PGG

    R = OH, tellimagrandin IR = β-OG, tellimagrandin II

    FIGURE 20.1 Biosynthesisofhydrolyzabletannins(gallotanninsandellagitannins).

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 437

    phenolic coupling processes that create connections between spatially adjacent galloyl residues byformingC–CbiarylandC–Odiaryletherbonds.Theso-calledhexahydroxydiphenoyl(HHDP)biarylunit generated by intramolecular coupling is the structural characteristic that defines hydrolyzabletannins as ETs. The nature of the atropisomeric form of these chiral biaryl motifs, such as the(S)-HHDPunitofthetellimagrandinsorthe(R)-HHDPunitofgeraniin,isdeterminedbythepositionofthegalloylmotifsontheglucopyranosecoreineitherits4C1-orits1C4-conformation.Besides,theHHDPmotifissusceptibletomanyadditionaltransformations,amongwhichitsoxidationleadstothedehydrohexahydroxydiphenoyl (DHHDP) unit characteristic of the dehydroellagitannin naturalproducts, suchasgeraniin (QuideauandFeldman1996;KhanbabaeeandvanRee2001a;Feldman2005;Pouységuet al.2011).

    ETsreleaseellagicacid(EA)uponhydrolysis.Thisoccursspontaneouslyinthegastrointestinaltractunderphysiologicalconditions(Larrosaet al.2006).Inaddition,freeEAanditsglycoconjugatedderiva-tiveswithsugarsarealsofoundinmostET-containingplants.

    20.1.1 Occurrence in Food and Medicinal Plants

    ETsarepresentinsignificantamountsinmanyberries,includingstrawberries,redandblackraspber-ries(Zafrillaet al.2001),blackberries,andnuts,includingwalnuts(Fukudaet al.2003),pistachios,cashewnuts,chestnuts,oakacorns(Cantoset al.2003),andpecans(Villarreal-Lozoyaet al.2007).Theyarealsoabundantinpomegranates(Gilet al.2000),andmuscadinegrapes(Leeet al.2005),andareimportantconstituentsofwood,particularlyoakwood(GlabasniaandHofmann2006).ETscanbe incorporated into several food products such as wines, and whiskies, through migration fromwood tothefoodmatrixduringdifferentagingprocesses.EAhasalsobeenfoundinseveraltypesof  honey and this phytochemical has been proposed as a honey floral marker for heather honey(Ferrereset al.1996).FreeEAanddifferentglycosidederivativesarealsopresentinthesefoodprod-ucts, includingglucosides,rhamnosides,arabinosides,andthecorrespondingacetylesters(Zafrillaet al.2001).

    Inapreviousreview,itwasdocumentedthattherewerenoreliablefiguresavailableontheETdietaryburdenbutthatitwouldprobablynotexceed5mg/day(CliffordandScalbert2000).Sincethen,anum-berofstudieshaveshownthat theETcontentofseveralfoodproductscanbequitehigh.Aglassofpomegranatejuicecanprovideasmuchas300mg,araspberryserving(100gofraspberries)around300mg,astrawberryserving70mg,andfourwalnutssome400mgofETs.Asaresult,theintakeofdietaryETscanbemuchhigherthanpreviouslyestimated(CliffordandScalbert2000),especiallyifsomeoftheseET-richfoodsareregularlyconsumedinthediet.

    20.1.2 Antioxidant Activity of Hydrolyzable Tannins and EA

    ET-richfoodsgenerallyshowahighfree-radicalscavengingactivityevaluatedin vitro.Especiallyrele-vantistheantioxidantactivityofpomegranatejuice(Gilet al.2000).ThisstudyshowsthatpomegranatejuicehastwicetheantioxidantactivityofredwineandthatthisisduetotheextractionofETsfromthefruithuskduringjuicemanufacturing(Gilet al.2000).Thisremarkableantioxidantactivityhasbeenthedrivingpowerofresearchonthebiologicalactivityofthesepowerfulantioxidantsfrompomegranate,andisusedbythefoodindustrytomarketpomegranatejuiceproductsassuper-antioxidantfood.ETsarealsoresponsibleforarelevantpartoftheantioxidantactivityobservedinstrawberries(Hannum2004),raspberries(Zafrillaet al.2001),blackberries,walnuts(Blomhoffet al.2006),andpecans(Villarreal-Lozoyaet al.2007).Thisantioxidantactivitycanprobablyberelatedtothebiologicalactivityreportedforthesefoodproducts.

    InparalleltothosestudiesoftheantioxidantactivityofET-richfood,clinicalstudieshavealsoshownrelevantbiologicalactivitiesthathavebeenassociatedwiththeseantioxidants,althoughnodirectevi-denceofthebiologicalactivityofthesepolyphenolshasbeendemonstrated.SeveralclinicalstudieshavereportedrelevantbiologicalactivityaftertheintakeofET-richfoods,especiallyregardingtheprotectiveeffectagainstcardiovasculardiseasesandcancer.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 438 Handbook of Analysis of Active Compounds in Functional Foods

    20.2 HPLC Analysis

    ETscanbeanalyzedbyhigh-performanceliquidchromatography(HPLC)usingreversed-phasecol-umnswithmethanol,acetonitrile,andwatergradients.Theadditionof1%offormicoraceticacidtothe water solvent helps increasing the resolution of the chromatograms through the separation insharperpeaksavoidingpeaktailing.Ingeneral,complexETmixturesareobservedintheextracts.SomeeffectsoftheETstructureonthechromatographicretentionandelutionorderhavebeenreported(Salminen et  al. 1999; Moilanen and Salminen 2008). In general, the occurrence of free galloylgroups  in the ET molecule increases the retention times, while the formation of an HHDP in thehydrolyzabletanninmoleculedecreasestheretentiontime.Theopeningoftheglucopyranosering,asithappensinsomeC-glycosylETs(i.e.,vescalagin,castalagin),alsodecreasestheretentiontime.ETswithacyclicsugar,andwithoutgalloylationinC-1,producetwopeakscorrespondingtotheα-andβ-anomer, while galloylated ETs at C-1 produce only one chromatographic peak. This has beenreportedinpunicalaginandpunicalin, thecharacteristicETsofpomegranate, thatshowtwopeaksfor  each ET corresponding to both α- and β-anomer (Gil et  al. 2000). Acyclic epimers havinghydroxyl groupsatC-1oftheglucosecanbedistinguishedfromeachothersincetheorientationofthehydroxylgroupcausesvescalagin-typeETs toelutebefore thecastalagin-typeones (MoilanenandSalminen2008).

    EAispresent innature inafreestateor incombinationwithdifferentsugarsandformingmethylethers.EAhexosides(glucosides),deoxyhexosides(rhamnosides),andpentosides(xylosidesandarabino-sides)aswellasglucuronideshavebeenreportedasPhaseIImetabolitespresentinbiologicalfluids.Inaddition,acetylatedderivativesofEApentosideshavebeenreportedinraspberries(Zafrillaet al.2001).Glucuronides are the first eluting metabolites, followed by hexosides (glucosides), desoxyhexosides(rhamnosides),andpentosides(xylosidesfirstandarabinosides).FreeEAelutesaftertheglycosidesbutearlierthantheacetylpentosides.EAmethylethersandsulfates(thatareoftenfoundinbiologicalfluidsaftertheintakeofETsandEA)elutewithlongerretentiontimesthanfreeEA,andtheretentiontimeincreaseswiththenumberofmethylethersintroducedontheEAmolecule.

    The chromatographic behavior of the microbial metabolites of ETs and EA, known as urolithins(metabolitesrelatedtoEAinwhichoneofthelactoneringshasbeenremovedbythecolonicmicrobiota),followsasimilartrendasEAderivatives,increasingtheretentiontimewhendecreasingthenumberofhydroxylgroupsontheurolithinnucleus,andwhenincreasingthenumberofmethylethers(González-Barrioet  al.2011).Again, the introductionof aglucuronylconjugationdecreases the retention time,whiletheintroductionofasulfateresidueincreasestheretentiontime.Inaddition,thechromatographicpeaks corresponding to sulfate conjugates are broader, hence decreasing the chromatographicresolution.

    20.3 UV Spectrophotometry Detection

    TheUVspectraofthedifferentETs,gallotannins,andEAderivativesareeasilyrecordedintheanaly-sis of the extracts byHPLC-diode-arraydetection (DAD)analysis.Theoccurrenceof freegalloylgroupsintheETmoleculeproducestwoabsorptionmaximainthespectrum,onearound270–280nmand another around210–220nm.Thehigher thenumberof thegalloyl groupswith respect to theHHDPunits,thesteeperisthevalleybetweenthetwomaxima(Salminenet al.1999),andthemaxi-mumforBI(thebandbetween270and290nm)appearsathigherwavelengths.InHHDP-richtannins,thevalleybetweenthetwoabsorptionmaximaevendisappearsfromtheUVspectrum,asisthecaseofbis-HHDP-glucopyranose,andnodefinedmaximumisobservedfor theabsorptionbandaround270–280nm(Table20.1).

    ThechangefromcyclictoacyclicsugarsalsohasasubstantialeffectontheUVspectrum.FreeEAshowsaUVspectrumcharacterizedbytwoabsorptionbandsat365–380and253–255nm,

    withacharacteristicshapethatallowsitseasydetectionandidentificationintheUV-DADchromato-grams. In general, substitution with pentoses, hexoses, and glucuronides produces shifts of the UV

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 439

    maximatoshorterwavelengths.Thiseffectisalsoobservedwhenmethylethersareintroducedonthephenolichydroxyls,andisparticularlyevidentwhenasulfateresidueisintroducedasthehypsochromicshifts in wavelengths are more marked. The same effects are observed for the urolithin derivatives.UrolithinA,themainETandEAmetaboliteinmammals,hasaUVspectrumclosetothatofEA,butitisclearlydistinctive toallow theunambiguousdifferentiationofbothcompounds (Figure20.2).ThesameeffectsontheUVspectrumdescribedfortheEAconjugationarevalidforurolithinconjugations(González-Barrioet al.2011).UrolithinswithdifferenthydroxylationpatternsshowcharacteristicUVspectrathatcanbeusedforthestructuraldifferentiationofthemetabolitespresentinbiologicalfluidsusingHPLCcoupledtoUVdetection(DAD).

    TABLE 20.1

    UVSpectraofEllagitannins.EffectoftheOccurrenceofGalloylorHexahydroxydiphenoylResidues

    Compound BI (nm) BII (nm)% of BI Respect BII

    Absorbance

    Gallicacid 276 219 38

    Pentagalloyl-glucopyranose 285 220 42

    Trigalloyl-HHDP-glucopyranose 283 215 27

    Digalloyl-HHDP-glucopyranose 280 211 23

    Galloyl-bis-HHDP-glucopyranose

    279 214 19

    Bis-HHDP-glucopyranose 270i 205i –

    Source: ExtractedfromSalminen,J.P.et al.1999.J. Chromatogr. A864:283–291.

    400350

    365

    300

    λ (nm)

    Ellagic acid

    Urolithin A

    250

    253

    2000

    300

    600

    mAU

    900

    1200

    400350

    356

    305

    300

    λ (nm)

    250

    246280

    200

    0

    100

    200

    mAU

    300

    (a)

    (b)

    FIGURE 20.2 UVspectraof(a)ellagicacidand(b)urolithinA.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 440 Handbook of Analysis of Active Compounds in Functional Foods

    20.4 Quantitative Indirect Analysis of ETs Using HPLC-DAD after Acid Hydrolysis

    Acidhydrolysisisthemostpracticalandwidelyemployedtechniqueusedtoquantifythehydrolyzabletanninspresentinvegetableextracts.Asanexample,inthecaseofRubus,theuseofbothHPLCanalysisafterhydrolysis(Vrhovseket al.2008)anddirectHPLCanalysis(Gasperottiet al.2010)hasdemon-stratedthattheaveragestructureofETsiswellconservedinthedifferentgenotypes,whiledifferingintermsofabsoluteconcentration.ThismeansthatforroutinequantificationofcomplexETs,themethodusinganalysisafterhydrolysisisstillappropriateandabletoprovideusefulinformation.

    However,caremustbetakentochoosetheappropriatesolventforextractionandthewholeessay,sincethesenaturalcompoundsarenoteasytomanage,andeachstep(extraction,hydrolysis,HPLCanalysis,anddataprocessing)shouldbecarefullyconsideredinordertoprovideconsistentdata.Moreover,EAispoorlysolubleandcanprecipitate ifnotproperlyhandled,escapingdetection (Törrönen2009).Asaconsequence,theETcontentreportedintheliteratureishighlyvariable,sincedifferentextractionandacidhydrolysisconditionssignificantlyaffecttheyieldofEA(Törrönen2009).EarlierstudiesreliedonthequantificationofreleasedEAanddidnotconsiderotherphenolicsformedduringhydrolysis,whichmayprovidehelpfulinformationonthechemicalstructureofETs.

    Forthispurposewedescribehowtoperformandinterpretanoptimizedhydrolyticprocedure(6hwith4MHCl),whichincludesquantificationofallthefourproductsofhydrolysisandprovidesaratio-naleforestimatingthemeandegreeofpolymerization(mDP)ofRubusETs.TheapproachdescribedbelowisessentiallyasreportedbyVrhovseket al.(2006),withsomeminorimprovementsintermsofquantification, inorder to includeall theproductsofhydrolysis in thecomputationof themDP.Thecompositionofeightblackberrysamplesisdiscussedasanexampleoftheapplicationofthismethod.Suchanapproachmayalsobeextendedtotheanalysisofhydrolyzable tanninsfromotherbotanicalsources,providedthatsufficientinformationontheirstructureisavailable(Koponenet al.2007).

    20.4.1 Procedure

    20.4.1.1  Standards and Solvents

    AllchromatographicsolventsshouldbeHPLCgrade:acetonitrile,methanol,diethylether,hexane,for-micacid,aceticacid,andhydrochloricacid.EAstandard(purity≥96%)andmethylgallatestandard(purity≥98%)arebothavailablefromFluka(Steinheim,Germany).Sanguisorbicacid(SA)andmethylsanguisorboate are not currently available, but their concentration can be estimated by applying theavailablemolarextinctioncoefficients(seeSection20.4.3).

    20.4.1.2  Sampling and Extraction of Polyphenols

    Freshlycollected samplesofblackberries (Rubus fruticosus) fromeightdifferentcultivarswerepro-duced under standardized conditions in the experimental fields of the Edmund Mach Foundation(Vrhovseket al.2008).PolyphenolswereextractedfromfreshlycollectedberriesfollowingthemethodofMattiviet al.(2002)inwhich60goffreshfruitarehomogenizedinamodel847-86Osterizerblenderatspeedonein250mLofacetone/watermixture(70/30v/v)for1min.Priortoextraction,thefruitandextractionsolutionshouldbecooledto4°Ctolimitenzymaticandchemicalreactions.Thecentrifugedextractscanbestoredat–20°Cuntilanalysis,conditionsunderwhichthecompositionremainsstableforafewmonths.

    20.4.1.3  Sample Preparation

    Analiquot (20mL) of the extract is evaporated to dryness in a 100mL pear-shaped flask by rotaryevaporationunderreducedpressureat40°C.Thesampleisthenbroughtbackto20mLwithmethanolimmediatelypriortoprocessing,duetothelimitedsolubilityofEAanditsderivatives.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 441

    20.4.1.4  Acid Hydrolysis

    A 6 h hydrolysis with 4M HCl at 85°C has been shown to provide the maximal yield for the fourhydrolysisproductsofRubusETsandhasalsobeenreportedtobeappropriateforstrawberryextracts(Vrhovseket al.2006;Mertzet al.2007).Inordertocarryoutacidhydrolysisin4MHCl,16.6mLof37%HClare added to the samplepreparedas aboveand themixture is thendiluted to50mLwithmethanol.Afterhydrolysis,thesampleisbroughtbacktoitsinitialvolume(50mL)withmethanol.Analiquot(10mL)isthenadjustedtopH2.5with5NNaOHanddilutedto20mLwithmethanol.Finally,an aliquot (2mL) is filtered with 0.22μm, 13mm polytetrafluoroethylene (PTFE) syringe-tip filters(Millipore,Bedford,MA)andtransferredintoLCvialsforHPLCanalysis.

    20.4.2 HPLC-DAD-ESI-MS Analysis

    20.4.2.1  HPLC-DAD Analysis

    HPLCanalysisbeforeandafterhydrolysiswascarriedoutaccordingtoVrhovseket al.(2006)usingaWaters2690HPLCsystemequippedwithWaters996DAD(WatersCorp.,Milford,MA),andEmpowerSoftware(Waters).Separationiscarriedoutusinga250×2.1mmi.d.,5μm,endcappedreversed-phasePurospherStarcolumn(Merck)and4×4mm,5μm,Purospherprecolumn.Thesolventsare:A(1%formicacidinwater)andB(acetonitrile).Thegradientsareasfollows:from0%to5%Bin10min,from5%to30%Bin30min.Thecolumnisthenwashedwith100%ofBfor2minandequilibratedfor5minpriortoeachanalysis.Theflowrateis0.8mL/min,theoventemperaturesetat40°C,andtheinjectionvolumeis10μL.EAand itsderivativesaredetectedandquantifiedbyUVdetectionat260nm.EA(RT=30.8min) is quantified following calibration with an EA standard (concentration range of10–200mg/L).Methylsanguisorboate(RT=34.6min)andfreeSA(RT=25.1min)arequantifiedfol-lowingcalibrationwiththepurestandardisolatedaccordingtoVrhovsekandco-workers(2006).Methylgallate(RT=21.8min)isquantifiedfollowingcalibrationwiththecorrespondingstandardcompoundwithintheconcentrationrange3–30mg/L.

    20.4.2.2  HPLC-ESI-MS Analysis

    DetailedcompoundidentificationwascarriedoutusingtheMicromassZQelectrosprayionization-massspectrometry(ESI-MS)system(Micromass,Manchester,UK).Themassspectrometry(MS)detectoroperatedatcapillaryvoltage3000V,extractorvoltage6V,sourcetemperature105°C,desolvationtem-perature200°C,conegasflow(N2)30L/h,anddesolvationgasflow(N2)450L/h.Theoutletof theHPLCsystemwassplit(9:1)totheESIinterfaceofthemassanalyzer.ESI-massspectrarangingfromm/z100to1500weretakeninnegativemodewithadwelltimeof0.1s.Theconevoltagewassetinscanmodeatthevaluesof20,40,and60V.TypicalionsfortheESI-MSdetectioninnegativemodeare:EA,molecularionatm/z301;SA,molecularionatm/z469andmainfragmentatm/z301;methylsanguisor-boate,molecularionatm/z483andmainfragmentsatm/z315andm/z301;andmethylgallate,molecu-larionatm/z183.

    20.4.3 Molar Extinction Coefficients

    Caremustbetakeninchoosingtheappropriatestandardandcomparingdataobtainedusingdifferentmethods.Herewesummarizeacomprehensivelistoftheexperimentalvaluesofthemolarextinctioncoefficients reported in the literature (Vrhovseket al.2006;Gasperotti et al.2010)andexpressedasM−1cm−1.

    20.4.3.1  Molar Extinction Coefficient at Maximal Absorption in Methanol

    In methanol, at maximal absorption, EA: ε254nm=40,704, ε365nm=8066; methyl sanguisorboate:ε254nm=58,543,ε371nm=13,022;methylgallate:ε274nm=11,818.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 442 Handbook of Analysis of Active Compounds in Functional Foods

    20.4.3.2  Molar Extinction Coefficient at 260 nm in Methanol

    In methanol, at 260nm, EA: ε260nm=32,099, sanguiin H-6: ε260nm=72,070, lambertianin C:ε260nm=104,344.

    20.4.3.3  Molar Extinction Coefficient for HPLC Analysis

    In the conditions suggested for HPLC analysis with UV detection (Section 20.4.2), the molarextinctioncoefficient isas follows:EA:ε260nm=35,822 (solvent:21%ofacetonitrile in1%formicacidinwater;v/v),methylsanguisorboate:ε260nm=45,114(23.9%ofacetonitrilein1%formicacidinwater;v/v).

    IntheslightlydifferentconditionssuggestedforHPLCanalysisbyGasperottiet al.(2010),wheretheseparationisadaptedtoaC18Lunacolumn(solvent:88%ofacetonitrileand12%of1%formicacidinwater;v/v):EA:ε260nm=28,266,sanguiinH-6:ε260nm=63,615,lambertianinC:ε260nm=95,744.

    20.4.4 UV Quantification

    Toencouragetheapplicationofthismethod,overcomingthelackofamethylsanguisorboatestandard,themolarabsorbivityofpurestandardsofmethylsanguisorboateandEA,measuredattheoptimalwave-length for UV detection in HPLC analysis, can be exploited. The ratio of the molar absorbivity atλ=260nmofmethylsanguisorboatevs.EAis1259.Thisvalueisinagreementwiththepresenceofthreeandtwogalloylunits inmethylsanguisorboateandEA,respectively,andhasbeenfoundtobeconsistent with the experimental response of the two compounds in the HPLC analysis conditionsreportedabove(Vrhovseket al.2006).

    20.4.5 Principle and Application of the Method

    20.4.5.1  Presence of ETs and EACs in Rubus Extracts

    The13structuresofRubusETsthusfardescribed(Gasperottiet al.2010)areinagreementwiththeassumptionthatRubusoligomericETscontainonlythesanguisorboyllinkingestergroup,besidesthewell-knownEAandgallicacidmoieties.AllknownRubusoligomericETsshareacommonstructure,originatinginC–Ooxidativecoupling.Morespecifically,thelinkingunitinRubusETscomesfromthedonationofgalloylhydroxyloxygentoformanetherlinkagetoanHHDPgroup,whichproducestheclassofGOD-typeETs (Okudaet  al. 2009).Blackberrieswere reported to containonaverage1080mg/kgofETsand200mg/kgofellagicacidconjugates(EACs).LambertianinC(Figure20.3)isthemainETinblackberries,withanaveragelambertianinC/sanguiinH-6ratioof1.7(range0.9–3.4).Itmustbeunderlinedthatbesidesthe13knownETs,Rubusextractscontainatleastfiveotherminorcompounds,whosestructuresarestillunknown(Gasperottiet al.2010).

    20.4.5.2  Four Products Are Obtained from ETs Using Acid Hydrolysis in Methanol

    ThepresenceofEAandoneortwounidentifiedcompoundswithabsorbancespectraverysimilartothatofEAafteracidhydrolysisofredraspberryandstrawberrysampleshasbeenreportedbysomeauthors(Rommel and Wrolstad 1993; Mattila and Kumpulainen 2002; Määttä-Riihinen et  al. 2004). Morerecently,Vrhovseket al.(2006)demonstratedtheformationofmethylgallate,methylsanguisorboate,andaminorunknownEAderivative,named“derivative1,”duringhydrolysis,inadditiontoEA.OnthebasisofUVandMSdataalreadyreported(Vrhovseket al.2006)andfurtherconfirmationbyaccurateMSandMS/MS,thelatterwasshowntobeSA.

    TheupdatedschemeofthereactionisshowninFigure20.3.OligomericETs,suchasintheexampleoflambertianinC,donotreleaseonlyellagicacidandmethylgallate.Alsothesanguisorboyllinkingestergroupsarehydrolyzed,yieldingmethylsanguisorboateasthemainproduct,onlyalimitedfraction

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 443

    ofsanguisorbicunitescapesesterificationandcanbefoundafterhydrolysisinitsfreeform.Fourcom-poundsarequantifiedbyHPLCafterthehydrolysis.

    20.4.5.3  Detailed Composition of Blackberries

    Table20.2givesthequantitativecompositionofeightblackberrysamples,analyzedusingtheHPLC-DADmethodofGasperottiet al.(2010).EAandETswerequantifiedusingUVdetectionat260nm.EA and its conjugates were quantified following calibration with EA standard. Sanguiin H-6 andlambertianin C were quantified following calibration with the pure standard, and other ETs werequantifiedasequivalentsofsanguiinH-6.Foreachknownstructure,Table20.2alsogivesthetheo-reticalnumberofthethreemoieties(ellagic,gallic,andSAs),thatshouldbereleasedfromcompletehydrolysis.

    20.4.5.4  Data Interpretation

    Undertheseconditions,theamountofEAmeasuredafterhydrolysisnotonlyderivesfromthebreak-downofETs,butalso includesfreeEAandtheproductof thehydrolysisofEAglycosides,usuallypresentinRubusextracts(Gasperottiet al.2010).TheinterferenceoffreeEAwiththeassaycanbeavoidedbyusingablankanalysisofthesamplebeforehydrolysis.However,thismakesitnecessarytodoublethenumberofHPLCanalysesandisthereforenotusuallyperformed.OtherEACs,suchasthemethyl-EAglycosides(i.e.,peaks25and26inTable20.2),areexpectedtoreleasethedifferentisomersofmethyl-EA,whichdonotinterferewiththeETestimate,sinceunderthesuggestedconditionstheyelute as separate peaks (two peaks with molecular ion at m/z 315 in the case of blackberries) aftermethylsanguisorboate.

    OH

    OH OH

    O

    OH

    OH OH OH OH

    OH

    O

    OH

    OH

    OH

    OHHO OH

    O

    OO

    OOO

    O

    O

    OH

    OH OH OH OH

    OH

    O

    O

    OH

    OH

    O

    OH

    OH

    OH

    OHHO OH

    O

    OOO

    OOO

    O

    O

    OH

    OH OH OH OH

    OH

    O

    O

    OH

    OH

    O

    OH

    OH

    OH

    OHHO OH

    O

    OOO

    OOO

    O

    O O

    OH

    OH

    O

    OO OH

    OH

    OOH

    OH

    O

    OO OH

    OH

    O

    O

    OH

    OH

    OO

    H3C

    OH

    OH

    O

    OO OH

    OH

    O

    O

    OH

    OH

    OO

    H

    OH

    OH OH

    OOCH3

    Lambertianin C(trimer)

    Ellagic acidMethyl

    sanguisorboateSanguisorbic acid

    (minor)

    Methyl gallate

    FIGURE 20.3 Updatedschemeforhydrolysis,whichaccountsforthepresenceofoligomers.Besidesellagicacidandmethylgallate,thesanguisorboyllinkingestergroupsarereleasedmainlyasmethylsanguisorboate.Alimitedfractionofsanguisorbicunitescapesesterificationandcanbefoundafterhydrolysisinitsfreeform.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 444 H

    andbook of Analysis of A

    ctive Com

    pounds in Functional F

    oods

    TABLE 20.2

    QuantificationofEllagitanninsandEllagicAcidConjugatesinBlackberries,Expressedinmg/kg,QuantifiedUsingtheDirectHPLC-DADMethodSuggested

    Cultivar 1 2 3 4 5 6 9 10 13 14 15 16 17 18 19Sanguiin

    H-2Lambertianin

    CSanguiin

    H-6 EA 25 26Total ETs

    Total EACs

    Apache 14.2 10.0 13.6 11.0 10.6 13.3 155.3 26.2 34.9 n.d. n.d. 36.2 163.1 n.d. 9.5 16.1 205.1 152.5 74.1 86.3 68.4 872 229

    Blacksatin 19.0 9.1 18.7 19.1 12.3 14.7 213.9 25.3 42.5 n.d. 9.0 16.7 222.4 10.4 12.8 18.0 353.0 324.9 45.6 75.6 n.d. 1342 121

    Cacak 13.9 10.2 17.9 n.d. n.d. 14.1 83.4 28.6 n.d. 10.2 n.d. 42.8 95.3 8.9 15.2 n.d. 671.7 256.2 61.9 96.9 53.3 1268 212

    Hulltornless 29.6 10.3 27.3 n.d. 10.1 17.5 99.5 20.5 28.7 n.d. 9.3 19.5 97.9 14.5 19.2 20.5 559.2 550.5 103.5 108.7 69.0 1534 281

    Kotata 16.8 9.7 24.2 n.d. n.d. 15.4 164.3 n.d. 24.8 n.d. n.d. n.d. 179.5 n.d. 11.1 n.d. 671.5 257.6 85.0 93.1 90.4 1375 269

    LochnessG 17.2 9.0 16.4 13.6 16.3 15.4 149.8 36.2 21.3 8.6 11.2 26.2 149.4 11.9 12.0 10.8 299.7 292.5 50.4 73.4 n.d. 1118 124

    Lochtay 15.7 10.6 21.8 n.d. n.d. 12.5 111.8 14.0 23.0 n.d. n.d. 18.1 132.5 9.5 13.3 10.9 756.1 354.4 68.3 102.2 79.2 1504 250

    Triplecrown 16.8 11.4 20.9 n.d. n.d. 11.5 81.8 30.0 n.d. 17.9 n.d. 57.1 91.2 9.2 14.8 10.9 615.7 279.4 72.7 115.4 39.3 1269 227

    Molecularsize 2 2 3 ? 2 3 ? 2 ? 3 ? ? 3 2 3 1 3 2 0 0 0

    n°ofellagicacidunits

    2 3 3 2 3 2 3 3 2 3 1 4 3 1 0 0

    n°ofgallicacidunits

    1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

    n°ofsanguisorbicacidunits

    1 1 2 1 2 1 3 2 2 2 1 2 1 0 0 0

    n°ofmethyl–ellagicunits

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

    Source: AdaptedfromGasperotti,M.et al.2010.J. Agric. Food Chem.58:4602–4616.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 445

    Itshouldbehighlightedthattheabsolutevaluesobtainedwiththetwoindependentmethods,thatis,indirectHPLC-DADmeasurementoftotalETsplusEACsafterhydrolysis,externallycalibratedwiththebuildingunits(EA,methylsanguisorboate,methylgallate,andSA)areonlycomparableintermsoftheorderofmagnitude,butdonotoverlapwiththemorepreciseHPLCdataobtainedseparatelyforETsandEACsusingthedirectquantificationmethod(Gasperottiet al.2010),wheresanguiinH-6andlam-bertianinCwereusedasexternalstandardfortheETs,andEAforEACs.Theindirectmethodwasreportedtohaveamuchlowerrepeatability,withCV%around12%forthetwomajorcompoundsand18% for theminor compounds (Vrhovsek et  al. 2008), and canbe considered as an acceptable andcheaperwayofprovidinganestimateofthetotalquantityofEAderivatives.

    20.4.5.5  Computation and Interpretation of mDP

    The simultaneous quantification of the four main hydrolytic products of Rubus ETs providesdirect measurementoftherelativemolarabundanceofthebuildingunitsofETs.Accordingtothemethod developed by Vrhovsek et  al. (2006), and also including the presence of free SA in theupdated method,theestimateofthemDPofRubusETscanbetheoreticallyderivedfromthemolarratiobetweenthesanguisorboylunits(methylsanguisorboateplusSA)andtheEAproducedinthereaction, R[MS+SA]/[EA]. The experimental value is highly reproducible, with a CV% of around 2%(Vrhovsek et  al. 2008). Taking into consideration the structure of the major known Rubus ETs(Gasperottiet al.2010),andassumingcompletehydrolysis,thisratioisexpectedtoincreasefrom0forthemonomers(galloyl-bis-HHDP-glucosides)uptoavalueof0.60fortetramericlambertianinD,with intermediate values for dimeric sanguiin H-6 and trimeric lambertianin C (Vrhovsek et  al.2006). For oligomeric compounds such as sanguiin H-6 and lambertianin C, which have beenshown toaccountfor67%(range41–83%)ofETsinblackberries(Gasperottiet al.2010),aswellasfor the other lambertianin oligomers, this ratio is expected to increase according to the equationR[MS+SA]/[EA]=(DP−1)/(DP+1).Inconclusion,thevalueofR[MS+SA]/[EA]canbeobtainedexperimen-tally from HPLC analysis of the hydrolytic products of raw Rubus extract and can be used forcomputation of the mDP of Rubus ETs, which can be derived from the following equation:mDP=(R[MS+SA]/[EA]+1)/(1–R[MS+SA]/[EA]).

    Table20.3givesanexampleofpracticalworkflow.FromtheexperimentalvaluesobtainedfromtheHPLCrunafterhydrolysis,expressedinmg/L,thedatacanbeconvertedintomg/kginordertogivetheconcentrationintheberriesandcanbeconvertedinmmol/L,whichareusedforthecomputationofRandmDP.

    TheapplicationofthismethodtotheeightraspberrysamplesinourexamplegivesanaveragemDPofca.1.9 (Table20.3).Thisvalue isslightlyhigher thanreported inaprevioussurvey(Vrhovseket al.2008),alsoduetotheinclusionofthecontributionoffreeSAintheupdatedformula.Thecorrectionisnotmajorsincethelatterisonaverageca.7timeslessconcentratedthanmethylsanguisorboate(lastcolumninTable20.3).AnmDPvaluecloseto2suggeststhatthesumofoligomerswithDP>2(suchastrimerlambertianinC),orwithalowercontentofEA(suchasthepeaksofdimers1,5,and10,aswellasofthetrimers3,6,17,and19inTable20.2)orwithahigherpresenceofSA(suchasthemonomersanguiinH-2,inadditiontothepeaksofdimer18andtrimer14inTable20.2)roughlybalancethesumofthemonomersandfreeEAintermsofconcentration.SucharesultisinacceptableagreementwiththedetailedHPLCdataofETsandEACsreportedinTable20.2.

    ItshouldbekeptinmindthatmDPcomputedaccordingtothismethodisestimated,whichcouldleadtomisleadingvalues ifdirectlyapplied tohydrolyzable tanninsofadifferentnature (Koponenet al.2007).However,sufficientdataareavailabletosupportitsapplicationtotheanalysisofETsinbotanicalspeciescharacterizedbythepresenceofGOD-typeETs,asinthecaseofRubus(e.g.,raspberries,black-berries,boysenberries),Sanguisorba,andstrawberrysamples.

    Aftercarefulcharacterizationofhydrolysisproducts,itcouldalsoinprinciplebeextendedtoothersourcesofETs,onceenoughstructuralinformationonthechemicalstructureofETsandtheproductsofdegradationisavailable.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 446 H

    andbook of Analysis of A

    ctive Com

    pounds in Functional F

    oods

    TABLE 20.3

    QuantificationofEllagitanninsandEllagicAcidConjugatesinBlackberries,QuantifiedUsingHPLC-DADafterAcidHydrolysis

    Met

    hylg

    alla

    te (

    mg/

    L)

    SA (

    mg/

    L)

    EA

    (m

    g/L

    )

    Met

    hyls

    angu

    isor

    boat

    e (m

    g/L

    )

    Met

    hylg

    alla

    te

    (mm

    ol/L

    )

    SA (

    mm

    ol/L

    )

    EA

    (m

    mol

    /L)

    Met

    hyls

    angu

    isor

    boat

    e (m

    mol

    /L)

    Met

    hylg

    alla

    te (

    mg/

    kg)

    SA (

    mg/

    kg)

    EA

    (m

    g/kg

    )

    Met

    hyls

    angu

    isor

    boat

    e (m

    g/kg

    )

    R =

    [M

    S +

    SA]/

    [EA

    ]

    mD

    P =

    (R

    + 1

    )/(1

    – R

    )

    Sum

    ET

    s m

    g/kg

    Rat

    io M

    S/SA

    6.5 5.0 138.3 62.7 0.035 0.011 0.457 0.129 27.0 20.7 576.0 261.3 0.306 1.882 901 12.3

    12.3 11.3 168.4 69.2 0.067 0.024 0.557 0.143 51.1 47.2 701.9 288.5 0.300 1.856 1130 5.9

    16.9 15.8 277.7 125.4 0.092 0.034 0.919 0.259 70.2 65.9 1156.9 522.6 0.318 1.934 1875 7.7

    16.6 16.4 287.6 121.1 0.090 0.035 0.952 0.250 69.3 68.5 1198.5 504.5 0.299 1.855 1903 7.2

    9.8 15.8 189.9 94.7 0.053 0.034 0.628 0.196 40.9 65.7 791.3 394.6 0.364 2.147 1352 5.8

    14.6 10.9 179.1 65.4 0.079 0.023 0.593 0.135 60.7 45.5 746.3 272.5 0.267 1.729 1165 5.8

    18.7 15.9 261.0 97.3 0.101 0.034 0.864 0.201 77.7 66.3 1087.7 405.4 0.272 1.746 1697 5.9

    20.9 26.7 295.4 135.5 0.113 0.057 0.977 0.280 87.0 111.3 1230.7 564.4 0.344 2.050 2097 4.9

    Note: FromtheexperimentalvaluesobtainedfromtheHPLCrunafterhydrolysisoftheextract,expressedinmg/L,thedatacanbeconvertedintommol/L,whichareusedforthecomputa-tionofRandmDP,andintomg/kginordertogivetheconcentrationintheberries.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 447

    20.5 HPLC-MS-MS Analysis

    To obtain information of the molecular masses of ETs and EA derivatives preliminarily detectedby HPLC-DAD,HPLC-ESI-MSanalysesofthecrudeextracts,orfractionsobtainedfromthem,canbecarriedout.However,thechromatographicconditionshavetobechangedastheacidcompositionofthemobilephaseforHPLC-MSanalysismustbemilderthanthoseforHPLC-DADanalysis,and0.1–0.4%formicacidshouldbeusedinstead(Salminenet al.1999).MSanalysisinthenegativemodeprovidesmoreinformationontheETandEAconjugatestructuresthanthoseinthepositivemode.

    FormostETs, it ispossible toobtainm/zvaluescorresponding to[M–H]−, [M–2H]2−,or [2M–H]−dependingonthemassofthecompound.Often,bothmonomericanddimericETsgivethesamem/zvalues, but the [M–H]− and the [M–2H]2− signals canbe separatedby their isotopicm/z values.For[M–H]−,theisotopicsignalsdifferin1m.u.,whileforthe[M–2H]2−,theisotopicdifferencesareonly0.5m.u.

    ETfragmentationisproducedbythesequentiallossesofgalloylresidues(m/z152,169,or170)andHHDP(hexahydroxydiphenic)residues(m/z301).ThegalloylunitsattachedtophenolichydroxylsofothergalloylmoleculesaremorecleavableinthenegativeESI-MSthanthegalloylunitsattacheddirectlytotheglucosecore(Salminenet al.1999).Thismeansthatinthefirstcase,lossesof152unitsarefoundintheMSspectrumwhileinthelastones,lossesof169or170unitsareobservedinstead.InthecaseofETscontainingcatechinmoieties,thecharacteristiccleavagereleasesanm/zof289fromtheflavan-3-olresidue.

    ForacyclicepimershavinghydroxylgroupsatC–1, theycanbedistinguishedbythelossofwater[M–H2O]− from the vescalagin-type ETs, while this is hardly observed from castalagin-type ETs(MoilanenandSalminen2008).

    ForETderivativeswithcatechins,itispossibletoshowtheplaceofsubstitution.Whencatechinisaddedtovescalagin-typeETs,asisthecaseofhippophaeninB,itislinkedatC-1oftheglucoseresidue,asthe[M–H2O]−signalisnotobservedandthe[M–catechin–H]−isobservedinstead.

    Inaddition, ithasbeenshownthat thecatechinadditiondidnotoccurat thecarboxyl(–COOH)group, since the MS data showed both the cleavage of catechin and carboxyl group[M–catechin–H–COOH]2−.

    CharacteristicMSfragmentationofvescalaginare:1103[M–H]−;1085[M–H2O–H]−;1041[M–H2O–COOH]−;529[M–H–COOH]2−;and520[M–H2O–H–COOH]2−.

    CharacteristicMSfragmentationofhippophaeninBare:1375[M–H]−;1085[M–catechin–H]−;687[M–2H]2−;665[M–H–COOH]2−;520[M–catechin–H–COOH]2−;and289[catechin–H]−.

    OligomericETscanbedetectedandcharacterizedbyLC/ESI-MS,byexaminationof themultich-argedions,andbylookingattheisotopicions(Karonenet al.2010).

    ForEAconjugates, themolecularmasses are easilyobserved in thenegativemodeof theHPLC-ESI-MSas[M–H]−pseudomolecularions(m/z463forEA-hexosides;m/z447forEA-rhamnosides,andm/z433forEA-pentosides),andthelossofthesugarresidue(M-162forhexosides,M-146forrhamno-sides,andM-132forpentosides)releasedtheEAmolecule(m/z301).

    Inaddition,HPLC-ESI-MSallowsthedetectionofEToligomers,dimersandtrimersbeingquitecom-mon(i.e.,oenotheinAandB,respectively),andevenhexamericandheptamericETshavebeenrecentlyevidenced(Karonenet al.2010).Fortheidentificationoftheseoligomers,theuseofhigh-resolutionMS,andtheanalysisoftheisotopicpatternsareessentialforthedetectionofthepentamers,hexamers,andheptamers(Karonenet al.2010).

    20.6 NMR Analysis

    20.6.1 Gallotannins

    Asfarasthegallotanninsareconcerned,moststudiesconcernthedetectionandidentificationofthesepolygalloylglucosesinvariousnaturalsources(e.g.,thetraditionalChineseherbGalla chinensis)using

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 448 Handbook of Analysis of Active Compounds in Functional Foods

    analyticaltechniques(Mueller-Harvey2001)suchasHPLC-MS(Salminenet al.1999;Tianet al.2009)orMALDI-TOFmassspectrometryprotocols(Xianget al.2007),orrelyingondegradationstudies,forexample,usingtannases(i.e.,galloylesterase)(Mingshuet al.2006)orperformingmildmethanolysisinmethanolicacetatebuffer(pH5.5)(Haslamet al.1961),followedbymassspectrometryanalysisoftheresidues.Severalgallotannins,fromhexa-uptotetradecagalloylglucoses,werethusobservedinsuchinvestigations,butnostructuraldeterminationofthedifferentisomerscouldbeachieved.Incontrast,puregallotannins,whichwereobtainedeitherthroughisolationfromnaturalsourcesorbyenzymaticor  chemical synthesis, could be successfully characterized by nuclear magnetic resonance (NMR)spectroscopy.

    20.6.1.1  Isolated Gallotannins

    In theearly1980s,Nishiokaandcoworkersreported the isolationofseveralpuregallotanninsfromvariousmedicinalplantextractssuchasRhus semialata(Chinesegall),Quercus infectoria(Turkishgall), Paeoniae albiflora (syn. P. lactiflora), and Moutan cortex (Nishizawa et  al. 1980a,b, 1982,1983a,b).Eachcomponentcouldbeseparatedfromtheplantextractaccordingtothedegreeofgalloyla-tionusingacombinationofSephadex®LH-20columnchromatographyandnormal-phaseHPLC.Thestructuresoftheresultingindividualgallotanninswerenextdeterminedmainlyby1Hand13CNMRspectroscopy.Thepositionofdigalloyldepsidemotifsontotheglucopyranosecorewasdeterminedbycomparisonofthe13CNMRchemicalshiftsrecordedinacetone-d6ofboththeglucosecarbonatomsand the carbonyl atoms of the galloyl groups with those of β-PGG. Typically, a downfield shift of0.4–0.6ppmisobservedforaglucosecarbonatomlinkedtoadigalloyldepside,whichisinaccordancewiththedifferencemeasuredbetweentheestermethylcarbonsofmethylmeta-digallateandmethylgallate (δ52.2and51.9ppm,respectively). Inaddition, thecarbonylcarbonsignalsof theproximaldepsidically linkedgalloylmoietieswereobservedat ca.0.6ppmupfield.These 13CNMRspectro-scopicanalysesallowedNishiokaandcoworkerstodemonstratethatthedigalloyldepsidemoietyofthehexagalloylglucoseisolatedfromtherootofPaenioae albiflora(i.e.,P. radix)andMoutan cortexwasattachedtotheC-6positionoftheglucopyranose(i.e.,1d),butthatofGalla chinensiswasrandomlydistributedamongtheC-2,C-3,andC-4positions(i.e.,1b,1a,and1c,respectively)(Nishizawaet al.1980a).Similar13CNMRspectraanalysisledtothestructuraldeterminationofsixheptagalloylgluco-ses, featuringeither twodigalloylgroups (i.e.,2a–e) orone trigalloylmotif (i.e.,2f), andevenoneoctagalloylglucosebearingthreedigalloylgroups(i.e.,3)(Figure20.4).Moreover,theinvestigationscarriedoutbyNishiokaandcoworkersalsorevealedthatthepreviouslyreportedmeta-depsidicdigal-loylunits(Fischer1914;Nierensteinet al.1925)areinfactequilibriummixturesofmeta-andpara-depsidically linked galloyl units resulting from intramolecular transesterification (Nishizawa et  al.1982).Thisconclusionwassupportedbytheanalysisandcomparisonof13CNMRspectra,runinace-tone-d6,ofpuregallotanninswiththoseofmethylmeta-andpara-digallate,notablybycarefullyexam-iningboththecarbonylandthearomaticregions.

    20.6.1.2  Enzymatically and Chemically Synthesized Gallotannins

    Withintheframeworkoftheirstudiesonthebiosynthesisofhydrolyzabletannins,Grossandcowork-ers intensively investigated enzymatic synthesis of gallotannins (Gross 1999, 2008; Niemetz andGross2005).Experimentscarriedoutin vitrowithcell-freeextractsfromleavesofstaghornsumac(Rhus typhina) and β-PGG as a standard acceptor substrate led to the isolation of β-glucogallin-dependentgalloyltransferases(NiemetzandGross2005;Gross2008).Itwasfoundthatnoneoftheseenzymesdisplayedhighsubstratespecificity,butsomeofthempreferentiallyacylatedβ-PGGtogivethe2-,3-,or4-O-depsidicdigalloylatedhexagalloylglucoses1a–c,whileotherspreferentiallycata-lyzed the galloylation of hexa- and heptagalloylglucoses to furnish, for example, 3-O-trigalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucopyranose (2f) and higher galloylated gallotannins (Figure 20.4).Structuraldeterminationof1a–cand2fwasaccomplishedmainlyby1HNMRspectroscopy,andfurthercomparisonwiththematerialsisolatedbytheNishiokagroup.The1HNMRspectrarecorded

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 449

    inacetone-d6werecomparedwiththatofβ-PGG,andmeta-depsidicdigalloylmoietiesweretypi-callydetectedfromthediagnosticappearanceofdoubletsforthearomaticprotonsoftheproximalgalloylgroup,insteadoftheinitiallyobservedsetoftwosinglets,astheresultofthedisymmetryintroducedbytheformationofthem-depsidiclink.Inaddition,thesesignalswereshiftedfromthe7.00–7.10ppm region (singlets) to significantlyhigherδ valuesof7.25–7.55ppm (Hofmann1996;Gross1999).Incontrast,thearomatichydrogensofnewlyintroduceddistalgalloylresiduesgener-allydisplayedtheexpectedsharpsingletsat7.10ppm(Hofmann1996;Gross1999).Itisworthnot-ingthatnoNMRevidenceofmeta/para-depsidicdigalloylequilibriummixtureswasreportedbytheGrossgroup.

    Tothebestofourknowledge,despiteafewchemicalstudiesondepsidemotifscarriedoutintheearly1900s (Fischer 1914; Nierenstein et  al. 1925), no total chemical synthesis of “complex” (or “true”)gallotannins,asopposedto“simple”gallotannins,thatis,theirmono-topentagalloylglucoseprecursors,hasbeenreportedthusfar.Thechemicalelaborationofmeta-depsidicdigalloylunitsacylatingaglucosecorehasbeenreportedonlybyRomaniandcoworkersintheirsynthesisofthe2,3-bis-O-digalloylglu-cose (Arapitsas et  al. 2007). They also showed that UV–visible spectra of compounds featuring them-depsidicdigalloylmoietydisplayacharacteristicshoulderat300nm(Arapitsaset al.2007).Inordertodeterminetheinfluenceofthegallotannindepsidiclinkonthebiologicalactivitiesofhydrolyzabletannins,Quideauandcoworkersrecentlyengagedeffortsinthetotalsynthesisofthehexagalloylglucose1a,theheptagalloylglucose2f,aswellasthedecagalloylglucose,referredtoas“tannicacid”andwhosecommercialsampleisknownfornotbeingastructurallywell-definedgallotanninbutratheracomplexmixture of various gallotannin species and derivatives thereof (Mueller-Harvey 2001; Romani et  al.2006).Fullcharacterizationofthechemicallypuresyntheticgallotannins1a,2f,andtannicacid(Figure20.5),aswellastheirα-anomericanalogs,wasaccomplishedby1Dand2DNMRexperiments(i.e.,1Hand13CNMR,COSYH–H,heteronuclearmultiplequantumcoherence,andheteronuclearmultiplebond

    OGG

    OGGOG

    OGGO

    GO O1d6

    GGOOG

    OGGO

    OG

    OO 1c1b 4

    GGOOG

    OGGO

    OG

    Hexagalloylglucoses

    O 1a

    3

    GOGO

    2OG

    OG

    OG

    OGOG

    OGGGGO

    GGG = trigalloyldepside

    OHOH

    OHO

    OO

    OH

    H

    OO

    O

    HO

    HO

    GO O2f

    GGO

    GG = digalloyldepside

    OGOGG

    OHOH

    OHO

    OO

    OH

    HO

    OHOH

    OHO

    GO

    OG

    OO 2c2b 4

    2 3GGO

    OGG

    OGG

    OGG

    OGG

    OGG

    OGG

    OG

    OG

    OG

    OG

    G = galloyl

    OG

    GO

    GGO

    GGO

    GO

    GO

    GOGO

    OG

    Heptagalloylglucoses

    Octagalloylglucoses

    O

    O

    O

    2a

    2d 2e

    3 3

    3

    6

    3

    3

    2

    6

    O

    2

    6

    2

    GGOGGO

    4

    OG

    OG

    FIGURE 20.4 Selectedexamplesofdepsidicdi-andtrigalloyl-containingglucoses.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 450 Handbook of Analysis of Active Compounds in Functional Foods

    coherence[HMBC])andmassspectrometricanalysis(Sylla2010).Themeta/para-depsidicequilibriumwasconfirmedby1Hand13CNMR,andcouldevenbeevaluatedasaca.2:1ratioby1HNMRspectro-scopicanalysis.

    20.6.2 Ellagitannins

    TheETsconstitutethesecondsubclassofhydrolyzabletannins,whichistodaycomposedofnearly1000membersthathavebeenidentifiedandfullycharacterizedfollowingtheirisolationfromvariousplants(HaslamandCai1994;QuideauandFeldman1996;Okudaet al.2009;Yoshidaet al.1992,2009).ThechiralityoftheircharacteristicHHDP(i.e.,6,6′-dicarbonyl-2,2′,3,3′,4,4′-hexahydroxybiphenyl)unitsisaconsequenceofthepreventionoffreerotationaroundtheirbiarylaxis,whichisimpededbythepresenceofthephenolichydroxylgroupsandtheglucose-esterifiedcarboxylgroupsortho-positionedrelativelytothatcarbon–carbonbondaxis(QuideauandFeldman;1996;KhanbabaeeandvanRee2001b).Thedeter-minationoftheconfiguration(RorS)ofthisaxialchiralityoratropisomerismisanessentialstepofthestructuralcharacterizationofETs(Figure20.6),togetherwiththedeterminationoftheregiochemistryofallgalloylandgalloyl-derivedunitsontheglucosecoreandthatofthestereochemistryattheanomericpositionofthelatter.

    20.6.2.1  Absolute Configuration of ET Axially Chiral Biaryl Groups

    Until1982, theaxialchiralityofETHHDPbiarylunitswasdeterminedbyachemicaldegradationprocedurebeginningwithamethylationstepusingdimethylsulfateandpotassiumcarbonate(Tanakaet al.1986;Yoshidaet al.2000).Thepermethylatedbiarylunitwasthencleavedfromtheglucopyra-nosecorebymethanolysisusingsodiummethoxideinmethanol.Thechiralityofthehexamethoxydi-phenic acid derivative thus released under its native atropisomeric form was then determined bycomparison with atropisomerically pure standards, the main drawback of this procedure being thedegradationofthesamples.

    However,since1982,amoresuitableandnondestructiveprocedurehasbeendevelopedusingcirculardichroismspectroscopytoestablishtheabsolutestereochemistryofHHDPunitslinkedtotheETglu-copyranosecore.Okudaet al.(1982a,b,1984)showedthattheCottoneffectsobservednear220–230and

    HO

    HO

    HO

    HO

    HO HO

    HO

    HO

    HO

    HO

    HO

    OH

    OH OH

    OH OH

    OH

    OH

    OH

    OH

    O O

    O

    O

    O

    OO

    O

    O

    O

    OO

    OO

    OO

    OO

    O O

    OO

    O

    O

    OO

    H

    Tannic acid(a decagalloylglucose)

    H

    H

    HH

    FIGURE 20.5 Structureoftannicacid.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 451

    250–260nm were correlated with the absolute configuration of the HHDP units. An (S)-configuredHHDPgroupischaracterizedbyapositiveandanegativeCottoneffectat220–230and250–260nm,respectively,whereasan(R)-configuredHHDPgroupexhibitsinsteadanegativeandapositiveeffectatthe same values, respectively. Similar Cotton effects are also observed in the case of other HHDP-derivedgroupssuchastheDHHDP,chebuloyl,andsanguisorboylgroups,aswellasfortheC-glucosidicETnonahydroxyterphenoyl(NHTP)group(Yoshidaet al.2000).Moreover,thischaracteristicCottoneffectisnotinfluencedbythepositionofthebiarylgrouporbythepresenceofgalloylgroupsontheglucopyranosecore,makingthisprocedureapplicabletoanyETs(Okudaet al.1982a,b).Interestingly,ETHHDPunitslinkedtothe2,3-or4,6-positionsofa4C1-glucopyranosecore,ortothe1,6-positionsofa1C4-glucopyranosecore,arepredominantly,andtoalargeextent,(S)-configured,whilethoselinkedtothe2,4-or3,6-positionsofa1C4-glucopyranosecoreareessentiallyalways(R)-configured(QuideauandFeldman1996;KhanbabaeeandvanRee2001b).

    20.6.2.2  Determination of the Position of ET Galloyl-Derived Acyl Units

    ProtonandcarbonNMRanalyses,togetherwithpartialhydrolysisproceduresundermildconditions,provideuseful structural informationonETs, such as thenature andnumberof galloyl andgalloyl-derivedacylgroupsesterifiedtotheglucopyranosecore(e.g.,galloyl,HHDP,DHHDP,sanguisorboylgroups).However,thecrucialstepinthestructuraldeterminationofmonomericoroligomericETistoestablishthepositionofeachacylgroup.Forthispurpose,2Dlong-rangeHMBCexperimentsprovideastraightforwardassignmentbyestablishingtwokeythree-bondcorrelations;onebetweentheestercar-bonylcarbonandanaromaticprotonoftheacylunit,andanotheronebetweenthesameestercarbonylcarbonandtheprotonontheglucopyranosepositionatwhichtheesterbondisconnected,asshownonthepunicalaginstructureinFigure20.7.

    20.6.2.3  Determination of the Absolute Configuration of the Anomeric Carbon

    ThedeterminationoftheabsoluteconfigurationattheanomericpositionoftheglucopyranosecoreisanotherimportantpointinthestructuralelucidationofETs,especiallysinceinsomecasesbothα-andβ-anomercanbe insolvent-dependentequilibrium, like in thecaseofpunicalagin (Figure20.7) (Luet al.2008).Furthermore,insomedimericETs,forexample,eachglucopyranosemoietycanpossessananomericcenterwithadifferentconfiguration.Forexample,insanguiinH-6,theglucosemoiety“1”displaysaβ-configurationatthatlocus(i.e.,equatorialorientationofthesanguisorboylgroup),whereastheglucose“2”showsanα-configuration(Figure20.8)(Tanakaet al.1985;Gasperottietal.,2010;Koolet al.2010).

    OH

    OHOO (S)-chebuloyl

    OO

    HH

    HOHOOCOH

    OHOH(S)-HHDP

    OO

    HO HO

    HOOH

    OHOH(R)-HHDP

    OO

    HO HO

    HO

    OHOH

    OH

    OHOH(S)-sanguisorboyl

    OO

    O

    O

    HO HO

    HO O

    OH

    OH

    OHOH

    OH(S)-DHHDP

    O

    O

    H

    OO

    O

    O

    H

    O

    HO

    HOHO

    HO

    HO

    FIGURE 20.6 Structureofthe(R)-HHPD,(S)-HHPD,(S)-chebuloyl,(S)-DHHPD,and(S)-sanguisorboylunits.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 452 Handbook of Analysis of Active Compounds in Functional Foods

    Thestereochemistryattheanomericpositioncanbeeasilydeterminedbymeasuring,onthe1HNMRspectrum,thecouplingconstantbetweentheanomericprotonH-1andtheadjacentprotonH-2.Alargecouplingconstant(JH-1,H-2>5Hz)generallyindicatesaβ-glucosidicconfiguration(i.e.,substituentwithanequatorialorientation),whereasasmallcouplingconstant(JH-1,H-2≈0–5Hz)indicatesanα-glucosidicconfiguration(i.e.,substituentwithanaxialorientation).Thepresenceorabsenceofagalloylorgalloyl-derivedacylgroupat theanomericpositionhasonlyaminorinfluenceonthevalueof thisH-1,H-2couplingconstant(Table20.4).Moreover,thechemicalshiftoftheanomericprotonH-1ofanα-anomerusuallypresentsalower-fieldshiftcomparedtothatofthecorrespondingβ-anomer(Hatanoet al.1988).ThesedifferencesarealsoobservedinoligomericellagitanninssuchasthedimersSanguiinH-6andrubusuarinB,andinthetrimerslambertianinCandrubussuarinC(Gaspertottietal.,2010).Incontrast,thechemicalshiftsoftheglucopyranosiccarbonsC-1,C-2,C-3,andC-5ofanα-anomerareup-fieldedcomparedtothoseofitscorrespondingβ-anomer.Forexample,thechemicalshiftsofthecarbonsC-1,C-2,C-3,andC-5oftheα-punicalagin(i.e.,withanaxiallyorientedhydroxylgroupattheanomericposition)areshiftedupfieldby4.2,1.9,2.4,and4.8ppm,respectively,comparedwiththecorrespondingsignalsoftheβ-punicalagin(Tanakaet al.1986).

    OH

    OH

    OHOH

    OHO O

    OO

    O

    O

    O O

    O

    O 123

    54

    6

    OO

    O

    H

    H

    HH

    HH

    H

    A

    B

    C

    D

    F

    E

    OH

    OHOH

    HOHO

    HOPunicalagin

    HO

    HO HOHO

    HO

    HO

    FIGURE 20.7 Structureofpunicalagin.

    OHHO

    HO

    HO

    HO

    HO HO

    HO

    HO

    OHOH

    OH

    OH

    OHOH

    OH

    OH

    OH

    OH

    Glucose 2

    Glucose 1

    Sanguiin H-6OO

    OO

    O

    O

    OO O

    OO

    O

    OOO

    O

    OOO

    OOO

    O

    HO

    HO

    HOHO

    HO

    HO

    HO

    HO

    HO

    FIGURE 20.8 StructureofsanguiinH-6.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 453

    20.6.2.4  About the C-Glucosidic Ellagitannins

    TheC-glucosidicETsconstituteanimportantsubclassofETswiththestructuralparticularityofhavingahighlycharacteristicC–ClinkagebetweenthecarbonC-1ofanopen-chainglucosecoreandthecar-bonC-2oftheO-2galloyl-derivedmoietyofa2,3,5-NHTPunit(alsoknownastheflavogalloylgroup),suchasinvescalaginandcastalagin.ThischaracteristicC–Clinkageonanopen-chainglucosecorecanalsooccurwitha2,3-HHDPunit,suchasincasuarininandstachyurin(Figure20.9).VescalaginanditsC-1epimercastalaginwerethefirstmembersofthisETsubclasstobeisolatedfromCastanea(chestnut)andQuercus(oak)speciesin1971(Mayeret al.1967,1969,1971).However,theirstructures,aswellasthoseofstachyurinandcasuarinin(Okudaet al.1981,1982c,1983),werefullydeterminedmuchlaterwhenNishioka’sgrouprevisedtheassignmentoftheconfigurationattheC-1positionofallC-glucosidicETs(Nonakaet al.1990).ThisstructuralrevisionwasbasedontheobservationofspatialcorrelationsbetweentheprotonsH-1andH-3byNuclearOverhauserEffectSpectroscopy(NOESY)inthecorre-spondingspectraofvescalaginandstachyurin.Thesecorrelationsarenotobservedforcastalaginandcasuarinin, forwhichtheseprotonsH-1andH-3areorientedtowardadifferentsideof themolecule(Figure20.9).Furthermore,theobservationofsuchdiagnosticcross-peaksonthe2DNOESYspectraof

    TABLE 20.4

    ChemicalShiftandCouplingConstant(JH-1,H-2)oftheAnomericProtonH-1

    α-Anomer β-Anomer

    GeminDa 5.31(d,J=4.0Hz) 4.78(d,J=7.5Hz)TellimagrandinIa 5.57(d,J=4.0Hz) 5.13(d,J=8.0Hz)Pedunculagina 5.50(d,J=3.5Hz) 5.09(d,J=8.0Hz)Punicalaginb 5.34(d,J=3.5Hz) 5.01(d,J=8.0Hz)(see

    casuarictin)Potentillinc 6.63(d,J=4.0Hz)(seepotentillin)Casuarictinc 6.22(d,J=9.0Hz)

    SanguiinH-6d 6.50(d,J=3.5Hz)(glucose2) 6.01(d,J=8.5Hz)(glucose1)

    a Hatanoet al.(1988).b Tanakaet al.(1986).c Okudaet al.(1984).d Koolet al.(2010).

    OH

    OHHO

    HO

    HO

    HO

    HO

    HO

    HO

    HOHO

    HO

    Castalagin: R1 = H, R2 = OHVescalagin: R1 = OH, R2 = H

    Casuarinin: R1 = H, R2 = OHStachyurin: R1 = OH, R2 = H

    OHOH

    OO

    OO

    O

    O

    OO

    O

    OH 2

    3 1456

    R2R1

    OH

    OH

    OHHO

    HO

    HO

    HO

    HO

    HO

    HO

    HO

    O

    HOOH

    OHOH

    OO

    OOO

    OO

    O

    OH 2

    3 1456

    R2R1

    OH

    FIGURE 20.9 Structures of main monomeric C-glycosidic ellagitannins vescalagin, castalagin, casuarinin, andstachyurin.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 454 Handbook of Analysis of Active Compounds in Functional Foods

    vescalaginandstachyurinwasconfirmedby1DNuclearOverhauserEffect(NOE)experiments.TheseNMRexperimentsunambiguouslyestablished thatbothprotonsH-1andH-3areα-oriented (R2=H);thustheC-1hydroxylgroupsofvescalaginandstachyurinareβ-oriented(Figure20.9).

    However,NOESYandNOEexperimentsarenotabsolutelyrequiredfordeterminingthestereochem-istryattheC-1positionofC-glucosidicETs.Infact,thisstereochemistrycanalsobeeasilyestablishedfromthevalueofthecouplingconstantbetweentheprotonH-1andtheprotonH-2.AsfirstreportedbyNishioka’sgroup,aratherlargeH-1,H-2couplingconstant(JH-1,H-2>4Hz)indicatesanα-orientationoftheC-1 substituent, like in thecaseofcastalaginandcasuarinin,whereasa small couplingconstant(JH-1,H-2≈ 0–2Hz)correspondstoaβ-orientedsubstituent,likeinthecaseofvescalaginandstachyurin(Nonakaet al.1990).

    20.6.2.5  About the Flavano-Ellagitannins

    TheC-glucosidicETssubclassalsoincludestheflavano-ETs(alsoknownascomplextannins),whicharehybridentitiescomposedofaC-glucosidicETmoietyderived,forexample,fromvescalaginorstachyu-rin, andaflavanoidmoiety (e.g.,flavan-3-ols,procyanidines, andanthocyanins). In theseflavano-EThybrids,thetwomoietiesareconnectedviaC–ClinkagebetweenthecarbonC-1oftheC-glucosidicETandthecarbonC-8orC-6oftheAringoftheflavanoid.Dependingonthenatureofeachmoiety,thesecomplextanninspresentalargediversityofstructuressuchasthecatechin-basedstenophyllaninsA/B(Nonakaet al.1985)andacutissiminsA/B(Ishimaruet al.1987)ortheepicatechin-basedcamelliatan-ninsA,B,andF,andmalabathrinsAandE(Hatanoet al.1991;Okudaet al.2009;Yoshidaet al.2009).Moreover,thesecomplextanninscanbefurthertransformedbyoxidativemeanstogeneratedifferenttypesofderivativessuchasthemongolicainsA/B(Nonakaet al.1988),whichcontainao,m-hydroxy-phenylcyclopentenonemotif (alsoknownas thedihydrofurangroup).Recently,new typesofcoloredflavano-ETs,namedanthocyano-ETs,wereobtainedbyhemisynthesis in aqueousacidicmedia fromvescalaginandtheanthocyaninoeninoritsmalvidinaglycone(Quideauet al.2005;Jourdeset al.2009;Chassainget al.2010).Allof theisolatedandcharacterizedflavano-ETstodatepresentaβ-orientedlinkagebetweentheflavanoidunitandtheC-glucosidicETmoiety.Theseβ-configurationsweredeter-mined by the observation of a small coupling constant between the proton H-1 and the proton H-2(JH-1,H-2≈0–2Hz).SuchastereoselectivitywasrecentlyrationalizedthroughmolecularmodelingstudiesbytheQuideaugroup(Quideauet al.2003,2005).

    AfterhavingcharacterizedtheC-glucosidicETmoietyusingsomeofthestrategieshighlightedabove,thecrucialelementofthestructuralelucidationofaflavano-ETstructureistoestablishbywhichAringcarbon (C-8′ or C-6′) the flavanoid unit is connected to the carbon C-1 of the C-glucosidic ET unit(Okudaet al.2009;Yoshidaet al.2009).Thisconnectivitycanbeestablishedbytheobservationoftwo-andthree-bondHMBCcorrelationsbetweenprotonH-1andcarbonsC-7′,C-8′,andC-8′ainthecaseofaC-8′/C-1linkage,whereasaC-6′-linkedflavanoidunitwillshowcorrelationsbetweenprotonH-1andcarbonsC-5′,C-6′,andC-7′(Figure20.10)(Jourdeset al.2009;Quideauet al.2003,2005).Moreover,inorder to establish this connectivity unambiguously, the HMBC data can be supported by those ofRotational Nuclear Overhauser Effect Spectroscopy (ROESY) experiments that reveal, for example,through-spaceconnectivitiesbetweentheprotonH-2′andH-6′oftheB-ringoftheflavanoidunitandtheprotonH-1,H-2,andH-3oftheC-glucosidicETunit.Suchspatialcorrelationsareonlypossibleinthecase of the C-8′/C-1 linkage between the flavanoid and C-glucosidic ET units (Figure 20.10). SuchROESYexperimentswereusedtoconfirmthestructureofthecamelliatanninsAandB(Hatanoet al.1991),aswellasthatofthehemisynthesizedanthocyano-ETs(Chassainget al.2010).

    Hatanoet al.(1995)alsousedadifferentstrategytoestablishtheconnectivitybetweenanepicatechinunitandaC-glucosidicETunit(i.e.,5-O-desgalloylstachyurin-derivedunit)inthecaseofthecamellia-tanninsCandEisolatedfromCamellia japonicaleaves(Figure20.11).Aftermethylationofallphenolichydroxylgroupsusingdimethyl sulfate andpotassiumcarbonate in acetone,NOEexperimentswereperformedbysuccessivelyirradiatingtheflavanoidA-ringmethoxygroupsatpositionsO-5′andO-7′.TheseexperimentsrevealedthatforcamelliatanninEinwhichtheepicatechinunitisconnectedbyitsC-8′centertothe5-O-desgalloylstachyurin-derivedunit,theirradiationofbothmethoxygroupsatO-5′andO-7′resultsinNOEsignalswiththeA-ringaromaticprotonH-6′(Hatanoet al.1995).Incontrast,

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 455

    inthecaseofcamelliatanninC,onlytheirradiationofthemethoxygroupatO-7′gaveanNOEsignalwithanA-ringaromaticproton(i.e.,H-8′),thusestablishingthattheepicatechinunitislinkedtothecarbonC-1oftheC-glucosidicETunitbyitsA-ringcarbonC-6′(Figure20.11).

    ACKNOWLEDGMENTSWearegratefultoUrskaVrhovsek,DomenicoMasuero,andMattiaGasperottifortheircollaborationinthisresearch,andtoLaraGiongoandMarcellaGrisentiforprovidingtheblackberrysamples.ThisworkhasbeensupportedbytheSpanishMICINN(ConsoliderIngenio2010-Fun-C-FoodCSD2007-0063)andFundaciónSenecadelaRegiondeMurcia(grupodeexcelenciaGERM06,04486).PilarTruchadoholdsaPhDgrantfromtheSenecaFoundation(Murcia,Spain).StéphaneQuideaualsowishestothanktheConseil InterprofessionnelduVindeBordeauxandtheConseilRégionald’Aquitaine(Bordeaux,France)fortheirfinancialsupportofhisteam’sresearchonhydrolyzabletannins.

    Camelliatannin C: R = HHexadeca-O-methylcamelliatannin C: R = Me

    Camelliatannin E: R = HHexadeca-O-methylcamelliatannin E: R = Me

    O

    ROORRO

    O

    OROR

    OR

    OO

    OO

    OR

    OO

    ORRO

    RO

    OR

    RO

    HO OR

    O

    OH

    OR

    RO

    HOH

    HH

    A

    C

    B

    8' 6'

    5'

    7'

    OR

    O

    ROORRO

    O

    OROR

    OR

    OO

    OO

    OR

    OO

    ORRO

    RO

    OR

    RO

    HO

    HOH

    H

    O

    OR

    OR

    OHOR

    ROH

    AC

    B8'

    6' 5'

    7'

    FIGURE 20.11 StructuresofcamelliatanninsCandE,aswellastheirpolymethylatedderivativeshexadeca-O-methyl-camelliatanninsCandE.

    Camelliatannin A 1-Deoxyvescalagin-(1β → 8)-oenin: R = β-D-glucose

    OO

    OO

    OH

    OHOH

    O

    HO

    OO

    OHHO

    HO

    HO

    HO

    HO

    OH

    O

    OHHO

    OH

    O

    OH

    OH

    HO

    18'

    HO

    H

    H

    H2

    345

    6

    H A

    C

    B

    6'

    5'

    7'

    8'a

    6"

    2"

    OO

    OO

    OH

    OHOH

    O

    HO

    OO

    OHHO

    HO

    HO

    HO

    O

    HO

    O O

    OHHO

    HO

    HO

    HO

    OH

    O

    OR

    OH

    OMeHO

    MeO

    12

    345

    6

    H

    H

    HH

    +

    8' 6'

    5'

    7'

    8'a

    6"

    2"H2'

    A

    C

    B

    FIGURE 20.10 StructuresofcamelliatanninAand1-deoxyvescalagin-(1β→8)-oenin.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 456 Handbook of Analysis of Active Compounds in Functional Foods

    REFERENCESArapitsas,P.,Menichetti,S.,Vincieri,F.F.et al.2007.Hydrolyzabletanninswiththehexahydroxydiphenoyl

    unitandthem-depsidiclink:HPLC-DAD-MSidentificationandmodelsynthesis.J. Agric. Food Chem.55:48–55.

    Blomhoff,R.,Carlsen,M.H.,Andersen,L.F.et al.2006.Healthbenefitsofnuts:Potentialroleofantioxidants.Brit. J. Nut.96:S52–S60.

    Cantos,E.,Espín,J.C.,López-Bote,C.et al.2003.Phenoliccompoundsandfattyacidsfromacrons(Quercusspp.),themaindietaryconstituentoffree-rangedIberianpigs.J. Agric. Food Chem.51:6248–6255.

    Chassaing,S.,Lefeuvre,D.,Jacquet,R.et al.2010.Physiochemicalstudiesofnewanthocyano-ellagitanninhybridpigments:AbouttheoriginoftheinfluenceofoakC-glycosidicellagitanninsonwinecolor.Eur. J. Org. Chem.2010:55–63.

    Clifford,M.N.andScalbert,A.2000.Ellagitannins—Nature,occurrenceanddietaryburden.J. Sci. Food Agric.80:1118–1125.

    Feldman,K.S.2005.Recentprogressinellagitanninchemistry.Phytochemistry66:1984–2000.Ferreres,F.,Andrade,P.,Gil,M.I.et al.1996.Floralnectarphenolicsasbiochemicalmarkersforthebotanical

    originofheatherhoney.Z. Leb-Unt. Forsch.202:40–44.Fischer,E.1914.Synthesisofdepsides,lichen-substancesandtannins.J. Am. Chem. Soc.36:1170–1201.Fukuda, T., Ito, H., and Yoshida, T. 2003. Antioxidative polyphenols from walnuts (Juglans regia L.).

    Phytochemistry63:795–801.Gasperotti,M.,Masuero,D.,Vrhovsek,U.et al.2010.ProfilingandaccuratequantificationofRubusellagitan-

    ninsandellagicacidconjugatesusingdirectUPLC-Q-TOFHDMSandHPLC-DADAnalysis.J. Agric. Food Chem.58:4602–4616.

    Gil,M.I.,Tomás-Barberán,F.A.,Hess-Pierce,B.et al.2000.Antioxidantactivityofpomegranatejuiceanditsrelationshipwithphenoliccompositionandprocessing.J. Agric. Food Chem.48:4581–4589.

    Glabasnia,A.andHofmann,T.2006.Sensorydirectedidentificationoftaste-activeellagitanninsinAmerican(Quercus albaL.)andEuropeanoakwood(Quercus roburL.)andquantitativeanalysisinbourbonwhis-keyandoak-maturedredwines.J. Agric. Food Chem.54:3380–3390.

    González-Barrio,R.,Truchado,P.,Ito,H.et al.2011.UVandMSidentificationofurolithinsandnasutins,thebioavailablemetabolitesofellagitanninsandellagicacidindifferentmammals.J. Agric. Food. Chem.59:1152–1162.

    Gross,G.G.1999.Biosynthesisofhydrolyzabletannins.InB.M.Pinto(ed),Comprehensive Natural Products Chemistry,Vol.3,pp.799–826.Oxford:Pergamon.

    Gross,G.G.2008.Fromlignins to tannins:Fortyyearsofenzymestudieson thebiosynthesisofphenoliccompounds.Phytochemistry69:3018–3031.

    Hannum,S.M.2004.Potentialimpactofstrawberriesonhumanhealth:Areviewofthescience.Crit. Rev. Food Sci. Nut.44:1–17.

    Haslam,E.,Haworth,R.D.,Mill,S.D.et al.1961.Gallotannins.PartII.Someestersanddepsidesofgallicacid.J. Chem. Soc.1961:1836–1842.

    Haslam,E.andCai,Y.1994.Plantpolyphenols(vegetabletannins):Gallicacidmetabolism.Nat. Prod. Rep.11:41–66.

    Hatano,T.,Yoshida,T.,Shingu,T.et al.1988.13CNuclearmagneticresonancespectraofhydrolyzabletannins.II.Tanninsforminganomermixtures.Chem. Pharm. Bull.36:2925–2933.

    Hatano,T.,Shida,S.,Han,L.et al.1991.Tanninsoftheaceousplants.III.CamelliatanninsAandB,twonewcomplextanninsfromCamellia japonicaL.Chem. Pharm. Bull.39:876–880.

    Hatano, T., Han, L., Taniguchi, S. et  al. 1995. Tannins and related polyphenols of theaceous plants.VIII.CamelliatanninsCandE,newcomplextanninsfromCamellia japonicaleaves.Chem. Pharm. Bull.43:1629–1633.

    Hofmann,A.S.1996.PhDthesis,UniversityofUlm,Germany.Ishimaru,K.,Nonaka,G.-I.,andNishioka,I.1987.Tanninsandrelatedcompounds.LV.Isolationandcharac-

    terisationofacutissiminsAandB,noveltanninsfromQuercusandCastaneaspecies.Chem. Pharm. Bull.35:602–610.

    Jourdes,M.,Lefeuvre,D.,andQuideau,S.2009.C-Glycosidicellagitanninsandtheirinfluenceonwinechem-istry.InS.Quideau(ed),Chemistry and Biology of Ellagitannins. An Underestimated Class of Bioactive Plant Polyphenols,pp.320–365.Singapore:WorldScientificPublishing.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 457

    Karonen,M.,Parker,J.,Agrawal,A.et al.2010.Firstevidenceofhexamericandheptamericellagitanninsinplantsdetectedbyliquidchromatography/electrosprayionizationmassspectrometry.Rapid Com. Mass Spec.24:3151–3156.

    Khanbabaee,K.andvanRee,T.2001a.Tannins:Classificationanddefinition.Nat. Prod. Rep.18:641–649.Khanbabaee, K. and van Ree, T. 2001b. Strategies for the synthesis of ellagitannins. Synthesis 2001:

    1585–1610.Kool,M.,Comeskey,D.,Cooney,J.,andMcGhie,T.2010.Structuralidentificationofthemainellagitannins

    ofaboysenberry(Rubus loganbaccus×baileyanusBritt.)extractbyLC-ESI-MS/MS,MALDI-TOF-MSandNMRspectroscopy.Food Chem.119:1535–1543.

    Koponen,J.M.,Happonen,A.M.,Mattila,P.H.et al.2007.ContentsofanthocyaninsandellagitanninsinselectedfoodsconsumedinFinland.J. Agric. Food Chem.55:1612–1619.

    Larrosa,M.,Tomás-Barberán,F.A.,andEspín,J.C.2006.ThedietaryhydrolysabletanninpunicalaginreleasesellagicacidthatinducesapoptosisinhumancolonadenocarcinomaCaco-2cellsbyusingthemitochon-drialpathway.J. Nut. Biochem.17:611–625.

    Lee,J.H.,Johnson,J.V.,andTalcott,S.T.2005.Identificationofellagicacidconjugatesandotherpolypheno-licsinmuscadinegrapesbyHPLC-ESI-MS.J. Agric. Food Chem.53:6003–6010.

    Lu,J.,Ding,K.,andYuan,Q.2008.Determinationofpunicalaginisomersinpomegranatehusk.Chromatographia68:303–306.

    Määttä-Riihinen,K.R.,Kamal-Eldin,A.,andTörrönen,A.R.2004.Identificationandquantificationofpheno-liccompoundsinberriesofFragariaandRubusspecies(familyRosaceae).J. Agric. Food Chem.52:6178–6187.

    Mattila,P.andKumpulainenJ.2002.Determinationoffreeandtotalphenolicacidsinplant-derivedfoodsbyHPLCwithdiode-arraydetection.J. Agric. Food Chem.50:3660–3667.

    Mattivi,F.,Tonon,D.,andSanchez,C.2002.Gliantiossidantipolifenolicitotali.Laboratorio 20003:46–56.Mayer,W.,Gabler,W.,Riester,A.et al.1967.ÜberdieGerbstoffeausdemHolzderEdelkastanieundder

    Eiche,II.DieIsolierungvonCastalagin,Vescalagin,CastalinundVescalin.Liebigs Ann. Chem.707:177–181.

    Mayer,W.,Seitz,H.,andJochims,J.C.1969.ÜberdieGerbstoffeausdemHolzderEdelkastanieundderEiche,IV.DieStrukturdesCastalagins.Liebigs Ann. Chem.721:186–193.

    Mayer,W.,Seitz,H.,Jochims,J.C.et al.1971.ÜberdieGerbstoffeausdemHolzderEdelkastanieundderEiche,VI.StrukturdesVescalagins.Liebigs Ann. Chem.751:60–68.

    Mertz,C.,Cheynier,V.,Gunata,Z.et al.2007.Analysisofphenoliccompounds in twoblackberryspecies(Rubus glaucus and Rubus adenotrichus) by High-Performance Liquid Chromatography with DiodeArrayDetectionandElectrosprayIonTrapMassSpectrometry.J. Agric. Food Chem.55:8616–8624.

    Mingshu,L.,Kai,Y.,Qiang,H.et al.2006.Biodegradationofgallotanninsandellagitannins.J. Basic Microbiol.46:68–84.

    Moilanen,J.andSalminen,J.P.2008.CharacterisationofplantellagitanninsbyHPLC-DAD/ESI-MS.XXIVthInternationalConferenceonPolyphenols,Salamanca,Spain.July2008.

    Mueller-Harvey,I.2001.Analysisofhydrolysabletannins.Anim. Feed Sci. Technol.91:3–20.Niemetz,R.andGross,G.G.2005.Enzymologyofgallotanninandellagitanninbiosynthesis.Phytochemistry

    66:2001–2011.Nierenstein,M.,Spiers,C.W.,andHatcher,P.R.1925.Gallotannins.XIII.Theidentityofdigallicacidfrom

    gallotanninwithsyntheticmeta-digallicacid.J. Am. Chem. Soc.47:846–850.Nishizawa,M.,Yamagishi,T.,Nonaka,G.-i.et al.1980a.Gallotanninsincrudedrugs—Structure,distribution

    andactivity.In23rd Symposium on the Chemistry of Natural Products,Nagoya,514–521.Nishizawa,M.,Yamagishi,T.,Nonaka,G.-i.et al.1980b.StructureofgallotanninsinPaeoniae radix. Chem.

    Pharm. Bull.28:2850–2852.Nishizawa,M.,Yamagishi,T.,Nonaka,G.-i.et al.1982.Tanninsandrelatedcompounds.Part5.Isolationand

    characterization of polygalloylglucoses from Chinese gallotannin. J. Chem. Soc., Perkin Trans. 1:2963–2968.

    Nishizawa,M.,Yamagishi,T.,Nonaka,G.-i.et al.1983a.Tanninsandrelatedcompounds.Part9.IsolationandcharacterizationofpolygalloylglucosesfromTurkishgalls.J. Chem. Soc., Perkin Trans.1:961–965.

    Nishizawa,M.,Yamagishi,T.,Nonaka,G.-i.et al.1983b.Tanninsandrelatedcompounds.XII.IsolationandcharacterizationofgalloylglucosesfromPaeoniae radixandtheireffectonurea-nitrogenconcentrationinratserum.Chem. Pharm. Bull. 1983:2593–2600.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 458 Handbook of Analysis of Active Compounds in Functional Foods

    Nonaka,G.-i.,Nishimura,H.,andNishioka,I.1985.Tanninsandrelatedcompounds.Part26.IsolationandstructureofstenophyllaninsA,BandCnoveltanninsfromQuercus stenophylla. J. Chem. Soc., Perkin Trans.1:163–172.

    Nonaka,G.-i.,Ishimaru,K.,Mihashi,K.et al.1988.Tanninsandrelatedcompounds.LXIII.IsolationandcharacterizationofmongolicainsAandB,noveltanninsfromQuercusandCastanopsisspecies.Chem. Pharm. Bull.36:857–869.

    Nonaka,G.-i.,Sakai,T.,Tanaka,T.et al.1990.Tanninsandrelatedcoumponds.XCVII.StructurerevisionofC-glycosidic ellagitannins castalagin, vescalagin, casuarinin and stachyurin and related hydrolysabletannins.Chem. Pharm. Bull.38:2151–2156.

    Okuda,T.,Yoshida,T.,andAshida,M.1981.Casuarictinandcasuarinnin,twonewellagitanninsfromCasuarina stricta. Heterocycles16:1681–1685.

    Okuda,T.,Yoshida,T.,Hatano,T.et al.1982a.Circulardichroismofhydrolysabletannins.I.Ellagitanninsandgallotannins.Tetrahedron Lett.23:3937–3940.

    Okuda, T., Yoshida, T., Hatano, T. et  al. 1982b. Circular dichroism of hydrolysable tannins. II.Dehydroellagitannins.Tetrahedron Lett.23:3941–3944.

    Okuda,T.,Yoshida,T.,Yazaki,K.et al.1982c.Casuariin,stachyurinandstrictinin,newellagitanninsfromCasuarin strictaandStachyurus praecox. Chem. Pharm. Bull.30:766–769.

    Okuda,T.,Yoshida,T.,Ashida,M.et al.1983.TanninsofCasuarinaandStachyurusspecies.Part1.Structureof pendonculagin, casuarictin, strictinin, casuarinin, casuariin and stachyurin. J. Chem. Soc., Perkin Trans.1:1765–1772.

    Okuda,T.,Yoshida,T.,Kuwahara,M.et al.1984.Tanninsofrosaceousmedicalplants.I.Structuresofpotentillin,agrimonicacidsAandB,andagrimoniin,adimericellagitannin.Chem. Pharm. Bull.32:2165–2173.

    Okuda,T.,Yoshida,T.,Hatano,T.et al.2009.Ellagitanninsrenewedtheconceptoftannins.InS.Quideau(ed),Chemistry and Biology of Ellagitannins. An Underestimated Class of Bioactive Plant Polyphenols,pp.1–54.Singapore:WorldScientificPublishing.

    Pouységu,L.,Deffieux,D.,Malik,G.et al.2011.Synthesisofellagitanninnaturalproducts.Nat. Prod. Rep.28:853–874.

    Quideau,S.andFeldman,K.S.1996.Ellagitanninchemistry.Chem. Rev.96:475–503.Quideau,S.,Jourdes,M.,Saucier,C.et al.2003.DNAtopoisomeraseinhibitoracutissiminAandotherflavano-

    ellagitanninsinredwine.Angew Chem. Int. Ed.42:6012–6014.Quideau,S.,Jourdes,M.,Lefeuvre,D.et al.2005.ThechemistryofwinepolyphenolicC-glycosidicellagitan-

    ninstargetinghumantopoisomeraseII.Chem. Eur. J.11:6503–6513.Quideau,S.,Deffieux,D.,Douat-Casassus,C.et al.2011.Plantpolyphenols—Chemicalproperties,biological

    activities,andsynthesis.Angew. Chem. Int. Ed.50:586–621.Romani,A.,Ieri,F.,Turchetti,B.et al.2006.Analysisofcondensedandhydrolysabletanninsfromcommercial

    plantextracts.J. Pharmaceut. Biomed. Anal.41:415–420.Rommel,A.andWrolstad,R.E.1993.Influenceofacidandbasehydrolysisonthephenoliccompositionof

    redraspberryjuice.J. Agric. Food Chem.41:1237–1241.Salminen,J.P.,Ossipov,V.,Loponen,J.et al.1999.Characterisationofhydrolysabletanninsfromleavesof

    Betula pubescens by high-performance liquid chromatography–mass spectrometry. J. Chromatogr. A864:283–291.

    Sylla,T.2010.Synthesisandcharacterizationofnaturaldepsidicgallotannins.Doctoralthesis,OrderNo.4197UniversityofBordeaux1,France.

    Tanaka,T.,Nonaka,G.-i.,andNishioka,I.1985.Tanninsandrelatedcompounds.Part28.RevisionofthestructuresofsanguiinH-6,H-2andH-3and isolationandcharacterizationofsanguiinH-11,anoveltetramerichydrolysabletanninandsevenrelatedtanninsfromSanguisorba officinalis. J. Chem. Res. (S)176–177.

    Tanaka,T.,Nonaka,G.-i.,andNishioka,I.1986.Tanninsandrelatedcompounds.XL.Revisionofthestruc-turesofpunicalinandpunicalagin,andisolationandcharacterisationof2-O-galloylpunicalinfromthebarkofPunica granatum L. Chem. Pharm. Bull.34:650–655.

    Tian,F.,Li,B.,Ji,B.et al.2009.Identificationandstructure-activityrelationshipofgallotanninsseparatedfromGalla chinensis. Food Sci. Technol.42:1289–1295.

    Törrönen, R. 2009. Sources and health effects of dietary ellagitannins. In S. Quideau (ed), Chemistry and Biology of Ellagitannins,pp.298–319.Singapore:WorldScientificPublishing.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Hydrolyzable Tannins 459

    Villarreal-Lozoya,J.E.,Lombardini,L.,andCisneros-Zevallos,L.2007.Phytochemicalconstituentsandanti-oxidantcapacityofdifferentpecan(Carya illinoinensis)cultivars.Food Chem.102:1241–1249.

    Vrhovsek,U.,Palchetti,A.,Reniero,F.et al.2006.ConcentrationandmaindegreeofpolymerizationofRubusellagitanninsevaluatedbyoptimizedacidmethanolysisJ. Agric. Food Chem.54:4469–4475.

    Vrhovsek,U.,Giongo,L.,Mattivi,F.et al.2008.AsurveyofellagitannincontentinraspberryandblackberrycultivarsgrowninTrentino(Italy)Eur. Food Res. Technol.226:817–824.

    Xiang,P.,Lin,Y.,Lin,P.et al.2007.Effectofcationizationreagentsonthematrix-assistedlaserdesorption/ionizationtime-of-flightmassspectrumofChinesegallotannins.J. Appl. Polym. Sci.105:859–864.

    Yoshida,T.,Nakata,F.,Hosotani,K.et al.1992.ThreenewcomplextanninsfromMelastroma malabathricumL.Chem. Pharm. Bull.40:1727–1732.

    Yoshida,T.,Hatano,T.,Ito,H.et al.2000.Chemicalandbiologicalperspectivesofellagitanninoligomersfrommedicinalplants,InA.-u.Rahman(ed),Studies in Natural Products Chemistry,pp.395–453.Amsterdam:Elsevier.

    Yoshida,T.,Hatano,T.,Ito,H.et al.2009.Structuraldiversityandantimicrobialactivitiesofellagitannins,InS.Quideau(ed),Chemistry and Biology of Ellagitannins. An Underestimated Class of Bioactive Plant Polyphenols,pp.55–93.Singapore:WorldScientificPublishing.

    Zafrilla,P.,Ferreres,F.,andTomás-Barberán,F.A.2001.Effectofprocessingandstorageontheantioxidantellagicacidderivativesandflavonoidsofredraspberry(Rubus idaeus)jams.J. Agric. Food Chem.49:3651–3655.

    Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • Dow

    nloa

    ded

    by [

    Uni

    vers

    ity o

    f T

    echn

    olog

    y, S

    ydne

    y] a

    t 09:

    18 2

    6 Ju

    ly 2

    016

  • 本文献由“学霸图书馆-文献云下载”收集自网络,仅供学习交流使用。

    学霸图书馆(www.xuebalib.com)是一个“整合众多图书馆数据库资源,

    提供一站式文献检索和下载服务”的24 小时在线不限IP

    图书馆。

    图书馆致力于便利、促进学习与科研,提供最强文献下载服务。

    图书馆导航:

    图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具

    http://www.xuebalib.com/cloud/http://www.xuebalib.com/http://www.xuebalib.com/cloud/http://www.xuebalib.com/http://www.xuebalib.com/vip.htmlhttp://www.xuebalib.com/db.phphttp://www.xuebalib.com/zixun/2014-08-15/44.htmlhttp://www.xuebalib.com/

    Acknowledgments20.1 Introduction20.2 HPLC Analysis20.3 UV Spectrophotometry Detection20.5 HPLC-MS-MS Analysis20.6 NMR AnalysisREFERENCES学霸图书馆link:学霸图书馆