hysys v8.6

27
Rev 1.0 ‐1‐ February 26, 2015 Steam Cycle Simulation – HYSYS v8.6 The attached gives steps to set up a simulation in HYSYS v8.6 to model a simple Rankine steam cycle for electricity production. The system consisting of: Fuel gas side with air blower, combustion chamber, & fuel gas side of the steam boiler. Steam side with steam turbine, steam condenser, condensate pump, & steam side of the boiler. The simulation will first be set up assuming isentropic steps for the rotating equipment. It will then be modified to account for more realistic efficiencies (both thermodynamic and mechanical). When the simulation is set up the overall PFD should look like the following figure. Create new simulation file Start the program from Start, All Programs, Aspen Tech, Process Modeling V8.6, Aspen HYSYS, Aspen HYSYS V8.6. When the program opens choose the New button.

Upload: truongcong

Post on 02-Jan-2017

386 views

Category:

Documents


25 download

TRANSCRIPT

Page 1: HYSYS v8.6

Rev1.0 ‐1‐ February26,2015

SteamCycleSimulation–HYSYSv8.6TheattachedgivesstepstosetupasimulationinHYSYSv8.6tomodelasimpleRankinesteamcycleforelectricityproduction.Thesystemconsistingof:

Fuelgassidewithairblower,combustionchamber,&fuelgassideofthesteamboiler. Steamsidewithsteamturbine,steamcondenser,condensatepump,&steamsideofthe

boiler.Thesimulationwillfirstbesetupassumingisentropicstepsfortherotatingequipment.Itwillthenbemodifiedtoaccountformorerealisticefficiencies(boththermodynamicandmechanical).WhenthesimulationissetuptheoverallPFDshouldlooklikethefollowingfigure.

Createnewsimulationfile

StarttheprogramfromStart,AllPrograms,AspenTech,ProcessModelingV8.6,AspenHYSYS,AspenHYSYSV8.6.WhentheprogramopenschoosetheNewbutton.

Page 2: HYSYS v8.6

Rev1.0 ‐2‐ February26,2015

DefinetheComponents&thePropertyModels

Specifycomponents,fluidpropertypackages,&crudeoilassays

Thefirststepistoaddtwosetsofpurechemicalspeciestorepresent:

Steamasmodeledbypurewater&usingpropertycorrelationsconsistentwiththeASMESteamTables.

Thenaturalgasfuel,air,&combustionexhaustaspurelightcomponentsmodeledbythePeng‐Robinsonequationofstate(EOS).

Let’sdothesteamfirst.WithComponentListshighlightedclickontheAddbutton.Fromthelistofpurecomponentspickwater.We’renowreadytopickthepropertymodel.

Page 3: HYSYS v8.6

Rev1.0 ‐3‐ February26,2015

Thenextstepistopickafluidpropertypackage.FromtheFluidPackagesscreenclicktheAddbutton.ChoosetheASMESteamoptionandmakesureitisassociatedwithComponentList–1.

Nowlet’saddcomponentstomodelthefuelsideofthesystem.GobacktotheComponentListsitem&clickontheAddbuttontocreateComponentList‐2.Weneedcomponentsforthefollowing:

Naturalgas.Fornowlet’smodelthisasapossiblemixtureofmethane,ethane,&propane. Air.Fornowwe’llmodelthisasamixtureofoxygen&nitrogen. Combustiongases.Attheminimumwe’llalsoneedcarbondioxideandwater.However,

we’llalsowanttotakeintoaccountincompletecombustion(formingcarbonmonoxide)aswellasNOxformation(fornowjustasNO,NO2,&N2O).

Fromthelistofpurecomponentspickthefollowingchemicalspecies.Thenextstepistoassociateadifferentfluidpropertypackageforthesecompounds(sincetheASMESteamTablesareonlyappropriateforpurewater).GobacktotheFluidPackagesscreen&clicktheAddbutton.ChoosethePeng‐RobinsonoptionandmakesureitisassociatedwithComponentList–2.

Page 4: HYSYS v8.6

Rev1.0 ‐4‐ February26,2015

Nowisagoodtimetosavethefilebeforewestartsettinguptheprocesssimulation.ClicktheFiletab&thentheSaveAsitem.

Page 5: HYSYS v8.6

Rev1.0 ‐5‐ February26,2015

Setup&SolvetheFlowsheet

WorkingUnits

ActivatetheSimulationoption.Notethatyou’llseeablankflowsheet.WewouldliketoshowthecalculationswithamodifiedsetofSIunits,inparticular:

Temperatureas°C. Pressureasbar(absolute). Massflowaskg/sec. Molarflowaskg.mol/sec. HeatdutyaskJ/sec. PoweraskW.

UndertheHometabclicktheUnitSetsbutton.UndertheAvailableUnitsSetsselectSI.YoucanexaminethelistunderDisplayUnitstodeterminewhatwillbeusedforthedisplayoftheresultsaswellasthedefaultunitsfortheinput.Mostoftheunitsarewhatwedesire,butnotall.Forexample,youcanseethatPressurewillbereportedinkPa,notquitewhatwewant.

Let’screateanewsetofunits&callit“SI‐bar‐sec”.WiththeSIunitshighlightedintheAvailableUnitsSetslistclicktheCopybutton.ChangetheUnitSetNametoSI‐bar‐sec.Let’snowexaminetheDisplayUnitsfortheonesofinterest(Temperature,Pressure,etc.)andmakesurethatareconsistentwithwhatwewant.TochangeweneedonlyclickonthedropdownlistintheUnitscolumn.Forexample,tochangePressurefromkPatobarweonlyneedtochoosetheappropriateoptionfromthelist.WhendoneclicktheOKbutton.

Page 6: HYSYS v8.6

Rev1.0 ‐6‐ February26,2015

SteamCycle

WewillwanttocreateasimpleRankinecyclewiththefollowingprocessconditions: Saturatedsteamproductionat125bar. Finalcondensationto20°C. Steamturbineoperatingatidealreversibleconditions. Condensatepumpoperatingatidealreversibleconditions. Noextrapressuredropthroughheatexchangersorpiping.

Let’splacethefollowingunitsfromtheModelPalettetotheflowsheet1:Heater,Cooler,Expander,&Pump.Ultimatelyitwillbedepictedasfollows.

Let’sdefinethecondensatepumpfirst.Doubleclickonthepumpicon(probablycalledP‐100).ChangethenametoCondensatePump.Specifynewstreamsfortheinlet,Condensate,theoutlet,HP‐Water,&theenergystream,W‐Pump.MakesurethattheBasis‐1fluidpackageischosen.

1IftheModelPaletteisnotvisiblechoosetheViewtab&clickontheModelPalettebutton.

Page 7: HYSYS v8.6

Rev1.0 ‐7‐ February26,2015

Wewanttomakethisanidealreversiblepump.ClickontheParametersoption&changetheAdiabaticEfficiencyto100%.

Wecaninitializethewatercirculatingintheloopfromhere,too.ClickontheWorksheettab&choosetheCompositionoption.Enter1fortheH2OvalueundertheCondensatecolumn.Aninputformwillpopup&allowyoutoverifythatthisrepresentstheMolesFractionsbasis.ClicktheOKbutton.

ClickonConditionssowecanentervaluesfortheCondensateenteringthepump.SpecifytheTemperatureas20°CandtheVapourfractionas0(i.e.,asaturatedliquid).Let’suseaflowbasisof1kg/s.NoticethatCondensatestreamisfullydefined&otherassociatedvaluesarecalculated(suchasthepressure,molarflow,heatflow,etc.)

Nowlet’sdefinethesteamsideoftheboiler.Doubleclickontheheatericon(probablycalledE‐100).ChangethenametoSteamBoiler.Pulldownthelistfortheinputstream&chooseHP‐Water.Specifynewstreamsfortheoutlet,HP‐Steam,&theenergystream,Q‐Boiler.MakesurethattheBasis‐1fluidpackageischosen.

Page 8: HYSYS v8.6

Rev1.0 ‐8‐ February26,2015

Wewanttoassumeanegligiblepressuredropthroughthisexchanger.ClickontheParametersoption&changetheDeltaPto0.

Nowlet’sspecifytheconditionsforthehighpressuresteam.ClickontheWorksheettab&theConditionsoption.SpecifythePressureas125barandtheVapourfractionas1(i.e.,asaturatedvapor).NoticethatafterenteringthepressuretherestoftheconditionsfortheHP‐Waterstreamarecalculated(sincewenowknowtheoutletpressureofthepump,too).AfterenteringthevaporfractiontherestoftheconditionscanbecalculatedfortheoutletHP‐Steam&therequireddutyQ‐Boiler.Nowlet’sdefinethesteamturbine.Doubleclickontheexpandericon(probablycalledK‐100).ChangethenametoSteamTurbine.Pulldownthelistfortheinputstream&chooseHP‐Steam.Specifynewstreamsfortheoutlet,TurbineExhaust,&theenergystream,W‐SteamTurbine.MakesurethattheBasis‐1fluidpackageischosen.

Page 9: HYSYS v8.6

Rev1.0 ‐9‐ February26,2015

Wewanttomakethisanidealreversibleexpander.ClickontheParametersoption&changetheAdiabaticEfficiencyto100%.

Donotapplyanyotherconditionsatthistime.Nowlet’sdefinethecondenser.Doubleclickonthecoolericon(probablycalledE‐101).ChangethenametoSteamCondenser.Pulldownthelistfortheinputstream&chooseTurbineExhaust.Pulldownthelistfortheoutletstream&chooseCondensate.Specifyanewenergystream,Q‐Condenser.MakesurethattheBasis‐1fluidpackageischosen.

Wewanttoassumeanegligiblepressuredropthroughthisexchanger.ClickontheParametersoption&changetheDeltaPto0.

Nowallunits&streamsshouldbefullycalculated.Therearevariouswaystoviewtheresults.OnewayistoclickontheWorkbookitem.UndertheMaterialStreamstabwecanseetemperatures,pressures,&phaseconditions(i.e.,vaporfractions).UndertheEnergyStreamstabwecanseethecalculatedexchangerduties&rotatingequipmentpowers.

Page 10: HYSYS v8.6

Rev1.0 ‐10‐ February26,2015

Wecanalsoviewthisbasicinformationdirectlyontheflowsheet.Rightclickthevariousstreams&choosetheShowTableoption.Thiscanbedoneforallofthestreamsofinterest.(Thetableswillprobablyhavetobemovedaroundtomaketheresultsreadable.)Bydefaultthematerialstreamtablesshowthetemperature,pressure,&overallmolarflow.Toaddvaporfractiondouble‐clickonthetable,clickAddVariable,chooseVapourFraction,clickOK,&closethePFDTableform.

Page 11: HYSYS v8.6

Rev1.0 ‐11‐ February26,2015

Thereisathirdoptionthatwouldallowyoutocalculatethethermalefficiencyofthesteamcycleaswellassummarizetheresults–addaSpreadsheettothesimulation.FromtheModelPaletteaddaSpreadsheet;doubleclicktoopen.ChangethenametoSteamCycleSummary.ClickontheParameterstabandchangetheNumberofColumnstoatleast5andtheNumberofRowstoatleast11.ClickontheSpreadsheettab&setuptextfieldsthatlooklikethefigureontheright.

Page 12: HYSYS v8.6

Rev1.0 ‐12‐ February26,2015

WenowwanttoassociatemanyofthecelllocationstoresultscalculatedbyHYSYS.Forexample,right‐clickoncellB2&chooseImportVariable;chooseCondensate,Temperature,&thenclickOK.Notethatthetemperatureof20.00Cappearsinthetable;alsonotethatitisformattedasboldblue,meaningthatthisisauser‐inputvalue.(Italsodenotesthatitcanbechangedfromhere,butmoreofthatlater.).Whenallvariablesareassociatedwiththeappropriatecellsthespreadsheetshouldlookasfollows.

Nowlet’saddacouplecalculations.

ThenetpowerproducedwillbethatfromtheSteamTurbineminusthatneededbytheCondensatePump.IncellD10entertheformula“=D8‐D9”.

Wealsowouldtodirectlycalculatethethermalefficiencyofthesteamcycle,i.e.,theratioofthenetpowerproducedbytheheatinfromtheboiler.IncellD11entertheformula“=100*D10/B8”.

Page 13: HYSYS v8.6

Rev1.0 ‐13‐ February26,2015

Nowwehaveasummarytablethatwillshowinasingleplacematerialstreamresults,energystreamresults,unitoperationparameters,&calculatedresults.Forexample,wecanseethatthiscombinationofconditionswillresultinasteamcyclewitha41.25%thermalefficiency.

Notethatthisisalsoa“live”table.Wecanchangeparametershere&theothervalueswillautomaticallyrecalculate.Forexample,ifweweretochangetheSteamTurbine&CondensatePumpadiabaticefficienciesto85%,thenallvalueswouldberecalculatedandwecouldseethatthethermalefficiencydropsto34.94%.

Fuel&CombustionSystem

Wewillwanttocreateasimplenaturalgasburner/boilerwiththefollowingprocessconditions: Naturalgasisavailableatindustrialdeliverypressure,20bar‐g&15°C.Wewill

characterizethenaturalgasas100%methane. Airisavailableat25°C.Wewillcharacterizetheairasa21/79O2/N2molarmixtureand

bonedry(i.e.,nowater).Wewanttoaddenoughairsothatthereis20%excessoxygenbasedoncompletecombustionofthenaturalgas.

Thecombustionprocessoccursnearsatmosphericconditionssothenaturalgasmustbeletdowninpressure.However,ablowerisneededtopushtheairintothecombustionchamber.

Thepressuredropthroughtheburner/boiler/fluecombinationis0.3bar.

Page 14: HYSYS v8.6

Rev1.0 ‐14‐ February26,2015

Thefluegasisexhaustedtotheatmosphereat120°C,atemperaturehighenoughtopreventanyliquiddropout&subsequentcorrosionproblems.

Let’splacethefollowingunitsfromtheModelPalettetotheflowsheet:Valve,Compressor,GibbsReactor2,&Cooler.Ultimatelyitwillbedepictedasfollows.(We’lldiscusstheSpreadsheet,Set,&Adjustoperationsaswego.)

Let’sdefinethenaturalgas&let‐downvalvefirst.Doubleclickonthevalveicon(probablycalledVLV‐100).ChangethenametoGasLet‐DownValve.Specifynewstreamsfortheinlet,FuelGas,&theoutlet,LP‐Fuel.MakesurethattheBasis‐2fluidpackageischosen.

2NotethatreactormodelsareundertheColumnstaboftheModelPalette.

Page 15: HYSYS v8.6

Rev1.0 ‐15‐ February26,2015

Wewillinitializethenaturalgasfromhere.ClickontheWorksheettab&choosetheCompositionoption.Enter1fortheMethanevalueundertheFuelGascolumn.Aninputformwillpopup&allowyoutoverifythatthisrepresentstheMolesFractionsbasis.ClicktheNormalizebuttontosettheothercompositionsaszero.ClicktheOKbutton.

ClickonConditionssowecanentervaluesfortheFuelGasenteringthepump.SpecifytheTemperatureas15°CandthePressureas20bar‐g(notethatthepressuregetsautomaticallyadjustedtoanabsolutebasis).Let’suseaflowbasisof1kg.mol/s.Let’sspecifytheoutletpressureof0.3bar‐gintheLP‐Fuelcolumn(notethatthepressuregetsautomaticallyadjustedtoanabsolutebasis).

NoticethatboththeFuelGas&LP‐Fuelstreamsarefullydefined&otherassociatedvaluesarecalculated(suchasthemassflow,heatflow,etc.)

Page 16: HYSYS v8.6

Rev1.0 ‐16‐ February26,2015

Nowlet’sdefinetheair&theairblower.Doubleclickonthecompressoricon(probablycalledK‐100).ChangethenametoAirBlower.Specifynewstreamsfortheinputstream,Air,theoutlet,Air‐2,&theenergystream,W‐AirBlower.MakesurethattheBasis‐2fluidpackageischosen.

Wewanttomakethisanidealreversiblecompressor.ClickontheParametersoption&changetheAdiabaticEfficiencyto100%.

Page 17: HYSYS v8.6

Rev1.0 ‐17‐ February26,2015

Wewillinitializetheairstreamfromhere.ClickontheWorksheettab&choosetheCompositionoption.Enter0.21fortheOxygenvalueundertheAircolumn.Aninputformwillpopup&allowyoutoverifythatthisrepresentstheMolesFractionsbasis&finishenteringtherestofthevalues.Enter0.79fortheNitrogenvalue.ClicktheNormalizebuttontosettheothercompositionsaszero.ClicktheOKbutton.

ClickonConditionssowecanentervaluesfortheAirenteringthepump.SpecifytheTemperatureas25°CandthePressureas0bar‐g(notethatthepressuregetsautomaticallyadjustedtoanabsolutebasis).Asastartingpointlet’sdefinetheflowrateas12kg.mol/hr.Finally,let’sspecifytheoutletpressureforAir‐2as0.3bar‐gtomatchthatofthefuelgasafterthelet‐downvalve.NoticethatboththeAir&Air‐2streamsarefullydefined&otherassociatedvaluesarecalculated(suchasthemassflow,heatflow,etc.)Nowit’stimetomodelthecombustionportionofthefuelgasburner.Therearevariousoptionsfordoingthis.Oneofthesimplest(andwouldnormallybedoneforhandcalculations)wouldbetodefineallcombustionreactions&specifytheextentofconversionforeach.Instead,we’regoingtotakeadvantageofthefullthermodynamiccapabilitiesofHYSYS&useareactorthatwillminimizetheGibb’sfreeenergy.Allwehavetodoislisttheexpectedproducts&HYSYSwillcalculatetheresultingproductdistributionthathonorsthematerial&energybalancesaswellasanychemicalequilibriumlimitations.

Page 18: HYSYS v8.6

Rev1.0 ‐18‐ February26,2015

DoubleclickontheGibbsReactoricon(probablycalledGBR‐100).ChangethenametoCombustion.SelecttheexistingLP‐Fuel&Air‐2streamsasinlets.Specifynewstreams,CombustionGas,asthevapouroutlet&CombustionLiquidsastheliquidoutlet.MakesurethattheBasis‐2fluidpackageischosen.

That’sprettymuchit.Thedefaultsarezeropressuredrop&includeallspeciesinthecomponentlistaspotentialproduct.WecanexaminetheresultsbyclickingontheWorksheettab.SelectingConditionsshowsthatthereisonlyagasproducedatatemperatureof1731°C.WecanthenlookattheresultingcompositionbyselectingComposition.Theresultsare,bydefault,shownasmolefractions.Notethatallofthemethanehasbeenconsumed.ThereisasmallamountofCOformed(asincompletecombustion)butsomeNOxhasalsobeencreatedfromtheN2intheair.

Nowlet’sseehowmuchheatcanbetransferredoutofthecombustiongases.

Page 19: HYSYS v8.6

Rev1.0 ‐19‐ February26,2015

Nowlet’sspecifythecombustiongassideoftheboiler.Doubleclickontheheatericon(probablycalledE‐100).ChangethenametoHRSG.Pulldownthelistfortheinputstream&chooseCombustionGas.Specifynewstreamsfortheoutlet,FlueGa,&theenergystream,Q‐HRSG..MakesurethattheBasis‐2fluidpackageischosen.Wewillnotspecifyapressuredropacrosstheexchanger.Rather,we’llspecifythepressureoutthestack.ClickontheWorksheettab&theConditionsoption.SpecifythePressureas0bar‐gandtheTemperatureas120°C.Nowtheconditionsfortheinlet&outletstreamscanbedeterminedaswellasthedutyavailable(asQ‐HRSG).Therearestillacoupleitemstobedoneto“cleanup”thesimulation.Thefirstisforamatterofconvenience–howshouldwespecifythepressureoftheAir‐2streamoutoftheblower?RightnowthepressureintotheCombustionoperationissetseparatelyforthetwoinletstreams(LP‐Fuel&Air‐2).Ifastudywastobeperformed&thepressureweretochangethenhavingthespecificationsintwoseparatelocationscouldleadtothembeingchangeddifferently.Itsurewouldbenicetosetitonlyinonelocation&thenhavetheotherlocationupdateautomatically.WecandothiswithaSetoperation.FromtheModelPaletteplaceaSetoperationontheflowsheet.Double‐clickonit(probablycalledSET‐1).RenameasSetBlowerOutlet.DefinetheTargetVariableasthepressureoftheAir‐2stream.We’llusetheSourceasthevaluefromLP‐Fuel.OncethisisimplementedanychangesmadetothepressureofLP‐Fuelwillbeautomaticallytransmittedtotheoutletpressureoftheairblower.

Page 20: HYSYS v8.6

Rev1.0 ‐20‐ February26,2015

Thesecondchangeinvolvesaconvenientwaytomakesurethatthecorrectamountofairisaddedtomatchthe“excessoxygen”spec.Theamountofstoichiometricoxygenisdeterminedfromthecombustionreactions.Formethane,ethane,&propanethereactionsare,respectively: CH4+2O2CO2+2H2O C2H6+3.5O22CO2+3H2O C3H8+5O23CO2+4H2OThisshowsthatweneedtoknowthecompositionofthefuelgas(inmolaramounts)todeterminethestoichiometricamountofoxygenneeded.The“excess”partisadditionaloxygen(asamultiplier)thatisadded.ThefinalconsiderationisthatthespecificationinHYSYSisnotjustfortherateofoxygenbutratheroftheair;sowehavetotakeintoaccountthecompositionoftheairaccountforthelargeamountofnitrogenalsobeintroducedintotheCombustionoperation.Sincewehavesetthecompositionofthefuelgastobepuremethane&thebasisflowrateto1kg.mol/secthenthestoichiometricoxygenflowrateistwicethis,2kg.mol/sec.Wealsoneedtoincreasethisby20%toincludethedesiredexcess.Andweneedtotakeintoaccounttheoxygencontentintheairtodeterminetheairrate.Sooverall:

2

2

O

air

O

1 2 1 0.211.43kg.mol/sec

0.21

excessstoichn f

ny

.

WecoulddothesecalculationspriortorunningHYSYSandentertheairrate.OrwecoulddothecalculationswithinHYSYS.FromtheModelPaletteaddaSpreadsheet;doubleclicktoopen(probablycalledSPRDSHT‐1).ChangethenametoAirRateCalc.Usethedefaultnumberofrows&columns.ClickontheSpreadsheettab&setuptextfieldsthatlooklikethefigureontheright.

Page 21: HYSYS v8.6

Rev1.0 ‐21‐ February26,2015

WenowwanttoassociatemanyofthecelllocationstoresultscalculatedbyHYSYS.Forexample,right‐clickoncellD3&chooseImportVariable;chooseAir,MastComponentMoleFrac,Oxygen,&thenclickOK.Let’sassociateallofthedesiredmolarflowrates.Forexample,forthefuel,right‐clickoncellB4&chooseImportVariable;chooseFuelGas,MolarFlow,&thenclickOK.AssociatethemolarflowfortheairtothecellD7.

Nowlet’saddthefollowingcalculations:

cellD4,“=(B2*2+B3*3.5+B4*5)*B5” cellD4,“=D4*(1+D2)” cellD4,“=D5/D3” cellD4,“=D7‐D6”

Page 22: HYSYS v8.6

Rev1.0 ‐22‐ February26,2015

Nowwehaveatablethatwillcalculatethedesiredairflowrateforthespecifiedfuelgasflowrate.ThoughthespreadsheetcannotdirectlysettheairflowratewecandoitmanuallybydirectlychangingthevalueincellD7.

EventhoughthespreadsheetitselfcannotdirectlysettheflowrateoftheAirstreamitcanbeusedaspartofanAdjustoperation.FromtheModelPaletteplaceanAdjustoperationontheflowsheet.Double‐clickonit(probablycalledADJ‐1).RenameasAdjustAirRate.DefinetheAdjustedVariableasthemolarflowoftheAirstream.We’llusethecalculationforthedifferencebetweenthedesiredairrate&theactualastheTargetVariable;thisiscellD8intheAirRateCalcspreadsheet.SettheSpecifiedTargetValueas0.

Page 23: HYSYS v8.6

Rev1.0 ‐23‐ February26,2015

Tofinishwehavetosetvaluestocontrolthecalculations.ClickontheParameterstab.Increasethenumberofiterations(heresetfrom10to100).Settheminimumallowedvalueto0&themaximumallowedvaluetosomethingabovetheactualvalue(heresetto100).ThestatusareawillswitchtoOKwheniterationsaecompleted.

WecanopenuptheAirRateCalcspreadsheet&seethattheAirflowratehasbeenadjustedtomatchtheexcessoxygenspecification.

TyingtheTwoSystemsTogether

Eventhoughthesteamcycle&fuelgassystemsareinthesameHYSYSflowsheettheyarereallymodeledseparately.Thesteamcyclehasconvergedwithabasisof1kg/secwatercirculationrate&thefuelsystemhasconvergedwithabasisof1kg.mol/secfuelgas.Wewilltiethesystemstogetherby“pushing”thedutyavailablefromthefuelsideoftheboilertothesteamside&adjustingthewatercirculationrateinthesteamcycle.

Page 24: HYSYS v8.6

Rev1.0 ‐24‐ February26,2015

Beforewemakeanydirectconnectionslet’screateaspreadsheettosummarizetheresultsfromthetwosystems.FromtheModelPaletteaddaSpreadsheet;doubleclicktoopen.ChangethenametoOverallPerformance.ClickontheSpreadsheettab&setuptextfieldsthatlooklikethefigureontheright.

Associatethematerialflows,temperature,&energyflowsasshowninthefigureontheright.

Nowlet’sconnectthetwosystems.

Page 25: HYSYS v8.6

Rev1.0 ‐25‐ February26,2015

DoubleclickontheCondensatestreaminthesteamcycleanddeletethevalueforthemassflowrate.Noticethattheintrinsicpropertiesforthestreamarestillcalculated(suchasthemolarenthalpy)buttheextrinsicpropertiesthatdependontheflowratearenowmissing.

Double‐clickontheiconfortheHRSGexchanger.GototheDesigntab&changetheEnergystreamfromQ‐HRSGtoQ‐Boiler.Thesimulationwillstillshowthatitiscomplete.YouwillwanttodeletetheunnecessarystreamQ‐HRSGfromtheFlowsheet.

Sowhat’schanged?Goback&lookattheCondensatestream.NoticethatHYSYShascalculatedawatercirculationratetomatchuptheamountofboilerheatneededinthesteamcycle(onakJ/kgbasis)withtheproperwaterflowrate(onakg/secbasis).

AdditionalStream&UnitAnalyses

Thereareadditionalanalysesthatwemaywanttoperformforthissimulation.Sincethegoaloftheprocessistocreatepowerweshouldbeveryinterestedtodeterminethevariousthermal

Page 26: HYSYS v8.6

Rev1.0 ‐26‐ February26,2015

efficienciesofthesystems.WehavealreadystartedthisanalysisbyputtingcalculationsintotheSteamCycleSummaryspreadsheettocalculatethesteamcycle’sthermalefficiencybasedontheHYSYSresults.Tocalculatetheefficiencyoftheboilerweneedtodeterminetheheatingvalueofthefuelgasused.WehavealreadysetuptheformatoftheOverallPerformancespreadsheettodothesecalculations.OpentheOverallPerformancespreadsheetAssociatecellB3willtheHHV–right‐clickonthecell&chooseImportVariable;chooseFuelGas,HigherHeatingValue,thenclickOK.AssociatecellB4willtheLHV–right‐clickonthecell&chooseImportVariable;chooseFuelGas,LowerHeatingValue,thenclickOK.AddformulasintoD2&D3toputtheheatingonaflowingbasis(i.e.,multiplytheheatingvaluebythemolarflowrate).NotethateventhoughthenumbersappearunitlesstheyreallyhaveunitsofkJ/sec.Let’sadd2columnsfortheefficiencyvalues.GototheParameterstab&changethenumberofcolumnsfrom4to6.Setuplabelsasshownontheright.

Nowwewanttoaddformulastocalculatethevariousvalues:

Page 27: HYSYS v8.6

Rev1.0 ‐27‐ February26,2015

cellF2,“=D4/D2”(alsochangeVariableTypetoUnitless) cellF3,“=D4/D3”(alsochangeVariableTypetoUnitless) cellF5,“=(D8‐D7)/D4” cellF7,“=(D8‐D7‐D6)/D2”(alsochangeVariableTypetoUnitless) cellF8,“=(D8‐D7‐D6)/D3”(alsochangeVariableTypetoUnitless)

TherearemanyothercapabilitiesthatcanbeaddedsincetheSpreadsheetoperationcanmakechanges&calculationsina“live”fashion.Forexample,anentirecontrolsheetcouldbesetuptomodifyvalues&directlycalculateresults.Cellscouldbesetupforthefollowinginputs:

Fuelgasflowrateanditspressure&temperature. Theair’satmosphericpressure&temperature. Air’shumidity(wouldalsorequireadditionaloperationstoproperlyaddwaterwhile

keepingtherestofthecomponents’relativeamountsthesame). Desiredexcessair. Pressuredropthroughtheboilersystem. Allowablestackoutlettemperature. Condensationtemperatureinthesteamcycle. Pressuredropthroughthesteamsideoftheboiler. Degreesofsuperheatintheboilersystem. Adiabatic&mechanicalefficienciesofallrotatingequipment.