ib chemistry on transition metals, complex ions, ligands and splitting of 3d orbitals

45
http://lawrencekok.blogs pot.com Prepared by Lawrence Kok Tutorial on Properties of Transition Metals, Complex ions and splitting of 3d orbitals by ligands.

Upload: lawrence-kok

Post on 12-Jun-2015

7.434 views

Category:

Education


6 download

DESCRIPTION

IB Chemistry on Transition metals, complex ions, ligands and splitting of 3d orbitals.

TRANSCRIPT

  • 1. Tutorial on Properties of Transition Metals,Complex ions and splitting of 3d orbitals byligands. Prepared by Lawrence Kok http://lawrencekok.blogspot.com

2. Transition Metals (d block elements)K4s1Ca4s2 3. Transition Metals (d block elements)K4s1Ca4s2Across period Cr - 4s13d5Cu - 4s13d10 half filled more stable fully filled more stable 4. Transition Metals (d block elements)K4s1Ca4s2Across period Cr - 4s13d5 Cu - 4s13d10 half filled more stable fully filled more stableTransition metal have partially filled 3d orbitals3d and 4s electrons can be lost easily electrons filled from 4s level first then 3d level 5. Transition Metals (d block elements) K 4s1 Ca 4s2Across periodCr - 4s13d5 Cu - 4s13d10 half filled more stable fully filled more stableTransition metal have partially filled 3d orbitals3d and 4s electrons can be lost easily electrons filled from 4s level first then 3d level electrons lost from 4s level first then 3d level4s3dFilling electrons- 4s level lower, filled firstLosing electrons- 4s higher, lose first 6. Transition Metals (d block elements) K 4s1 Ca 4s2Across periodCr - 4s13d5Cu - 4s13d10 half filled more stable fully filled more stableTransition metal have partially filled 3d orbitals3d and 4s electrons can be lost easily electrons filled from 4s level first then 3d level electrons lost from 4s level first then 3d level 4s 3d and 4s energy level close together (similar in energy)3dFilling electrons- 4s level lower, filled first Losing electrons- 4s higher, lose first 7. Transition Metals (d block elements)Transition Metals d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states LoseIons Electrons formation Incomplete filled d orbitals 8. Transition Metals (d block elements)Transition Metals d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation statesLoseIonsElectrons formation Sc3+ Zn2+ 4s03d0 Incomplete filled d orbitals4s03d10Sc not transition elements.Zn not transition elements.Sc Sc3+ - (empty d orbital) Zn Zn2+ - (fully filled d orbital) 4s23d1 4s03d04s23d10 4s03d10 9. Transition Metals (d block elements)Transition Metals d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation statesLoseIonsElectrons formation Sc3+ Zn2+ 4s03d0 Incomplete filled d orbitals4s03d10Sc not transition elements.Zn not transition elements.Sc Sc3+ - (empty d orbital) Zn Zn2+ - (fully filled d orbital) 4s23d1 4s03d04s23d10 4s03d10 10. Transition Metals (d block elements) Formation coloured complexesFormation complex ionsProperties of Transition metals Formation of complex ions Formation coloured complexes Variable oxidation states Catalytic activityhttp://www.dlt.ncssm.edu/tiger/chem8.htm http://www.chemguide.co.uk/inorganic/transition/features.html Catalytic activityVariable Oxidation states http://elementalolympics.wordpress.com/2011/02/28/variable-oxidation-states-and-catalysts/ http://www.sciencelearn.org.nz/Contexts/Nanoscience/ Sci-Media/Images/Catalytic-converter-catalyst 11. Transition Metals (d block elements) Variable Oxidation States Oxidation state +2 more common on right (Co Zn) Harder to lose electron as Nuclear charge of Co - Zn is getting higher (NC ) Oxidation state +3 more common on left (Sc Fe) Easier to lose electron as Nuclear charge of Sc Fe is lower (NC ) Oxidation state for Mn is highest +7 Higher oxidation state exist when elements bond to oxygen oxides/oxyanions+7 (MnO4)-+6 Cr2O7 (MnO4)2-oxides oxyanion+5V2O5+4TiCI4(VO2)2+MnCI4+3 ScCI3TiCI3 VCI3 CrCI3MnCI3FeCI3 chlorides+2 CrCI2MnCI2FeCI2CoCI2NiCI2 CuCI2 ZnCI2 +7 +6+6 +5+4+4+3+3 +3+3+3 +3 +2+2 +2+2+2+2+2 12. Transition Metals (d block elements) Variable Oxidation StatesOxidation state +2 more common on right (Co Zn) Harder to lose electron as Nuclear charge of Co - Zn is getting higher (NC )Oxidation state +3 more common on left (Sc Fe) Easier to lose electron as Nuclear charge of Sc Fe is lower (NC )Oxidation state for Mn is highest +7Higher oxidation state exist when elements bond to oxygen oxides/oxyanions+7(MnO4)-+6Cr2O7 (MnO4)2- oxides oxyanion+5 V2O5+4TiCI4 (VO2)2+MnCI4+3 ScCI3TiCI3VCI3 CrCI3MnCI3FeCI3chlorides+2CrCI2MnCI2FeCI2CoCI2NiCI2 CuCI2 ZnCI2+7+6+6+5 +4+4+3 +3 +3+3+3 +3+2+2 +2+2+2+2 +2 +3 oxidation state more common+2 oxidation state more common 13. Transition Metals (d block elements) Formation Complex IonsTransition Metal ion + Ligands = Complex IonsTransition Metal ion Ligands High charged density metal ion, partially filled 3d orbital Neutral/anion species that donate Attract ligand (neutral, anion with lone pair electron) lone pair/non bonding electron pair to metal ion Form dative/co-ordinate bond lone pair from ligands Lewis base, lone pair donor dative bond with metal ion Coordination number number of ligands around central ion [Cu(H2O)4]CI2[Cu(H2O)4]2+ +2CI- +2 14. Transition Metals (d block elements) Formation Complex IonsTransition Metal ion + Ligands = Complex IonsTransition Metal ion Ligands High charged density metal ion, partially filled 3d orbital Neutral/anion species that donate Attract ligand (neutral, anion with lone pair electron) lone pair/non bonding electron pair to metal ion Form dative/co-ordinate bond lone pair from ligands Lewis base, lone pair donor dative bond with metal ion Coordination number number of ligands around central ion [Cu(H2O)4]CI2[Cu(H2O)4]2+ +2CI- 2+CI2+2CI-waterComplex ion [Cu(H2O)4]CI2 also written as CuCI2 Complex ion Anion 4 water ligands attached 4 dative bonds Coordination number = 4 +2 15. Transition Metals (d block elements) Formation Complex IonsTransition Metal ion + Ligands = Complex IonsTransition Metal ion Ligands High charged density metal ion, partially filled 3d orbital Neutral/anion species that donate Attract ligand (neutral, anion with lone pair electron) lone pair/non bonding electron pair to metal ion Form dative/co-ordinate bond lone pair from ligands Lewis base, lone pair donor dative bond with metal ion Coordination number number of ligands around central ion [Cu(H2O)4]CI2[Cu(H2O)4]2+ +2CI- 2+CI2+2CI-waterComplex ion [Cu(H2O)4]CI2 also written as CuCI2 Complex ion Anion 4 water ligands attached 4 dative bonds Coordination number = 4 Drawing complex ion Overall charged on complex ion Metal ion in the center (+ve charged) +2 Ligands attached Dative bonds from ligands 16. Complex ions with different metal ions, ligands, oxidation state and overall chargedCoordinationShape Complex ionLigandMetal ionOverall charge onnumber (metal + ligand)(charged) (Oxidation #)complex ion 2linear [Cu(CI2)]- CI = -1 +1 -1[Ag(NH3)2]+ NH3 = 0 +1 +1 [Ag(CN)2]- CN = -1 +1 -1 4Square [Cu(CI)4]2- CI =-1 +2 -2planar[Cu(NH3)4]2+NH3=0 +2 +2 [Co(CI)4]2- CI=-1+2 -2 [Ni(CI)4]2- CI=-1+2 -2 4 Tetrahedral[Zn(NH3)4]2+NH3 =0+2 +2[Mn(CI)4]2-CI=-1+2 -2 6Octahedral [ Cu(H2O)6] 2+ H2O =0+2 +2[Fe(OH)3(H2O)3] OH =-1+3 oH2O = 0 [Fe(CN)6]3-CN =-1+3 -3 [Cr(NH3)4CI2]+ NH3 = 0 +3 +1 CI =-1Types of ligands: Monodentate 1 lone pair electron donor H2O, F-, CI-, NH3, OH-, CN- Bidentate 2 lone pair electron donor 1,2 diaminoethane H2NCH2CH2NH2, ethanedioate (C2O4)2- 17. Naming Complex ionsStep in naming complex ion - [Co(NH3)4CI2]+CI-Tetraamine dichloro cobalt (III)(cation part)Chloride(anion part)1. Cation part first anion part later2. Within a complex metal ligands named first followed by metal ion3. Name - Tetraamine dichloro cobalt (III) chloride 18. Naming Complex ionsStep in naming complex ion - [Co(NH3)4CI2]+CI-Tetraamine dichloro cobalt (III)(cation part)Chloride(anion part)1. Cation part first anion part later2. Within a complex metal ligands named first followed by metal ion3. Name - Tetraamine dichloro cobalt (III) chlorideStep in naming complex ion - [Cu(H2O)4]2+CI2 Tetraaqua copper (II)Chloride (cation part)(anion part)1. Cation part first anion part later2. Within a complex metal ligands named first followed by metal ion3. Name - Tetraaqua copper(II) chloride 19. Naming Complex ionsStep in naming complex ion - [Co(NH3)4CI2]+CI-Tetraamine dichloro cobalt (III)(cation part) Chloride (anion part)1. Cation part first anion part later2. Within a complex metal ligands named first followed by metal ion3. Name - Tetraamine dichloro cobalt (III) chlorideStep in naming complex ion - [Cu(H2O)4]2+CI2 Tetraaqua copper (II) Chloride (cation part) (anion part)1. Cation part first anion part later2. Within a complex metal ligands named first followed by metal ion3. Name - Tetraaqua copper(II) chlorideStep in naming complex ion - [Co(H2O)6]2+SO4Sulphate Hexaaqua cobalt(II)(anion part)(cation part)1. Cation part first anion part later2. Within a complex metal ligands named first followed by metal ion3. Name Hexaaqua cobalt (II) sulphateStep in naming complex ions with TWO different ligands1. Name ligand (alphabetical order)2. [Cu(NH3)4(H2O)2]2+ - tetraammine diaqua copper(II) ion. (1st ligand- ammine, 2nd ligand aqua)3. [Al(H2O)2(OH)4]- - diaqua tetrahydroxo aluminate ion. (1st ligand aqua, 2nd ligand hydroxo) 20. Ligand displacement Stronger ligand displace weaker ligandTetrachloro copper (II) ionTetraaqua copper (II) ionCI- displace H2O [Cu(H2O)4]2+ + 4CI [Cu(CI)4]2- 21. Ligand displacement Stronger ligand displace weaker ligandTetrachloro copper (II) ionTetraaqua copper (II) ion Tetraamine copper (II) ion2+CI- displace H2O NH3 displace H2O [Cu(H2O)4]2+ + 4CI [Cu(CI)4]2-[Cu(H2O)4]2+ + 4NH3 [Cu(NH3)4]2+ 22. Ligand displacement Stronger ligand displace weaker ligandTetrachloro copper (II) ion Tetraaqua copper (II) ion Tetraamine copper (II) ion 2+CI- displace H2O NH3 displace H2O [Cu(H2O)4]2+ + 4CI [Cu(CI)4]2-[Cu(H2O)4]2+ + 4NH3 [Cu(NH3)4]2+ Hexaaqua cobalt (II) ionTetrachloro cobalt(II) ionCI- displace H2O [Co(H2O)6]2+ + 4CI [Cu(CI)4]2-Tetrachloro copper (II) ion Hexaaqua iron (III) ion 23. Transition Metals (d block elements) Coloured Complexes Why transition metals ion complexes have different colour?Taken from: http://www.chm.bris.ac.uk/webprojects2003/rogers/998/chemlab.htm 24. Transition Metals (d block elements) Coloured Complexes Why transition metals ion complexes have different colour?Why Titanium (III) ion is violet ?Taken from: http://www.chm.bris.ac.uk/webprojects2003/rogers/998/chemlab.htm 25. Transition Metals (d block elements) Coloured Complexes Colour formation due to splitting of 3d orbitals of metal ion by ligandsAbsence of ligands 3d orbitals same energy levelFive 3d orbitals five 3d orbitals are equal in energy 26. Transition Metals (d block elements) Coloured Complexes Colour formation due to splitting of 3d orbitals of metal ion by ligandsAbsence of ligands 3d orbitals same energy levelFive 3d orbitals five 3d orbitals are equal in energyPresence of ligands 3d orbitals split five 3d orbitals unequal in energyFive 3d orbitals Splitting 3d orbitals 27. Transition Metals (d block elements) Coloured ComplexesColour formation due to splitting of 3d orbitals of metal ion by ligands Absence of ligands 3d orbitals same energy level Five 3d orbitals five 3d orbitals are equal in energy Presence of ligands 3d orbitals split five 3d orbitals unequal in energyFive 3d orbitalsSplitting 3d orbitalsWhy Titanium (III) ion solution is violet ? violetNo ligands No splitting of 3d orbitals 3d orbitals equal energyhttp://www.chemistryland.com/CHM151W/07-Atomic%20Structure/ElectronConfig/ElectronConfiguration.html 28. Transition Metals (d block elements) Coloured ComplexesColour formation due to splitting of 3d orbitals of metal ion by ligands Absence of ligands 3d orbitals same energy level Five 3d orbitals five 3d orbitals are equal in energy Presence of ligands 3d orbitals split five 3d orbitals unequal in energyFive 3d orbitals Splitting 3d orbitalsWhy Titanium (III) ion solution is violet ? violetNo ligandsWith ligands No splitting of 3d orbitals Splitting of 3d orbitals 3d orbitals equal energy 3d orbitals unequal energySplitting 3d orbitals 3d orbitals split into different energy level Electronic transition possible Photon of light absorbed to excite electronshttp://www.chemistryland.com/CHM151W/07-Atomic%20Structure/ElectronConfig/ElectronConfiguration.html 29. Transition Metals (d block elements) Coloured ComplexesWhy Titanium (III) ion solution is violet ?Ti3+ transmit blue/violet region BUT absorb green/yellow/red 30. Transition Metals (d block elements) Coloured ComplexesWhy Titanium (III) ion solution is violet ?Ti3+ transmit blue/violet region BUT absorb green/yellow/red Light in vis region Ti3+ transmitElectron excited blue/violet regionGround state Ti3+ (3d1)Ti3+ absorb green/yellow/red photons to excite electrons to higher level 31. Transition Metals (d block elements) Coloured ComplexesWhy Copper (II) ion solution is blue ? Cu2+ transmit blue/violet BUT absorb /orange/red region 32. Transition Metals (d block elements) Coloured ComplexesWhy Copper (II) ion solution is blue ?Cu2+ transmit blue/violet BUT absorb /orange/red regionLight in vis region Cu2+ transmitElectron excited blue/violet regionGround state Cu2+ (3d9)Cu2+ absorb orange/red photons to excite electrons to higher levelCu2+ appears blue Complementary colour (Red/Orange) are absorbed to excite electron Blue colour is transmitted 33. Transition Metals (d block elements) Coloured ComplexesTransition metal have different colours due to splitting of 3d orbitals by ligands partially filled 3d orbitals for electron transitionWhy some are colourless ?Cu2+ anhydrous colourlessCu1+ hydrous colourlessZn2+ hydrous colourlessSc3+ hydrous colourless 34. Transition Metals (d block elements) Coloured ComplexesTransition metal have different colours due to splitting of 3d orbitals by ligands partially filled 3d orbitals for electron transitionWhy some are colourless ?Cu2+ anhydrous colourlessCu1+ hydrous colourlessZn2+ hydrous colourlessSc3+ hydrous colourless CuSO4 (anhydrous) without ligands - Colourless NO Colour No ligands No splitting of 3d orbitals No electron transition No colour 35. Transition Metals (d block elements) Coloured ComplexesTransition metal have different colours due to splitting of 3d orbitals by ligands partially filled 3d orbitals for electron transitionWhy some are colourless ?Cu2+ anhydrous colourlessCu1+ hydrous colourlessZn2+ hydrous colourlessSc3+ hydrous colourlessCuSO4 (anhydrous) without ligands - Colourless NO ColourNo ligandsNo splitting of 3d orbitalsNo electron transitionNo colour CuSO4 (hydrous) with H2O ligands Blue Colour ColourGround state Cu2+ (3d9)Electron transition from lower to higher level by Ligands split the 3d orbitals absorbing E[Cu(H2O)6]2+ SO4 splitting 3d orbitals by ligand Blue colour 36. Transition Metals (d block elements) Coloured Complexes Sc 3+ ion with ligands - Colourless[Sc(H2O)6]3+ CI3 Empty 3d orbitals NO Colour No colourNo electrons in 3d orbitalNo electron transition Ground state Sc3+ (3d0) Ligands split the 3d orbitals 37. Transition Metals (d block elements) Coloured ComplexesSc 3+ ion with ligands - Colourless[Sc(H2O)6]3+ CI3 Empty 3d orbitalsNO Colour No colour No electrons in 3d orbital No electron transitionGround state Sc3+ (3d0)Ligands split the 3d orbitals [Zn(H2O)6]2+ SO4Zn2+ ion with ligands - Colourless Filled 3d orbitals No colour NO Colour Fully filled in 3d orbital No electron transition Ground state Zn2+ (3d10)Ligands split the 3d orbitals 38. Transition Metals (d block elements) Coloured Complexes[Cu(H2O)6]1+ CICu1+ ion with H2O ligands - Colourless Filled 3d orbitals No colour NO ColourFully filled in 3d orbitalNo electron transition Ground state Cu2+ (3d10)Ligands split the 3d orbitals 39. Transition Metals (d block elements) Coloured Complexes[Cu(H2O)6]1+ CICu1+ ion with H2O ligands - Colourless Filled 3d orbitals No colour NO ColourFully filled in 3d orbitalNo electron transition Ground state Cu2+ (3d10)Ligands split the 3d orbitalsCu2+ ion without H2O ligands ColourlessNO ColourNo ligandsNo splitting of 3d orbitalsNo electron transitionNo colour 40. Transition Metals (d block elements) Coloured Complexes[Cu(H2O)6]1+ CICu1+ ion with H2O ligands - Colourless Filled 3d orbitals No colour NO ColourFully filled in 3d orbitalNo electron transition Ground state Cu2+ (3d10)Ligands split the 3d orbitalsCu2+ ion without H2O ligands Colourless NO ColourNo ligandsNo splitting of 3d orbitalsNo electron transitionNo colour Cu2+ ion with H2O ligands Blue Colour Colour Ground state Cu2+ (3d9) Electron transition from lower to higher level by absorbing E Ligands split the 3d orbitals[Cu(H2O)6]2+ SO4 splitting 3d orbitals by ligand Blue colour 41. Transition Metals (d block elements) Catalytic ActivityCatalytic Properties of Transition metal Variable oxidation state - lose and gain electron easily Acts as Homogeneous or Heterogenous catalyst lower activation energy Homogeneous catalyst catalyst and reactants are in the same phase Heterogeneous catalyst catalyst and reactants are in different phase Heterogenous catalyst- Metal surface provide active site (lower Ea ) Surface catalyst bring molecule together (close contact)-bond breaking/making easier Transition metal work as a catalyst with diff oxidation states 2 H2O2 + Fe2+ 2H2O + O2 + Fe3+ H2O2 + Fe2+ H2O + O2 + Fe3+ Fe3+ + I - Fe2+ + I2 Fe2+ Fe3+ recycle 3+ Reaction is slow if only I- is added H2O2 + I- I2 + H2O + O2 Reaction speeds up if Fe2+/Fe3+ added Fe2+ changes to Fe3+ and is change back to Fe2+ againhttp://comp.chem.umn.edu/itccd/Catalytics.html http://gcserevision101.wordpress.com/chemistry-c3/ 42. Uses of transition metal as catalyst in industrial processes Haber Process Production of ammonia for fertilisers and agriculture3H2 + N2 2NH3 Contact Process Sulphuric acid for fertilisers, detergent, paints and batteries2SO2 + O2 2SO3 Hydrogenation Process- Margerine and trans fatsC2H4 H2 C2H6 Hydrogen peroxide decomposition Oxygen production2H2O2 2H2O + O2 Catalytic converter Convertion of CO and NO to CO2 and N22CO + 2NO 2CO2 + N2Biological enzymes Hemoglobin transport oxygen Vitamin B12 RBC productionhttp://www.bbc.co.uk/schools/gcsebitesize/science/add_aqa_pre_2011/chemreac/energychangesrev3.shtmlhttp://www.automotivecatalysts.umicore.com/en/autoCatsWebProduct/autoCatsWebGasolineCatalyts/ 43. Uses of transition metal as catalyst in industrial processes Haber Process Production of ammonia for fertilisers and agriculture3H2 + N2 2NH3Iron , Fe Contact Process Sulphuric acid for fertilisers, detergent, paints and batteries2SO2 + O2 2SO3 Vanadium (V) oxide, V2O5 Hydrogenation Process- Margerine and trans fatsC2H4 H2 C2H6 Nickel, Ni Hydrogen peroxide decomposition Oxygen production2H2O2 2H2O + O2Manganese (IV) oxide, MnO2 Catalytic converter Convertion of CO and NO to CO2 and N22CO + 2NO 2CO2 + N2 Platinum/Palladium, Pt/PdBiological enzymes Hemoglobin transport oxygen Iron , Fe Vitamin B12 RBC productionCobalt, Cohttp://www.bbc.co.uk/schools/gcsebitesize/science/add_aqa_pre_2011/chemreac/energychangesrev3.shtmlhttp://www.automotivecatalysts.umicore.com/en/autoCatsWebProduct/autoCatsWebGasolineCatalyts/ 44. Video on transition metalClick here to view nickel ion complexesClick here to view vanadium ion complexes Click here to view iron in hemoglobin Click here to view oxidation states 45. AcknowledgementsThanks to source of pictures and video used in this presentationThanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/Prepared by Lawrence KokCheck out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com