ieee power engineering review volume per-4 issue 3 1984

2
multiple swing transient simulation results ca n b e improved i f t he coherent neighboring systems ar e replaced b their dynamic equiv¬ alents. However, most coherent area identification approaches have not been demonstrated  large systems. I n this paper, we develop a sparsity-based technique f o r identifying slow-coherent areas i n large power systems. T h e area identification technique i s based on t h e slow-coherency approach [ 1 ] t h e coherency o f machines using only the slowest modes i n t h e systems. F o r real power system models, this approach identifies areas having t h e property that t h e number of connections within t h e areas i s much larger than the number ofconnections between t h e areas. These areas ar e robust a n d will remain unchanged f o r most system disturbances. Further¬ more t h e aggregate model o f t he system represents t h e slow inter- area oscillations, a n d t h e local models o f t h e areas represent t h e fast intermachine oscillations. This allowsthe u s e o f only t h e local model o f t h e area containing t h e disturbance f o r first swing stability stud¬ ies. F o r multiple swing studies, only t h e aggregate model o f t he areas needs t o b e included. T o find theslow-coherent areas, t h e technique in [ 1] requires the computation o f t h e slow eigenbasis o f t h e electromechanicalmodel. For large power systems, it h a s several computational difficulties. First, i t requires t h e load buses t o b e eliminated which i s a time consuming process. Second, the resulting system matrix i s dense which requires a large amount o f computer storage. Third, general purpose eigenfunction routines ar e n ot suitable f o r extremely large a n d dense matrices. T h e sparsity-basedtechnique i n this paper circumvents these dif¬ ficulties. The crucial difference i s that we attach a machine with no impedance a n d a small inertia t o every bus. N o load bus reduction i s t o obtainthe electromechanical model o f this artificial sys¬ tem. Thus t h e system matrix retains t h e spareness o f t he network structure. T h e paper shows that t h e slow modes o f the original system ar e closely approximated b y o f t he artificial system. T o compute the slow eigenspace o f the sparse system matrix, we u se the Lanczos algorithm i n [2]. This procedure transforms a real symmetric matrix into a family o f symmetric tridiagonal matrices. Subsets ofthe eigenvalues o f these tridiagonal matrices ar e selected as approximate eigenvalues o f the given matrix. In o u r application, covergence i s speeded u p significantly b y introducing a shift t o t h e system matrix a n d using t h e inverse o f the shifted matrix in t h e Lanczos recursions. T h e technique has been implemented  a small main frame computer (VAX 11/780), a n d h a s been used t o find coherent areas i n a 175-machine, 1326-bus model o f t h e Texas system, a n d a 411- machine, 1750-bus model o f the WSCC (Western Systems Coordi¬ nating Council) system. An 11-area partition o f t h e WSCC system model i s shown i n Fig. 1 . T h e dots i n the figure represent t h e loca¬ tions o f some o f t h e machines. T h e computation time required i s o f t h e order o f magnitude ofthat required o f a f e w load-flow solutions. Discusser: D . V. Whiting, C . Concordia, Dr. J . Zaborszky, D r. G . Huang, a n d J. S . Lawler References  1  Time-scale Modeling of Dynamic Networks with Applications t o Power Systems, J . H . Chow, Ed., Lecture Notes in Control a n d Information Sciences, Vol. 4 6. N e w York: Springer-Verlag, 1982. [ 2] J. Cullum a n d R . A . Willoughby,  Computing eigenvalues o f very large symmetric matrices, J . Comput Phys., vol. 4 4 , p p . 329-358,1981. Fig. 1. n 11-area partition of WSCC. 8 3 S  446-2 March 1984, pp . 474-482 Overvoltages D u e t o Open-Phase Occurrence i n Reactor Compensated E HV Lines F . Iliceto, Senior Member, IEEE University o f Rome, Italy E . Cinieri a n d A . D i Vita University o f Rome, Italy Application o f shunt reactors with neutral solidly grounded, con¬ nected t o the terminals o f EH V lines, h a s been a source o f worry when high degrees o f compensation ar e applied, because o f the large resonance overvoltages which might occur i n conjunction with one o r tw o open-phase conditions, which m ay b e caused b y line single-phase reclosure, or stuck breaker poles i n t he opening or closing operation. Resonance a t power frequency i s possible b e ¬ cause o f unequal compensation o f t h e positive a n d zero-sequence line capacitances. Fig. 1 a shows a simplified electrical schematic o f a three-phase reactor compensated symmetrical line, supplied from one terminal, with one phase open: series impedances ar e neglected; a l l system components ar e taken as linear; losses ar e neglected, including corona loss. C 0 ,  ar e t he phase-to-ground a n d phase-to-phase capacitances, a n d L s reactor inductance. Fig. 1(b) shows the Thevenin equivalent circuit f o r t he calculation o f voltage induced i n t h e open-phase. Curve a - , i n Fig. 2 gives t he peak value o f open- phase t o ground voltage f o r a 3 8 0 kV line, versus t h e degree o f shunt compensation K . I t shows a sharp resonance effect under t h e above simplified assumptions. Th e article gives first a physical explanation o f he phenomena, a n d equivalent circuits a n d free oscillation frequencies ar e derived also f o r t h e case o f t w o open-phases. 2 4 IEEE Power Engineering Review, March 1984

Upload: miguelankelo

Post on 14-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IEEE Power Engineering Review Volume PER-4 Issue 3 1984

7/27/2019 IEEE Power Engineering Review Volume PER-4 Issue 3 1984

http://slidepdf.com/reader/full/ieee-power-engineering-review-volume-per-4-issue-3-1984 1/2

m u l t i p l e s w i n g t r a n s i e n t s i m u l a t i o n r e s u l t s ca n b e i m p r o v e d i f t h ec o h e r e n t n e i g h b o r i n g s y s t e m s ar e r e p l a c e d b y t h e i r d y n a m i c e q u i v ¬a l e n t s . H o w e v e r , most c o h e r e n t area i d e n t i f i c a t i o n a p p r o a c h e s h a v en o t b e e n d e m o n s t r a t e d on l a r g e s y s t e m s . I n t h i s p a p e r , we d e v e l o p a

s p a r s i t y - b a s e d t e c h n i q u e f o r i d e n t i f y i n g s l o w - c o h e r e n t areas i nl a r g e power s y s t e m s .

T h e area i d e n t i f i c a t i o n t e c h n i q u e i s b a s e d on t h e s l o w - c o h e r e n c ya p p r o a c h [ 1 ] w h i c h d e t e r m i n e s t h e c o h e r e n c y o f m a c h i n e s u s i n go n l y t h e s l o w e s t modes i n t h e s y s t e m s . F o r r e a l power s y s t e m

m o d e l s , t h i s a p p r o a c h i d e n t i f i e s areas h a v i n g t h e p r o p e r t y t h a t t h enumber o f c o n n e c t i o n s w i t h i n t h e areas i s much l a r g e r t h a n t h enumber o f c o n n e c t i o n s b e t w e e n t h e areas. T h e s e areas ar e r o b u s ta n d w i l l r e m a i n u n c h a n g e d f o r most s y s t e m d i s t u r b a n c e s . F u r t h e r ¬more, t h e a g g r e g a t e m o d e l o f t h e s y s t e m r e p r e s e n t s t h e s l o w i n t e r -area o s c i l l a t i o n s , a n d t h e l o c a l m o d e l s o f t h e areas r e p r e s e n t t h e f a s ti n t e r m a c h i n e o s c i l l a t i o n s . T h i s a l l o w s t h e u se o f o n l y t h e l o c a l m o d e lo f t h e area c o n t a i n i n g t h e d i s t u r b a n c e f o r f i r s t s w i n g s t a b i l i t y s t u d ¬i e s . F o r m u l t i p l e s w i n g s t u d i e s , o n l y t h e a g g r e g a t e m o d e l o f t h eareas n e e d s t o b e i n c l u d e d .

T o f i n d t h e s l o w - c o h e r e n t a r e a s , t h e t e c h n i q u e i n [ 1 ] r e q u i r e s t h ec o m p u t a t i o n o f t h e s l o w e i g e n b a s i s o f t h e e l e c t r o m e c h a n i c a l m o d e l .F o r l a r g e power s y s t e m s , i t h a s s e v e r a l c o m p u t a t i o n a l d i f f i c u l t i e s .F i r s t , i t r e q u i r e s t h e l o a d b u s e s t o b e e l i m i n a t e d w h i c h i s a t i m ec o n s u m i n g p r o c e s s . S e c o n d , t h e r e s u l t i n g s y s t e m m a t r i x i s d e n s ew h i c h r e q u i r e s a l a r g e amount o f c o m p u t e r s t o r a g e . T h i r d , g e n e r a lp u r p o s e e i g e n f u n c t i o n r o u t i n e s are n o t s u i t a b l e f o r e x t r e m e l y l a r g ea n d d e n s e m a t r i c e s .T h e s p a r s i t y - b a s e d t e c h n i q u e i n t h i s p a p e r c i r c u m v e n t s t h e s e d i f ¬f i c u l t i e s . T h e c r u c i a l d i f f e r e n c e i s t h a t we a t t a c h a m a c h i n e w i t h no

i m p e d a n c e a n d a s m a l l i n e r t i a t o e v e r y b u s . No l o a d b u s r e d u c t i o n i sn e e d e d t o o b t a i n t h e e l e c t r o m e c h a n i c a l m o d e l o f t h i s a r t i f i c i a l s y s ¬t e m . T h u s t h e s y s t e m m a t r i x r e t a i n s t h e s p a r e n e s s o f t h e n e t w o r ks t r u c t u r e . T h e p a p e r shows t h a t t h e s l o w modes o f t h e o r i g i n a ls y s t e m ar e c l o s e l y a p p r o x i m a t e d b y t h o s e o f t h e a r t i f i c i a l s y s t e m .

T o c o m p u t e t h e s l o w e i g e n s p a c e o f t h e s p a r s e s y s t e m m a t r i x , weu se t h e L a n c z o s a l g o r i t h m i n [ 2 ] . T h i s p r o c e d u r e t r a n s f o r m s a r e a ls y m m e t r i c m a t r i x i n t o a f a m i l y o f s y m m e t r i c t r i d i a g o n a l m a t r i c e s .S u b s e t s o f t h e e i g e n v a l u e s o f t h e s e t r i d i a g o n a l m a t r i c e s ar e s e l e c t e das a p p r o x i m a t e e i g e n v a l u e s o f t h e g i v e n m a t r i x . I n ou r a p p l i c a t i o n ,c o v e r g e n c e i s s p e e d e d up s i g n i f i c a n t l y b y i n t r o d u c i n g a s h i f t t o t h es y s t e m m a t r i x a n d u s i n g t h e i n v e r s e o f t h e s h i f t e d m a t r i x i n t h eL a n c z o s r e c u r s i o n s .

T h e t e c h n i q u e h a s b e e n i m p l e m e n t e d on a s m a l l m a i n f r a m e

c o m p u t e r ( V A X 1 1 / 7 8 0 ) , a n d h a s b e e n u s e d t o f i n d c o h e r e n t areas i na 1 7 5 - m a c h i n e , 1 3 2 6 - b u s m o d e l o f t h e T e x a s s y s t e m , a n d a 4 1 1 -m a c h i n e , 1 7 5 0 - b u s m o d e l o f t h e WSCC ( W e s t e r n S y s t e m s C o o r d i ¬n a t i n g C o u n c i l ) s y s t e m . An 1 1 - a r e a p a r t i t i o n o f t h e WSCC s y s t e mm o d e l i s shown i n F i g . 1 . T h e d o t s i n t h e f i g u r e r e p r e s e n t t h e l o c a ¬t i o n s o f some o f t h e m a c h i n e s . T h e c o m p u t a t i o n t i m e r e q u i r e d i s o ft h e o r d e r o f m a g n i t u d e o f t h a t r e q u i r e d o f a f e w l o a d - f l o w s o l u t i o n s .

D i s c u s s e r : D . V . W h i t i n g , C . C o n c o r d i a , D r . J . Z a b o r s z k y , D r . G .H u a n g , a n d J . S . L a w l e r

R e f e r e n c e s

[ 1 ] T i m e - s c a l e M o d e l i n g o f D y n a m i c N e t w o r k s w i t h A p p l i c a t i o n s t oPower S y s t e m s , J . H . C h o w , E d . , L e c t u r e N o t e s i n C o n t r o l a n dI n f o r m a t i o n S c i e n c e s , V o l . 4 6 . N e w Y o r k : S p r i n g e r - V e r l a g ,1 9 8 2 .

[ 2 ] J . C u l l u m a n d R . A . W i l l o u g h b y , " C o m p u t i n g e i g e n v a l u e s o fv e r y l a r g e s y m m e t r i c m a t r i c e s , " J . C o m p u t P h y s . , v o l . 4 4 , p p .

3 2 9 - 3 5 8 , 1 9 8 1 .

F i g . 1 . An 1 1 - a r e a p a r t i t i o n o f W S C C .

8 3 SM4 4 6 - 2March 1 9 8 4 , p p . 4 7 4 - 4 8 2

O v e r v o l t a g e s Due t o O p e n - P h a s eO c c u r r e n c e i n R e a c t o r C o m p e n s a t e dEHV L i n e sF . I l i c e t o , S e n i o r M e m b e r , I E E EU n i v e r s i t y o f R o m e , I t a l yE . C i n i e r i a n d A . D i V i t aU n i v e r s i t y o f R o m e , I t a l y

A p p l i c a t i o n o f s h u n t r e a c t o r s w i t h n e u t r a l s o l i d l y g r o u n d e d , con¬

n e c t e d t o t h e t e r m i n a l s o f EHV l i n e s , h a s b e e n a source o f w o r r ywhen h i g h d e g r e e s o f c o m p e n s a t i o n ar e a p p l i e d , b e c a u s e o f t h el a r g e resonance o v e r v o l t a g e s w h i c h m i g h t occur i n c o n j u n c t i o n w i t hone or tw o o p e n - p h a s e c o n d i t i o n s , w h i c h may b e c a u s e d b y l i n es i n g l e - p h a s e r e c l o s u r e , or s t u c k b r e a k e r p o l e s i n t h e o p e n i n g or

c l o s i n g o p e r a t i o n . R e s o n a n c e a t power f r e q u e n c y i s p o s s i b l e b e ¬cause o f u n e q u a l c o m p e n s a t i o n o f t h e p o s i t i v e a n d z e r o - s e q u e n c el i n e c a p a c i t a n c e s .

F i g . 1 ( a ) s h o w s a s i m p l i f i e d e l e c t r i c a l s c h e m a t i c o f a t h r e e - p h a s er e a c t o r c o m p e n s a t e d s y m m e t r i c a l l i n e , s u p p l i e d f r o m one t e r m i n a l ,w i t h one p h a s e o p e n : s e r i e s i m p e d a n c e s ar e n e g l e c t e d ; a l l s y s t e mc o m p o n e n t s ar e t a k e n as l i n e a r ; l o s s e s ar e n e g l e c t e d , i n c l u d i n gcorona l o s s . C 0 , C ar e t h e p h a s e - t o - g r o u n d a n d p h a s e - t o - p h a s ec a p a c i t a n c e s , a n d L i s r e a c t o r i n d u c t a n c e . F i g . 1 ( b ) shows t h eT h e v e n i n e q u i v a l e n t c i r c u i t f o r t h e c a l c u l a t i o n o f v o l t a g e i n d u c e d i nt h e o p e n - p h a s e . C u r v e a - , i n F i g . 2 g i v e s t h e p e a k v a l u e o f o p e n -p h a s e t o g r o u n d v o l t a g e f o r a 3 8 0 k V l i n e , versus t h e d e g r e e o f s h u n tc o m p e n s a t i o n K . I t s h o w s a s h a r p resonance e f f e c t u n d e r t h e a b o v es i m p l i f i e d a s s u m p t i o n s .

T h e a r t i c l e g i v e s f i r s t a p h y s i c a l e x p l a n a t i o n o f t h e p h e n o m e n a ,a n d e q u i v a l e n t c i r c u i t s a n d f r e e o s c i l l a t i o n f r e q u e n c i e s ar e d e r i v e da l s o f o r t h e case o f two o p e n - p h a s e s .

2 4 IEEE P o w e r E n g i n e e r i n g R e v i e w , M a r c h 1 9 8 4

Page 2: IEEE Power Engineering Review Volume PER-4 Issue 3 1984

7/27/2019 IEEE Power Engineering Review Volume PER-4 Issue 3 1984

http://slidepdf.com/reader/full/ieee-power-engineering-review-volume-per-4-issue-3-1984 2/2

As a c o n s e q u e n c e o f t h e h i g h i n d u c e d v o l t a g e s , t h e c r i t i c a l l i n ecorona v o l t a g e may b e e x c e e d e d , c a u s i n g l a r g e l o s s e s , e q u i v a l e n t t on o n l i n e a r d a m p i n g r e s i s t a n c e s i n p a r a l l e l w i t h l i n e c a p a c i t a n c e s . Ont h e o t h e r h a n d , t h e s a t u r a t i o n o f t h e m a g n e t i c core o f t h e s h u n tr e a c t o r s ca n b e e x p e c t e d t o r e d u c e t h e s h a r p n e s s o f t h e r e s o n a n c e s ,o w i n g t o v a r i a b i l i t y o f L ; f u r t h e r m o r e , f e r r o r e s o n a n c e p h e n o m e n am i g h t occur.

T h e most d i f f i c u l t p r o b l e m i s s i m u l a t i o n o f c o r o n a , t h a t t o t h ea u t h o r s ' k n o w l e d g e h a s n ever b e e n r e p o r t e d i n p r e v i o u s s t u d i e s o ft h e p h e n o m e n o n , a n d h a s a c o n t r o l l i n g e f f e c t . A corona m o d e l i sp r e s e n t e d i n t h e p a p e r t h a t seems s u i t a b l e a n d i s b a s e d on t h ef o l l o w i n g o b s e r v a t i o n s : a ) i n d u c e d v o l t a g e s ar e b a s i c a l l y powerf r e q u e n c y w i t h p o s s i b l e b e a t s a t l o w n a t u r a l f r e q u e n c i e s ; b ) corona

l o s s e s ca n b e n e g l e c t e d when v o l t a g e i s l e s s t h a n c r i t i c a l v a l u e ;a b o v e t h a t v a l u e , P e e k ' s e x p e r i m e n t a l f o r m u l a s s h o u l d b e a p p l i c a ¬b l e ; c ) i t i s r e s o n a b l e t o assume t h a t t h e corona c u r r e n t s b e t w e e np h a s e s ar e s m a l l as o p p o s e d t o t h e corona c u r r e n t s t o g r o u n d , as i toccurs f o r t h e c a p a c i t i v e c u r r e n t s .

C o r o n a l o s s e s h a v e t h u s b e e n s i m u l a t e d w i t h n o n l i n e a r r e s i s t o r s ,l u m p e d i n t h e i n t e r m e d i a t e p o i n t o f t h e l i n e , c o n n e c t e d b e t w e e n t h e

p h a s e s a n d g r o u n d . T h e v i r e l a t i o n s h i p o f t h e s e r e s i s t o r s h a v eb e e n d e t e r m i n e d a n a l y t i c a l l y , s u c h as t o cause power l o s s e s as

c a l c u l a t e d w i t h P e e k ' s e x p e r i m e n t a l f o r m u l a , e x t e n d e d t o t h e case o fm u l t i p l e b u n d l e c o n d u c t o r s b y c o n s i d e r i n g t h e a v e r a g e e l e c t r i c f i e l d .

T h e a p p l i c a b i l i t y o f t h e a b o v e m o d e l n e e d s t o b e c h e c k e d w i t hf i e l d t e s t s . As a f i r s t c h e c k , t h e a u t h o r s h a v e c a l c u l a t e d w i t h B P A ' s

e l e c t r o m a g n e t i c t r a n s i e n t s p r o g r a m t h e i n d u c e d v o l t a g e s i n o p e n -p h a s e c o n d i t i o n s o f t h e 7 5 0 k V s h u n t c o m p e n s a t e d l i n e l i n k i n g t h eU . S . S . R . g r i d t o H u n g a r y , f o r w h i c h f i e l d t e s t s h a v e b e e n r e p o r t e d .Maximum o v e r v o l t a g e i n d u c e d i n two p h a s e s upon e n e r g i z a t i o n o ft h e t h i r d p h a s e was r e c o r d e d as 1 . 3 p . u . , w h i l e a TN A s t u d y , madew i t h o u t s i m u l a t i o n o f corona e f f e c t , g a v e a v a l u e o f 2 . 5 p . u . ( C I G R Er e p . 3 3 - 1 0 , S e s s i o n 1 9 8 2 ) . T h e a u t h o r s ' EMTP s i m u l a t i o n w i t h t h ea b o v e corona m o d e l , r e v e a l e d e x c e l l e n t a g r e e m e n t w i t h t h e r e ¬

p o r t e d f i e l d measurements. F u r t h e r f i e l d c h e c k s ar e p l a n n e d on a

4 2 0 k V l i n e i n T u r k e y .I n o r d e r t o p o r t r a y t h e p a t t e r n o f t h e o p e n - p h a s e o v e r v o l t a g e s , a

p a r a m e t r i c s t u d y h a s b e e n p e r f o r m e d f o r t y p i c a l 4 2 0 k V t w i n a n dt r i p l e t b u n d l e c o n d u c t o r l i n e s o f t h e T u r ki s h n e t w o r k . T h e s e l i n e s ar e

c o m p e n s a t e d w i t h g a p p e d - c o r e r e a c t o r s , s a t u r a t i n g a b o v e 1 . 2 5 p . u .or 1 . 4 0 p . u . o f r a t e d v o l t a g e . R e s u l t s ar e p r e s e n t e d i n t h e p a p e r i nc o m p r e h e n s i v e curve c h a r t s , c o v e r i n g d e g r e e s o f s h u n t compensa¬t i o n

r a n g i n gf r o m 1 5 t o 1 0 0 p e r c e n t , 1 a n d 2 open p h a s e c o n d i t i o n s ,

e t c . A s a m p l e o f r e s u l t s i s shown i n F i g . 2 , f o r t h e case o f one

o p e n - p h a s e o f a t w i n b u n d l e 4 2 0 k V l i n e . C u r v e s a 2 a n d b 2 g i v e t h ei n d u c e d o v e r v o l t a g e s p h a s e - t o - g r o u n d a n d across open b r e a k e r ,when corona l o s s e s a n d r e a c t o r core s a t u r a t i o n ar e s i m u l a t e d ; curve

a 3 g i v e s t h e p h a s e - t o - g r o u n d v o l t a g e i f o n l y r e a c t o r core s a t u r a t i o ni s s i m u l a t e d .

T h e s t u d y h a s shown t h a t t h e corona l o s s e s h a v e a c o n t r o l l i n ge f f e c t i n t h e p h e n o m e n o n o f t h e o p e n - p h a s e i n d u c e d v o l t a g e s o fr e a c t o r c o m p e n s a t e d l i n e s . As a r u l e o f t h u m b , t h e p h a s e - t o - g r o u n do v e r v o l t a g e s ar e g e n e r a l l y l e s s t h a n 1 . 2 5 p . u . o f c r i t i c a l corona v o l t ¬a g e , r e g a r d l e s s o f s h u n t c o m p e n s a t i o n d e g r e e .

D i s c u s s e r s : M . F . M c G r a n a g h a n a n d W. E . R e i d .

C 0 + 2 C '

- 0 . j . i . l c l ° i Í \ . \ ,'

2 2 e \ äC ' v ( t )C . + 2 C

> * ) » ) > » > > > > } > > > > > > > > & > > > *

( a ) ( b )F i g . 1 . a ) S i m p l i f i e d l u m p e d c o n s t a n t c i r c u i t o f t h e s h u n t c o m p e n s a ¬

t e d l i n e f o r one o p e n - p h a s e o p e r a t i o n ,b ) T h e v e n i n e q u i v a l e n t c i r c u i t .

[ p u . ]

b £ f c . : 4 V r 4 ^

F i g . 2 .

1 p . u . =

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 l % ]

One o p e n - p h a s e o p e r a t i o n :a =p h a s e - t o - g r o u n d p e a k v o l t a g e ;b =o v e r v o l t a g e b e t w e e n t e r m i n a l s o f open b r e a k e r ; t h e

s o l i d l i n e r e p r e s e n t s l i n e a r s y s t e m , corona l o s s e s not

s i m u l a t e d ; t h e d o t - d a s h l i n e r e p r e s e n t s corona ne ¬

g l e c t e d , s a t u r a b l e r e a c t o r s ; t h e d o t t e d l i n e r e p r e s e n t scorona s i m u l a t e d , s a t u r a b l e r e a c t o r s ;3 8 0 \ / 2 / 3 k V .

8 3 SM 3 8 4 - 5March 1 9 8 4 , p p . 4 8 3 - 4 9 4

C o o r d i n a t e d S t a b i l i z a t i o n o f a

M u l t i m a c h i n e P o w e r S y s t e mO . H . A b d a l l a

F a c u l t y o f E n g i n e e r i n g a n d T e c h n o l o g y ,U n i v e r s i t y o f H e l w a n , H e l w a n , E g y p tS . A . H a s s a n a n d N . T . T w e i gF a c u l t y o f E n g i n e e r i n g a n d T e c h n o l o g y ,M o n o u f i a U n i v e r s i t y , S h e b i n E l - K o m , E g y p t

T h i s p a p e r p r o v i d e s a s e q u e n t i a l p r o c e d u r e f o r c o o r d i n a t e d s t a b i l ¬i z a t i o n o f a m u l t i m a c h i n e power s y s t e m w i t h a r b i t r a r y c o m p l e x i t y o ft h e s y s t e m m o d e l . T h e p r o c e d u r e i s s u m m a r i z e d f i r s t a n d a p p l i c a ¬t i o n t o a t h r e e - m a c h i n e s y s t e m i s t h e n d e s c r i b e d .

C o o r d i n a t e d S t a b i l i z a t i o n P r o c e d u r e

1 ) A l i n e a r i z e d m o d e l o f t h e m u l t i m a c h i n e s y s t e m i s o b t a i n e d i nt h e s t a n d a r d s t a t e - s p a c e f o r m ,

x=A x + B u . ( 1 )

2 ) A d a m p i n g term i s i n s e r t e d i n t h e e q u a t i o n o f m o t i o n o f e a c hm a c h i n e , i . e . ,

A w / =( A T m ¿ A T e ¡ K d i A ^ ¡ ) ^ Q l 2 H ¡ . ( 2 )

T h e d a m p i n g c o e f f i c i e n t s ar e i n c r e a s e d i n t u r n , i . e . , one a t a t i m ew h i l e t h e r e s t ar e s e t t o 0 . T h e n o r m a l i z e d r e a l p a r t o f t h e e i g e n ¬v a l u e s , r e l a t e d t o r o t o r d y n a m i c s , ar e c a l c u l a t e d as

NRP =R e a l p a r t w i t h K d l =p o s i t i v e v a l u e

R e a l p a r t w i t h K d i = ( 3 )

T h i s v a l u e f a c i l i t a t e s a m ea s u r e o f r e l a t i v e i m p r o v e m e n t i n d a m p i n gas K d ¡ i n c r e a s e s .

I E E E P o w e r E n g i n e e r i n g R e v i e w , M a r c h 1 9 8 4 2 5