i. bocharova l. cocke, i. litvinyuk, a. alnaser, c. maharjan, d. ray

22
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Upload: jirair

Post on 28-Jan-2016

19 views

Category:

Documents


0 download

DESCRIPTION

Using COLTRIMS for pump-probe studies of molecular dynamics. I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray. Outline. Motivation Coulomb explosion imaging. Experiment requirements. Experimental setup. H 2 and D 2 experiments. N 2 and O 2 experiments. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

I. BocharovaL. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Page 2: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Outline

Motivation Coulomb explosion imaging. Experiment requirements. Experimental setup. H2 and D2 experiments. N2 and O2 experiments. C2H2 experiment. Future plans.

Page 3: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Motivation

To study the structure and its time evolution of different gas

molecules, using Coulomb explosion imaging

Page 4: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Coulomb explosion imaging

Originally developed for investigation of a static structure: collision of molecular ions beam and thin foil

Accelerator Coulomb Explosion Accelerator Coulomb Explosion ImagingImaging

Ultrathinfoil Detector

MeVbeam

Explodingmolecule

Laser Coulomb Explosion ImagingLaser Coulomb Explosion Imaging

Detector Detector

Now using laser short pulses interacting with molecules in gas phase

Page 5: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Why Coulomb explosion imaging?

5 10 15 20 250

200

400

600

800

1000

1200

1400

coun

ts

Energy, eV

D2 8 fs pulse

D2 30 fs pulse

0.5 1.0 1.5 2.0 2.5 3.0 3.50

2

4

6

R / Angstrom

||2

Direct method which allows for best time resolution : can use short pulses Possible to observe molecules with fast dynamics such as D2

D2

Exp. >40fsExp. 8fs

Theory: 4 fs

D2

+

pote

nti

al

ener

gy

internuclear distance

pump

D2

D+ + D

D+ + D+

KE

R

Page 6: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Requirements

Laser impulse shorter than vibration period of molecule.

High intensity to produce highly charged states, so explosion potential can be approximated by Coulomb potential.

Minimize the thickness of molecular target beam, so that interaction volume is minimal.

Page 7: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Experimental setupGas jet

Recoil side of spectrometer

x

y

z

Recoil detector

Piezoelectric slit

Laser pulse

M

Page 8: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Looking for explosion fragments in coincidence

En

ergy

, eV

Magnitude of vector sum of all fragments momenta (a.u.)

Page 9: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Pump-probe

E

Probe Pum p

Probe Pum p

W eak pum p pulseexcites m o lecule

D e lay a llow stim e evolution

In tense probepu lse ion izesm o lecu le

M o lecu le explodes

E

E

t

t

Page 10: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Pump-probe setup

d

pump-pulse

θprobe-pulse

d

x

d

pump-pulse

probe-pulse

d

)φcos(

)φθcos(11

)φcos(

1ndOPΔ

c

OP

n

sinarcsin

θ

d

d

Pump pulse

Probe pulse

Page 11: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

(CR)EI – (Charge Resonance) Enhanced Ionization

Diatomic molecule: double well potential.

Picture is asymmetric in laser field.

R0 is an interatomic distance for neutral molecule.

Distance R between two centers increases.

At some critical distance Rc enhanced ionization occurs.

R0

Rc

e-

Page 12: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

D2 experment

2 4 6 8 10 12

0

5

10

15

20

25

30

coun

ts

KER, eV

delay 0_10fs

2 4 6 8 10 12

delay 10_20fs

2 4 6 8 10 12

delay 20_30fs

D2+(X2g+)

t

D++D+

S(E,t)

D2 (X1g+)

(1)

(2)

t

pum

ppr

obe

KER at fixed delays

2 4 6 8 10 12

delay 30_40fs

2 4 6 8 10 12

delay 40_50fs

Page 13: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

D2 KER vs Delay spectrum

R, a.u.

Laser parameters: pump 8fs 3x1014 W/cm2

probe 8fs 9x1014 W/cm2.

KER, eV

cou

nts

Long pulse (30fs) CREI

Page 14: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

D2: theory and experiment

Theoretical calculation: Xiao-Min Tong, C.D. Lin

Page 15: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

H2 experiment

DELAY (fs)

KE

R (

eV)

KE

R (

eV)

DELAY (fs)

0

10

20

0 10050 0 10050

0

10

20

Page 16: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

N2 and O2 experimentPIPICO

1000

2000

3000

1000 2000 2800

TO

F 2

(ns) O+O+

O2+O+

O2+O2+

O3+O2+

O3+O3+

O2

O2+

O2+2

O2+5

O2+4

O2+3

1

TO

F 2

1000

100

10

1000 2000 2800

TOF 1

N+N+

N2+N+

N2+N2+

N3+N+

N3+N2+

N3+N3+

N4+N2+N4+N3+

3000

1000

2000

Page 17: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

KER Spectra for Oxygen

O2++ O2+ Pair

0

40

80

0 80 150

200

600

1000

DELAY (fs) DELAY (fs)0

50

100

080 150

200

400

600

O3+ + O2+ Pair

KE

R (

eV)

Page 18: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

KER Spectra for Nitrogen

1

TOF 1

TO

F 2

1000

100

10

PIPICO

1000 2000 2800

N+N+

N2+N+

N2+N2+

N3+N+

N3+N2+

N3+N3+

N4+N2+N4+N3+

3000

1000

2000

0

40

80

40

0

70

60 120 60 120

KE

R (

eV)

DELAY (fs) DELAY (fs)

N2++N2+ pair N3++N2+ pair

Page 19: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

C2H2 : polyatomic molecule

C2H2 : isomerization of acetylene to vinylidene Time scale? the upper limit established is 60 fs1

H-CC-H [H-CC-H]2+ CH+ + CH+

C+ + CH2+

Idea: With short pulses pump-probe technique can be applied to follow the dynamics of isomerization process.

C C

C

CH H

H

H

1 T. Osipov, C. L. Cocke, M. H. Prior, A. Landers, Th. Weber, O. Jagutzki, L. Schmidt, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. 90, 233002 (2003).

acetylene

vinylidene

Page 20: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

C2H2 acetylene and vinylidene channels separation

CH

+ + CH +

CH

2 + + C+

C2+ + C

+C2+ + C

2+

C2 H + + H +

C2 + + H +

TOF1

TO

F2

pz (a.u.)

p x (a

.u.)

Momentum-imaging investigations of the dissociation of D2+ and the isomerization of acetylene to vinylidene by intense short laser pulses. A. S. Alnaser, I. Litvinyuk, T. Osipov, B. Ulrich, A. Landers, E.Wells, C. M. Maharjan, P.Ranitovic, I. Bocharova, D.Ray and C.L.Cocke. Journal of Physics B: Atomic, Molecular & Optical Physics. (accepted)

Page 21: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray

Future plans

C2H2 experiment.

Continue experiments with N2 and O2.

CO2: triatomic molecule.

Page 22: I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray