ieee 519 2014 - ieee entity web...

23
12/18/2014 1 IEEE 5192014 Mark Halpin November 2014 What Has Stayed the Same? Most importantly, the overall philosophy Users are responsible for limiting harmonic currents System owner/operator are responsible for managing voltage quality All recommended limits apply only at the PCC Existing recommended limits are retained Some new ones added

Upload: phamnhu

Post on 05-Apr-2018

227 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

1

IEEE 519‐2014

Mark Halpin

November 2014

What Has Stayed the Same?

• Most importantly, the overall philosophy

– Users are responsible for limiting harmonic currents

– System owner/operator are responsible for managing voltage quality

– All recommended limits apply only at the PCC

• Existing recommended limits are retained

– Some new ones added

Page 2: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

2

What Has Been Changed?

• Philosophy of changes  Driven by 20 years of experience with 519‐1992 and increased cooperation with IEC

• Multiple changes related to– Measurement techniques– Time varying harmonic limits– Low voltage (<1 kV) harmonic limits– Interharmonic limits– Notching and TIF/IT limits

• Also “editorial” changes to– Reduce document size– Minimize miss‐use of PCC‐based limits– Better harmonize with other standards projects

Measurements

• Recommended to use IEC 61000‐4‐7 specifications

– 200 ms (12 cycle @ 60 Hz) window gives 5 Hz resolution 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X-6

0

X-5

5

X-5

0

X-4

5

X-4

0

X-3

5

X-3

0

X-2

5

X-2

0

X-1

5

X-1

0

X-5 X

X+

5

X+

10

X+

15

X+

20

X+

25

X+

30

X+

35

X+

40

X+

45

X+

50

X+

55

X+

60

Interharmonics @ 5 Hz

Harmonics @ 60 Hz

Page 3: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

3

Indices

• From IEC 61000‐4‐30

– 3 s “very short” value

– 10 min “short” value

215

1i

2i,nvs,n F

151

F

2200

1i

2i),vs,n(sh,n F

2001

F

Assessment of Limit Compliance

0

2

4

6

8

10

12

14

16

18

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Time (h)

TD

D (

%)

What value should be compared against the limit?

Page 4: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

4

Weekly Statistical Indices

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 91

01

11

21

31

41

51

61

71

81

92

0

TDD (%)

Fre

quen

cy

.0%

20.0%

40.0%

60.0%

80.0%

100.0%

95th or 99th

percentile

Value to be compared against limit

Changes to the Limits

• New voltage limit provision for low voltage (<1 kV)– 5% individual harmonic, 8% total harmonic distortion

• Revised current limits for general transmission systems (> 161 kV)

Maximum Harmonic Current Distortion in Percent of IL

Individual Harmonic Order (Odd Harmonics)

Isc/IL <11 11≤h< 17 17≤h< 23 23≤h< 35 35≤h TDD

<25* 1.0 0.5 0.38 0.15 0.1 1.5

25<50 2.0 1.0 0.75 0.3 0.15 2.5

≥50 3.0 1.5 1.15 0.45 0.22 3.75

Page 5: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

5

Percentile‐Based Voltage Limits

• Daily 99th percentile very short time (3 s) values should be less than 1.5 times the values given in Table …

• Weekly 95th percentile short time (10 min) values should be less than the values given in Table …

Percentile‐Based Current Limits

• Daily 99th percentile very short time (3 s) harmonic currents should be less than 2.0 times the values given in Table …

• Weekly 99th percentile short time (10 min) harmonic currents should be less than 1.5 times the values given in Table …

• Weekly 95th percentile short time (10 min) harmonic currents should be less than the values given in Table …

Page 6: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

6

Interharmonic Limits (“Recommendations”)

• Voltage‐only 0‐120 Hz limits based on flicker

0

1

2

3

4

5

6

0 510

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

Frequency (Hz)

Volta

ge (%

of N

om

inal)

V≤1kV

1 kV<V≤69 kV

69 kV<V≤161 kV

V>161 kV

V≤1kV

1 kV<V≤69 kV

69 kV<V≤161 kV

V>161 kV

allvoltages

allvoltages

Editorial Changes

• Improve definitions of all relevant terms to account for greater understanding and improved instrumentation

• Removal of “flicker curve”

• Removal of “tutorial” material (shorten document)

• Strengthen introductory material dealing with PCC‐only applicability of recommended limits 

Page 7: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

7

Experience So Far

• Granted, this is limited mostly to “experiments” over the last 6‐12 months– Users with relatively stable harmonic emissions are essentially unaffected

– Users with rapidly‐changing harmonic emissions may show reduced levels in measurements

• The 200 ms window acts as a smoothing filter

• Percentiles and multipliers appear to be relatively consistent with “short time harmonic” multipliers often used with 519‐1992

Passive Mitigation of Power System Harmonics

Mark Halpin

November 2014

Page 8: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

8

Outline

• Passive Filters

– Basic resonance concepts

– Single‐tune filters

– C‐type filters

• Performance comparisons

– Sensitivities to network conditions

– Overall effectiveness

• Conclusions

Series Resonance Concept

CL

eq

XXj

C

1LjZ

LC

1r

Major concept:  The impedance can become a very low value

resonant frequency, r

inductive

capacitive

Page 9: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

9

Series Resonance In Practice

HarmonicVoltages

harmoniccurrents

Effects include:1.  Heating in transformer2.  Fuse blowing at capacitor bank

Typical resonances:‐‐500 kVA, 12.47 kV, 5%‐‐300‐1200 kvar capacitor‐‐r=173‐346 Hz (3

rd‐6th harmonic)

Parallel Resonance

CL

CL

eq

XX

XXj

Cj

1//LjZ

LC

1r

Major concept:  The impedance can become a very high value

resonant frequency, r

capacitive

inductive

Page 10: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

10

Parallel Resonance in Practice

harmonicvoltages

HarmonicCurrents

Effects include:1.  Excessive voltage distortion2.  Capacitor bank fuse blowing

Typical resonances‐‐500 kVA, 480 V, 5%‐‐400 kVA load, 80% pf lagging‐‐pf correction to 95% lagging (120 kvar)‐‐r=547 Hz (9

th harmonic)

Resonance Summary

• Series resonance

– Widely exploited in harmonic filters

– Can lead to (harmonic) overcurrents

• Parallel resonance

– Frequently leads to (harmonic) overvoltages

– Sometimes used in blocking filters

Page 11: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

11

Single‐Tuned Filters

• “Single tune” means a single resonant point

Classical Single‐Tuned Filter

C‐type Filter

Applications

• Classic single‐tuned filters– Common in industrial applications

• Inside facility• At the PCC• May use multiple filters, each tuned to a different frequency

– Traditionally used by utilities (declining)

• C‐type filters– Not common in industrial applications– Becoming dominant in the utility environment– Often used in conjunction with classic single‐tuned designs

• Purpose is always the same—give harmonic currents a low‐impedance path “to ground”– Results in reduced voltage distortion

Page 12: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

12

Application Considerations

• Ratings– Capacitor

• RMS voltage

• Peak voltage

• RMS current

• kVA

– Reactor currents• Peak current

• RMS current

• Losses

Filter Application Procedure

• Use frequency scan and harmonic study to determine requirements– Number of filters (estimate)

– Tuned frequency for each

– Ratings (estimate)

• Start with lowest‐frequency filter and work upward (in frequency)– Each filter has parameters than can be at least partially optimized

– Consider credible system changes

– Assess impacts of filter parameter variations (±10%, maybe more)

• Evaluate total performance vs. requirements– Consider credible system changes

– Specify required ratings (tweak design as necessary)

Page 13: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

13

Comments on Frequency Scans

• These results indicate the potential for a problem• They are extremely useful for designing filters

– Identification of high/low impedance frequencies (resonant conditions)

– Assessment of filter impacts on frequency response• Alteration of undesirable impedance characteristics• Demonstration of intentional low impedance path(s)

• They are subject to the accuracy of the models used• Complete assessments require a harmonic study

– Results subject to model accuracy and assumptions– Limit compliance– Ratings of components

Demonstration Case

• Basic harmonic situation and sensitivities– Series and parallel resonance conditions

• Mitigation using filters– Single‐tuned “industrial”– C‐type “utility”

Page 14: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

14

Normal Condition Frequency Response—LV Filter Application

(Are impedances high or low at known harmonic frequencies?)

0

0.2

0.4

0.6

0.8

1

1.20 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233

Imped

ance ()

Harmonic #

System Normal

Sensitivities—Substation SC Power(equivalent impedance at LV bus)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Imped

ance ()

Harmonic #

130 MVA

150 MVA

170 MVA

Increasing severity and frequency with fault MVA

Decreasing severity andIncreasing frequency with fault MVA

Increasing severity (lower Z) and increasing frequency with Fault MVA

These sensitivities would be considered pretty small and insignificant

Page 15: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

15

Sensitivities—Capacitor Status(equivalent impedance at LV bus)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233

Imped

ance ()

Harmonic #

All Caps

LV Only

MV Only

No Caps

Low(er) frequency resonance not much affected by MV cap

High(er) frequency resonance significantly affected by MV cap

inductive

capacitive

Low(er) frequency resonances not much affected by things thatimpact high(er) frequency response—opposite not true!!

Sensitivities‐‐Conclusions

• Large changes in system impedances, equivalents, etc., (fault MVA) are usually needed for significant effects

• Relatively small changes in capacitor bank status (or size) can have major impacts

• Filters must function under all of the potential scenarios

Page 16: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

16

Design Approach

• Convert existing 480 V cap bank to filter bank by adding series reactor– Capacitor voltage rating often will be exceeded in the end!

– X/R ratio of reactor can have significant impact

• Losses

• Performance

– Additional resistance can be added in series if needed (losses will increase!) for performance

m4.15X

H7.40L

006908.L21

300

LC21

f

L

tune

Note:  Tuned frequency normallytaken ≈5% below targetAvoid overloadParameter variation

5th Harmonic Single‐Tune Design

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Imped

ance ()

Harmonic #

X/R=100

X/R=10

X/R=1

R=0.0770 Ohm

Page 17: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

17

Filter Quality (“Q”) Factor

• The “sharpness” of the frequency response of a filter is often indicated by the filter “Q”

• The filter Q indicates

– Damping (less sharp characteristic—more damped)• Lower Q, more damping

– Losses• Lower Q, more losses

• For the previous slide

– Q=500, 50, 5, 1 

R

Lf2

R

XhQ tune)60(Ltune

A Closer Look at Q

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9

10

Impedance ()

Harmonic #

Q=500

Q=50

Q=5

Q=1

All this discussion of Q doesn’t look like a big deal…

Page 18: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

18

Performance Evaluation(480 V Bus Impedance)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233

Imped

ance ()

Harmonic #

No Filter

5th Filter (Q=500)

5th Filter (Q=1)

5th Filter (Q=10)

Filter Q has an obvious impact on the entire response!

5th harmonic currents produce much less 5th

voltage after filter

Performance Evaluation(LV Filter Impact on MV System at Cap Bank)

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233

Imped

ance ()

Harmonic #

No Filter

High Q (500)

Low Q (10)

Lower Q:  Not as much filtering at 5th harmonicmuch less amplification at higher frequencies

5th harmonic currents produce much less 5th

voltage after filter

Page 19: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

19

Filtering on 12 kV Network

• Discussion so far based on filtering on customer‐side (LV)

– Presumably associated with limit compliance

• If all network users are in compliance (currents), excessive voltage distortion may still exist

– Strong resonances can create large (noncompliant)voltage effects from small (within compliance) currents

– Solution is to filter on MV (utility) side

– Filter designs must account for LV filter presence (or not)

Same Approach for Filter Design

367.10X

mH5.27L

235.10L21

300

LC21

f

L

tune

Q=100R=0.5184 Q=10R=5.1835 

Note:  Tuned frequency normallytaken ≈5% below targetAvoid overloadParameter variation

Page 20: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

20

12 kV Filter Performance

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233

Imped

ance ()

Harmonic #

No Filter

High Q (100)

Low Q (10)

Filter eliminates 5th resonance, but creates new ones that could be as bad (or worse).Best solution probably to split 600 kvar into 2x300 kvar and make two filters—5th and 7th

The C‐type Filter

• Tuning (selection of parameters) is more difficult than for single tuned filters

• Starting from an existing cap bank Ctotal– Step 1 Choose L to tune filter frequency as for single‐tuned designs (based on Ctotal)

– Step 2 Divide existing capacitance into two parts

• C2 chosen so that L and C2 are series resonant (Z=0) at the power frequency

• C1 determined from “Ctotal‐C2” (C in series combines as parallel)

– Step 3 Pick R to provide desired high(er) frequency damping

Page 21: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

21

C‐type Filter Example

• Will a 12 kV C‐type perform better than the conventional single‐tuned design?

• Existing 600 kvar bankCtotal=10.235F– L=10.367  (27.5 mH) for ftune=300 Hz (from ST design)

– For 60 Hz “bypass” tuning, C2=255.85 F• C1=10.66 F

– Select R for desired damping

• Note Q defined differently

Lf2R

XhR

Qtune)60(Ltune

C‐type vs. ST Filter Performance

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9

10

Imped

ance ()

Harmonic #

No Filter

ST Q=100

ST Q=10

CT Q=5

CT Q=10

Page 22: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

22

12 kV Filter Sensitivities(LV Cap/Filter Off‐line)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Imped

ance ()

Harmonic #

ST Q=10 (No LV)

CT Q=15 (No LV)

ST Q=10

CT Q=15

CT Q=0.5 (no LV)

The real advantage of the C‐type is control of HF response

Comments on Comparisons

• Both filter types are effective at the tuned frequency• C‐type has very low power frequency losses

– Single‐tuned filter has resistive losses proportional to cap bank reactive current squared

• Low Q single tuned designs are helpful to reduce secondary resonances created by filter additions– Alternative is to add secondary filters

• Low Q C‐type designs provide good damping of secondary resonances by default– Much less likely to encounter “secondary” problems

• C‐type designs make poor utilization of existing cap banks– Consider using one bank for var compensation with a separate 

filter installation

Page 23: IEEE 519 2014 - IEEE Entity Web Hostingsites.ieee.org/sas-pesias/files/2016/03/Harmonic-Filters-1.pdf · IEEE 519‐2014 Mark Halpin November ... –System owner/operator are responsible

12/18/2014

23

Passive Filter Conclusions

• Two main types exist—both work– Single tuned

• Main advantages:  Simplicity, up‐front cost

• Main disadvantages: losses, can create secondary problems

– C‐type• Main advantages:  Low losses, HF response

• Main disadvantage: up‐front cost, poor utilization of existing cap banks

• Frequency scans are a great tool for filter design– A harmonic study is required to determine necessary ratings