ies mechanical-engineering-paper-1-2001

17
www.examrace.com la .E.S-( On.JI zt)ll1 I of 17 I MECHANICAL ENGINEERING J 3, 4. .5. PAPER·I A !lll1l or is havlns ots hei ght eq ual to 111i ce the length ol'any sode at the If the lank os filled up w1th a hqllid. the ratio or the oo tal hydrostatic force on mw 'emcnJ 11 'all to ll ;at at d 1e lM)rtom os a, 2 ,() b. I 5 c. I ,(I d. 05 Oi.fl 'erenllnJ pressu111 bead 111easured by mercor) oil rn;UlOmeter (specific gravity of oil is U .?) equh alont 10 a 6\ 1 () mm di ffer ence of mercury lerels " ill nearly be a. 7, 62 m of oi l b 76 2m ofool c 7. 34 m o[ oi l d.. 8.47 m of oil A block of alullliniwn bni' UllJ tt1rus of 12 kg is suspended. b) n wuo and l o11 ered uutiJ s ubmerged ln1o a l aJJk con taining oil or relati ve de.nsily (1.8 , Taking the relative de•lslll· of nluminoum as 2 4. 1he l ell sion in 1vi ll be (lake g = I (I m! s') a. I '2 Ol}tl N b. liOn N c. 12tH.' d 8() N 1\ barge 3() m Ions and J Um '"de has a draf'l of 3 m 11 hoo noanng w101 us sides w. vertical POSI U Oil , If its or grnl• ity IS 2.,5 m above the boltom.. Om nearest l'alue of meracemric he ight is a. 328m b 2. 78111 c. 1. 71! m a 1.en> A cy lfndrieal vessel ha1 ing its heigh t equal tO 1 1$ dinm• ler 1s tilled wllh liquid nnd hori zontnlity m an acceleration equ ;tl to acceleration due Lo gmv lt y TI1e 7 II. ratio of U1e liqmd tell in the vess el 10 !he liqwd at stark equtlfbrlum condilion is a. 11.2 b. 11.4 c. n.s d. (1, 75 The shear stress developed m a lubncanng oil. ofv•scosuy 9.81 po•se. tilled between two parallel pla1es I em pan ru1d mOV IDJt 111lh relative velocity of 2 mls is a 211 N/ni b 19.62 Nlln! c. 29.62. N/n1 ' d. .I!J N/ 1.?- The comective ncc<iler,.Uon of nwd m U1e x-direction IS give n by &• ti\1 &w a. 11- - v- +«>- i\r 0' f= '"' iit 1 ftJJ b ---+- f:l ,,, "' iJ11 Clv f!w c. 11 - -tl-+11- ar <J& d. i!tf Cl• 1'u v- +m - i'tr iii' P= Match Lisl I ('T}1>eS uf now) 1111h List II (Basic idea l noll'S) and select lhe. C()n'ecl answer List I A. Flow over as tatiooruy B Flo11 over a ll alf Rankine bod y C Fl\lw over a rotating b<Jdy D. Fl o11 over a. Rankine oval Lis!. [[ l source + smk nmfonn now 2. doublet - unifnrm O o11 3 source + unifom1 4 double t- vorte. x + 1m1fonn t1 Qw A B C D a I 3 2

Upload: thrinadh-chowdary-kapu

Post on 06-May-2015

410 views

Category:

Education


2 download

DESCRIPTION

IES Objective 2001

TRANSCRIPT

Page 1: Ies mechanical-engineering-paper-1-2001

www.examrace.com

l a.E.S-(On.JI zt)ll1 I of 17

I MECHANICAL ENGINEERING J

3,

4.

.5.

PAPER·I

A rectMgul:~r !lll1l or sq~are cross-~ecuou is havlns ots height equal to 111i ce the length ol'any sode at the ba~e If the lank os filled up w1th a hqllid. the ratio or the ootal hydrostatic force on mw 'emcnJ 11'all to ll;at at d1e lM)rtom os • a, 2 ,()

b. I 5

c. I ,(I d. 05

Oi.fl'erenllnJ pressu111 bead 111easured by mercor) oil dil'fer~ntial rn;UlOmeter (specific gravity of oil is U.?) equh alont 10

a 6\1() mm difference of mercury lerels " ill nearly be a. 7,62 m of oil b 76 2m ofool c 7.34 m o[ oil d.. 8.47 m of oil A block of alullliniwn bni'UllJ tt1rus of 12 kg is suspended. b) n wuo and lo11 ered uutiJ submerged ln1o a laJJk containing oil or relative de.nsily (1.8, Taking the relative de•lslll· of nluminoum as 2 4. 1he lellsion in U1e:1~ire 1vi ll be (lake g = I (I m!s') a. I '2 Ol}tl N b. liOn N c. 12tH.'

d 8() N

1\ barge 3() m Ions and J U m '"de has a draf'l of 3 m 11 hoo noanng w101 us sides w. vertical POSI UOil, If its C~lllre or grnl•ity IS 2.,5 m above the boltom.. Om nearest l'alue of meracemric height is a. 328m

b 2.78111

c. 1.71! m a 1.en> A cylfndrieal vessel ha1•ing its height equal tO 11$ dinm•ler 1s tilled wllh liquid nnd mo~ed horizontnlity m an acceleration equ;tl to acceleration due Lo gmvlty TI1e

7

II.

ratio of U1e liqmd tell in the vessel 10 !he liqwd at stark equtlfbrlum condilion is a. 11.2 b. 11.4 c. n.s d. (1,75

The shear stress developed m a lubncanng oil. ofv•scosuy 9.8 1 po•se. tilled between two parallel pla1es I em pan ru1d mOVIDJt 111lh relative velocity of2 mls is a 211 N/ni b 19.62 Nlln!

c. 29 .62. N/n1' d. .I!J N/1.?-The comective ncc<iler,.Uon of nwd m U1e x-direction IS given by

&• ti\1 &w a. 11-- v-+«>-i\r 0 ' f=

'"' iit1 ftJJ b ---+-

f:l ,,, "' iJ11 Clv f!w c. 11 - -tl-+11-ar <J• &

d. i!tf Cl• 1'u

11-~ v- +m-i'tr iii' P=

Match Lisl I ('T}1>eS uf now) 1111h List II (Basic ideal noll'S) and select lhe. C()n'ecl answer List I A. Flow over astatiooruy ~·yllnder B Flo11 over a llalf Rankine body C Fl\lw over a rotating b<Jdy D. Flo11 over a. Rankine oval Lis!. [[

l source + smk ~ nmfonn now

2. doublet - unifnrm Oo11

3 source + unifom1 n~m 4 doublet - fr~ vorte.x + 1m1fonn t1Qw

A B C D a I ~ 3 2

Page 2: Ies mechanical-engineering-paper-1-2001

www.examrace.com

Q,

10,

2

a. 2

4 :1 3

3 ~

4 1\ glass tub~ wilh u •>QO bcntl is up~n ul both tlr~ .mils. II is m;erNd inlll H no" ing stream of oil. S; 0.\10. so !hut one opening I~ dlrect~d up~tream and the 0~11~r il .lir.:cted upward Oil in~ide lh' lube is 50 111m higher I han lho ,urfacc nr llowrng nil 11re '·elncity mcasnrcll hy the tube ~. tr~arly.

a. 0.89 mls b. O.W m/s c. 1.~0 ml> d 1.90 m!s AI IMatft'm·l of a hori7.ontal line, lhC fluid prcssttrc head is 32 em und vcl(.cily hcud is 4 Cth The reductiort in !tn.m al lOcal il>n II is such 1iuu !he prcssurt.' hcud t.lrops t.luwn to zero. The rotio or ''dlociliet< ttllucallun·l.l tu thai atlocation·J is

' I a J

" 25

c. ' d I.S

-: If

II h1r maximum trnnsmission of pOwer through u pipe Jlne wtlh total heud ll. the head ion due lD friction hr is gtven b) a 0.1 II b. H/3 c 1112 d. 21-1/3

12.. Twn popclincs ol cquul length :md with cJinDlet~cs ol" J 5 em und l 0 cro un: in parallel and connect two reservoirs. rho difference In wruer levels on the reservoirs li 3 m. 1 r 1h" friclion is assumed to be ~qual, th~ rmjo of Ute di~chur~es due tu U1~ htr$er clio pipe Ill th:ll of the smaller dio pipe is. ucurly, a. 3.375 b 2,756 c. 2.25 d. I .~

13

15.

16.

17

j of17 nw critical cJeptlt ora rcct:Jngulur ~har111~1 of width 4.0 m li.lt a dis~harge of 12 m'ls 1>, nearly, a. JOO mm b. 30 mm .:. 0.972 m d 0 674m An op~n channel llow cnct•untcrs a h) draul ic jump as shown fnlht: figure. Tit< lbllowing lluid no,\ l'tmilitiun;, ure ob~crwd bet\\ ecn A nnd 13 • I. <.:rlttoal depth 2. St~ndy non-unifom1 now 3 llosteady non-umfonn no\\ 4 :\lead) unofonn no\\

~. ' :~ ~~ ........... :_/~···· .

rr : "!" : !hn l ' " "' :A.. :v :a

The corre.:t sequeooce of lhe notw cunditiO•l$11ltho dire~liort of l111w is 3. 1.2..3. 4 b 1, 4, 2, 3 c. l. 1.4. 3 d 4, 2.3, I Lam1nar dcv~lopcd 11011 m un average w locity or 5 m/s Clccurs in u pipe uf I 0 em rudius The velOcity ut5 l"J\1 radlus is a. 15m/s b. 10 m/s

c. 2.5 m/s d. 5 m/s In n fully-<lc''cloped turbulcm pipe 11ow. nssuming l/7th p0\1 or lnw th~ r:tlio of time m~ao. v~locll)• al the centre of lhc pipe to that average veloci!Y of tlte Dow is 3. 1.0 b. I 5 1,!, 1.22 d 0.817 The pre.ssure drop 111 n 1 00 mm diameter hon:wnlnl pipe ls 50 kl'a owr u length of I 0 m. Th.:.Shcar stress utlhe pipe wollts a. !).25 kPa b. 0.115 kPa

Page 3: Ies mechanical-engineering-paper-1-2001

www.examrace.com

c. 0.50 liP~ d. 25.0kl'o

18. Th.: velocity disuibwjon in Ute boundnxy lnyer i~ given .1$ ulu,- y/5 . wh"re u i~ the w locit) at n distaQce y from the bnom1lar~ " ' Is the free stream ' 'elocity nnd ri is the boundary layor lhicku~ss nt a <'<ltt.'litt d islllllc<: from the !coding edge of~ pinto. l'he ratin of dl•plncemunt to 111omentum tltkknesses ~

~. 5 IJ 4 c. 3 d. 2

19. FIJf the Vclo<il)' profile u I u. 'l· tho momentum thlckness of a lnminar l>oundnry Ioyer on a !ht pl•te al a dis t,.nce uf I m frum leading edge f1,1r nir (Jcinemtutic v~cosity - 2 10 ~ ml,s) flowing at a free strc:uh ,·eloclt)' o£2 m/1 is given hy • · 3.16 mm b. :!.1 mm

"' 3.l 6 m d. 2.1 m

20. According to Blasius la\1. the lo"" l sldn friction coclli cicnt in the boundary·lnycrr ov""" l'lnt plote IS given by

·~ 0.332 .JR. b, 0.66~ • .JR. c. U.M7t ../R.

tL u2s,.JR, 21 i\fotcll Ltil T 11ith List lT •nd selc.:t Ote

~rrte:l mlSWel' :

LiS1 I A. Stokes' ln11 B. Dluffbmly C. Su•camlinc body D. K>rman Voo1ox SLJ-edt J. lst l! I. So·ouhal number

2. C'""'J.ling motion • -'· llressure drag 4. S kin friction drog

.\ B c :L 2 3 4

D

.22.

u

24.

b. e. d.

3 2 .3

2 3 2

.. ~

I 4

~ uf 17

Malclt Li$1 T (Dimeruionlo>s nwubct>j1 witl1 Li~l 0 (Definition "• tho: ratio of) !Jnd select the correct on~11er ;

List I A, Ro)~Jolds number B. Fmude number

C. We bet' number

D. lVfuch 1\UJnbe•

u •• ll I. luenio force ond e1aslk Ioree

2. Inertia Ioree and ~urface tension ·to r""

3. Inertia force and gravity Iince

4 Inertia force and v;,cous furcc ,\ H c D

ll. 1 2 3 4 b. ..t 3 2 1 1!, I 3 2 4

d. + 2 3 )

Tht Kire3m funetitm in ;o 2-dionen• ion•l 001• lield i! given by 'I ' ~ xy. The poWiltial tionchon IS

( -~·..-') ll, 2.

b. (.t' y' l

2 1:. :ry d. .. ~ ..... 1;-t

Assertion (A)! A convergent-diveQlenl n07.Zie may give sup<OISonic or $1lb~Qn ic Do" at tltc exit wen U' the tlu·oat ,t, choked. Reoson (R): Depending con the hnck pre.;~ure rot ill P), P,. the diVergent p:ort of the no-.7.1<> m•Y •ct ·~ • aupcn<onk llfiZ<:Ic or • ~ubs~nic dif!~'-'1'. a. Both A and R are t1ue and R l.• tb<:

I!Om:Ct c:<p!anation of .'\

b. UQib A. •nd R ore ttue but R ill NOT the eorrcct ~~~notion I' I' A

<:. A is uuc blll R is f:tlse d. A is folse b ut R io true

Page 4: Ies mechanical-engineering-paper-1-2001

www.examrace.com

25 J\Jis<l11ion (I\) • In a pipe line. U1e n~ture of the Jluid flo11 llepencls entirely On the velueity. RtJs.,n (R) ; Rcynuld~ number dc:pcn,llon tho ~nlocity, dlrunder ol' tho (lipc und kioem>lic viscosil)' of U1e fluid.

"· Bollt A ~nd R nro lr'Uc !md R is the con'eet e>t]ll~nnti<m nf A

b, Both A nnrl R are true but R is NOT I he correct e.xvl• nroti11n of''

.:. A is true hut R i• f:il~e cl, A. is fa Is.; b111 R is true

26. 1\ eapit!Jll) ' tube i~ insm ed 111 merllUt) kepi in "'' ()(l<:n .:ontni,ner. As,;ertion (/\) ; 'fhe "">reury luvel inside the tnlx: shall nsc nl>ove the level of mercury out~idc.

R.c:ns~n (R) • '111e c<)he,ive fllt'ce betWeen lh<> •nolccul"" of morcury i.s ~ati,r thau the ndbesi••e force hetween mi$:111J' ~nJ glas· . n, Bolh A and R nre ln.e and R " lhe

~orrect explnnatlon ul' A h. Roth A nnd R ore troe bu1 R is 1\'(')T

I he <!()rrcd Cll(ll~nutlon or A ...,, A IS rrue but .R tS fo l&e

d. A is false bot R is true

27 As~ert•on (AJ r Reaction bl~ding ;, coounonly used in intemtedi~le and low pn:s<uro pnrls of steam turbine•. R.t~sontR) : Reaction blodiog giW> ltigba cfficien.<:y lhon imput.c binding,

o. Bolh A ond R nr" true und R is the con·cct cl<ploiUIIion of A

h. Both A and R oro lhlc bu1 R is fi:OT the corr<:Ct ""'Planation of A

c. A is trne but R is r.,r,., d. A is folse but R is lruo

1H. Assurt.ion (A) : l11 convcotionol irupul•• :Slc:tfll turbine design• , only two row' or mnving blades are used m • CurtiS s1age.

Renson (R) • As the number of rnw• of muviu~ blud•s iu a Cmtis s tage incr~ases, the uflectivcncss of tltc lola· rows dc!cri:oses" II~ Both A ~od R o.r~ lnll' and R is lite

con-ect .:,'l'loiU11.1on qf A b. B<1th A ond R ore lnle hut R L• NeW

llle corred explonation of A

29.

3(),

31.

Jntl7 c. \ is true bur R is ftlll;c d. • \ is folsc but R i& tru~ Assertion (A) : \vtlb Utrottlc governing of a ste:.m tutl•ine, the tutbino power ls t'educed by reduCtion m U1o IIVailabio heal drotl tOgether with tleerens" in tlte r"tc of slcol noll.

R=~on (R) ! The p10~>Urc and the rnlc of •te.1m lluw ;.re ainmllnncous ly decreA•e•l will• th~ help 111' 11 ti,.Qttle volve, a, Both A ~~~~~ R ore true nnd R i~ the

com:et e>~p l~n(Ltiun nr A

b B11th A and R. ~·~ tru" bnl, R is {1111'1 tl1e .;QrrCCL<;,\pl•o•lion of A

"' A is true hut R io f11l1e d. • ... is f:t~e but U is true

As.•erli<m 1 A) A Knpl•n lurhi)lt: ill 11~ a.xjnl t1ow l'l:netion turhine with lL1 l'lln"" fixed to Ut~ hub.

Reason (:R) : W>tcr fl<II'S t•~r~llol to the. a."tis ot' rototion of tlte turbin~ 11nu • P"rt of the pressure energy ~eu oonverted to kmeti~ .:ncrgy during ill llow throug,h Ute v:ln~.

iJ. B<>lh A and R ·'"' t"-lo ttnd R l'! the correct ~l~mllioo of /\

b. Bn01 A nnd R ""' true but R is NOT the corr,-el e.'{plan>tion uf A

c. ,\ i~ true but R in fnbe

d. A is fal.•c but R is 1n11:

Ass«liOn (A) • Effective tempcrnturc. an [nd.,.. of comfort.. ,. dofint:d •• U1at lemper.tlure l)f ~oturntccl "ir "' \\thich un~ WQulll c..'qlc-ric11~~ 1ht: !3111¢ f.:eling 111'

comfort O$ ·~· ito~od iu Ute oclu>l cnvii'Onment. Reason (R) • Comfot1 doo'S <tot dct>cnd on hutnidit)' Md air vclod ty. •· Botll A und R ,..., true ~nd R io the t~t explonntion of A

b. Both A ~nd R ore troe but R ~ NOT I he correct c;."<planatilm or A

¢. A i~ true but R i~ (alsc d, A i• folse but R is true

~mion. ( AJ • r\c.:ording to R.eynolcls anology for Pmndl.l number equal to 1111 it)'. Stauwn numbor iA equal 11'1 ond hlllf of tile friction rtlclor.

RCii>On (R) ! 1fthd'lllol di!Tusivily ili <CtiJOI lo kincmnlic viscosity. lhc Velocity and the

Page 5: Ies mechanical-engineering-paper-1-2001

www.examrace.com

l~mperatvrc di!ltril\utio.n in 1M !low 1vill be: !he same. n. J3olh A uncl R ore true nnd R a the

~.,rrocl C:J>l>l•nalic'ln of A

lJ. Bolh A 4lld R are true but R is NU'I the "orrce~ ~liJlllmutllut llf A

.:. !< is I rue bUI R Is fnlsc: tl. A is fnl>e but R i~ lnle

;;3, Mserlion (A) ; Nu.s$dl number iS uiWIIY• l!n:alcr Utan Unity R "<lSIJII (R) ' Nus~ell number is lhe mtio ot tWt\ lhcrmul rcsist&ncos. vne !he Uterutul I'C8i""""" whioh would be ol:ll:rcd by tltc lluid, ifit wa~ ~tntionnr) and Ute uther. thc IJ•t:nn>l ~i~t~ncc as.~oainted with .:onvcctivo """' tr•n~fot CO<lOi~ient ~~ Uoe •uofacc.

n. Both A ">nd R ore true nna R is the correct clt]'llanatioo or ;\

b. Both ;\ nod R Jrc ltUe but R ;, N0T the corred e:<plnnO!lon ot' A

~. A IS true but R is l3l~e \1 1\ is fable but R i~ true

34. As~crtlon (AJ : If the enthalpy of u closed $JSI<m decreased by 25 1>;1 while the system rcccrves 30 kl of energy ~Y heat tmnsfer. 1hc wu.:l:: dono by the '~1>lcm is 55 kJ. Rt:.loc\u (R) · Tioe fie!! Ia\\ enc:t g) b~l•nc• ti1r 11 clffllecJ •ystem is (nnlntinn• have their u.su;~l mtrmiog),

\E=Q-W,

•'· Both 1\ •md R nre tn1e Jnd R "' the ~orroct c::<plnnalion ~r A

b. Botb A Md R are !tile hut R ~ NOT the correct explanation or /1

.:. A is true but R IS f., lsc d. J\ is t'n l~e but R iHrue

'35, Assertion (A) · ln thennodymrmi~ imnly;sr;. lhe "<m«pt ofR;Versibilit) IS thai a n::Vtrsiblc prilc<:.>S i• the musl cn'i~icnt Jf i'OC'C.'l'St

Reason (R) . The cucrg) lrnol$ll:r •s hcol ami 1voo k chJring lho forwnnl prnceM. i! ;oh<:ty~ iclenlically equ;ol 111 lhe ~Cil!) trai\Sfcr as hcot nml wort;. duristg lit~> rcve~31 of the pro.:!Cs~.

11. BoUt A •od R l1J'c true ond R is the COII'Cct explnnnlion. of A

36.

37.

38.

39.

s vi 11 b. Both 1\ and R ore lrue b~ R i; NOT

U1e correct e>.'jllnnalion of A e. A i~ true hut R il; false ll , \ i.< fake but R ~nrue A.\Mrtion (A) !'rol!suriz~d " ater re>c:tor (PWR) nucle.1r pOwer plnnl5 11.$"

superhe;otcJ ~team.

Rcssllli ( R) An increase in the 'uperheat Ol C(lnsbnt J lfCSSUf~ in~C35Cll the eyelc <:l'ficioliOY. a. BvO• A nnd R ! to lf'lio nnd R i.s lho

correcT Cltfll~n.,tion of A

b. BQlb A on(l R nrc true hut R is NO'f the .:<>rrect e.wlanntion nf A

c. 1\ is true bod R i:s f.tlse d. A i> l':llsc hut R i• lrue

As.•crtioo (. \J · 111e air .. ~ondard Jir etHciency of the diCllel cycle d~""1Ses •• lhc load, i~ ifiCr<llL)ctL Reawn (1{) ; With oncrc••e of I on d. cut-off ratio iP=:t$\l!>.

a. l!olh A and R ao\: lrue ;1nd 1~ i., the cotrect e;:.'{plauat.ion of A

b. Bulb. A aud R 31'1! true but R is NOT U1e .:ooroct cxpln.nolion of A

c. A is true but R is Lllsc

d. A ~ f11lse bul R is true Asserti''" (A) · Knox::lciug in S.l, engines i.s dur: to auto-ognition of t.h.l erod charg" while knocking in l:,l. engines is due to auto-ignitioo of Ute tit5t chorge.

Re;u;on (Rl • Spark ignition enginl:.'i etnploy lower tompo'es$ion rnt io than dics"l "nglnes und the fu"l used Iu s • CDloriJic volue Jow<>r thrm l11nl of diesel oil a. Bolh A nod R ore lru~ nnd R ls Ut<>

correct ""!'lnntJlion of A

L•. Bolli 1\ and R nrc b"a but R is NO't the correcl expl•n:~l·ion of A

c. A is irue but R IS false d. A i• ful5e bul R is true

Assertion (A) : The Cl. engine os found 10

be mo•e ct)icient than an S. l. en~in~:.

Re•~on (R} : Modom C.l. engines opehlle on a duak-vcle. which hn• an efliciencv w'eah:t tlwn.tbc OUu cycle:. •

a, Bnlb A •nd R " '" true and It .is the <Ot>rn:ct expl3motion u! A

Page 6: Ies mechanical-engineering-paper-1-2001

www.examrace.com41.

42.

h. Roth 1\ untl R uro tl'\ll! but R is N OT the CQrrcut oxplunatiOJl or A

1:, A Is true l)ut R l& lhlo;" tl. A i~ false hut f{ is true

A sbip with hu ll length oi' Jl)(l m is tu run with a spectl uf I 0 1n/s. For dyntunk ~imilurity, the velocity ror II I = 25 model o()fth~ ship in u h)wing Ulll~ should"~

IL. 2 mts

h. lO tn/s

"· 20 nils d. 25 mls

A ; tandnrd 91.1° V -nutch weir is used hi measure discharge. l'hc: discharge is (.11 For a height H 1 •bove the sm and O, is the tliscbnrge lor u height H.: . IC 1 Ul-1 1 ts 4, then Q~/01 is

u. 32

b. 16./i c. 16 J . l! 1\ right circuhu· cylinder Is filled wit h a liquid upto Its lop level. li is t'Otnted about its vertical axi~ al such a speed that hllll' the li~uld spills out. then the pressure at the p<.~lnt ur intersection o•f llw axis nnd bottom surlace is ~. sum~ u~ hclol'l: nllutlon

b. halfC>f'th< value be lore rota~on .

c. quarter of ~~e ~-aluc bclorc. rotation

d. o:qunl to the a tmospheric pressul'l!. 43. Three Tmmiscmlc liquids of spL-cilk

densities p, 2p und 3p arc kept in n jur. I he-height ol' UJ~ liquids in the jar anu at tloc flicJ.<llllclcr t:lucd t.u Lhu b11umn nf the jar nrc :IS ~h(lwn in the p,ive.n ligur"- The mtll'l lltn is

T •• -~ •• t _..

' T • •• u

l .. a. 4

b. 3.5

<!. J

d. 2.5

45.

46.

47.

(;of 17 Which un~ of the following sequenctiS Indicates the con·cet order for flue gas Jlt"v in the s team power plant layout?

u. supcd1eaH.·r~ t;:COIWmiscr~ airpreheatcr h. l.->conc.~ J1liser., atr p1't!.hcater. superheater

c. air flrcheatcr, ecunurniscr. superheater tl. cconumisor. supcrhcntc.r. air prchcmcr Which one ul' th~ following ~iotenoet~t$ is not curr~c1

4

l

In a tluidizcd-bed hniler

ll. the cumfnll!tiun lcmrenllurc;, arc higher thnn those in the conventional boiler..

b. inl\:rior grade ol' coul c:m he used without s lugging problems

c. the tomullion nr N()x i5 less thun fliDt in the conventional lloilers

d. the volumetric heat release rtlles ure higher thnn those in the convention.1l boilers

Match list l with list 11 and select !he co&Te<:L uu~wer:

L ist I (Machines)

A. Steum cngihe B. Impulse turbine C. Reaction t.urbfne V

D. Contrlrl•gal compressur List II (Peaturq)

I. VeJo~ity compouudlug 2. Diugrum liu!tur 3. <'ontinuous pn."Ssurc d;op 4. ISI!IItrupie c:llit icncy

{\ til c a. J 4 2 b. 2 I 3 c. 2 4 3

tl. 3 1 Mnt"h List with List II c.orn."C.r auswc:c :

List I (Names)

1\. Suhsonic noule

B. Sup.:rsonic nov.l~

C. Subsonic dTrl'usN

0 . CcnlrHiJgar compres~or Li>"t II (Figures! I.

D

4 1

4 nntl _sclcl.;l the

Page 7: Ies mechanical-engineering-paper-1-2001

www.examrace.com

-D 2.

-~ ' ..1,

-CJ ~.

_-"e) s.

-Et J A 13 c 0

p. ~ 4 2 5 b. I 5 3 ~

e. 3 s 2 ~

(L I ~ 3 5

<18. For 111n.~ imum blade emciency of tt sln~k-Sll1g~ impulse horbine, the blade sreel! rmio. I et is the angle made by absolute ~elllCity ot inlet) sh<luiJ bi!

a. C(IS1U

b. cos2cxf 2 c. cos« / 2 d. 2 / cos tJ.

49, The given figure shows th~ variation of ce.rtlli11 sttam parameter in case of:. s, i mpl~ impuls<l turbine. ,.he curve 1\-B·C represents the ~ariation of

50.

_..-.,.s Av I'-- c

~- -!p- lllad<o -if

a. pr<!SSure In nozzle u11d blades b. velocity ln nozzle und blades c:. temperature tn nozzle and blades d. emltalp) in nozzle and blades I r n is the polytrophic I ndcx of comprl!ssion and Pl Pt is the pressure ratio for a three-stage compressor with ideal

7 ofl7 Tntercoofing, the expression for total work ofthrt.'estage is

Jn ( 1'· )l•.') ~ a. - {1,1', -· - 1 (n - 1) p1

:5 I. Tht n~w i11 the vunoll'Ss spa~e between the Impeller t~ilS u dil'fuser inlet of u cemritugnl compressor ban be assumed<~:>

n. free vone~ b. force ~1rlel'

c, sQlld f!<)l]y rouuiun d. li.lgariLhmiqpiraJ

52. Which of the foOuwing staremcnt\S) iSial'l! rd~lfartl to critical now thruuglj a stean1 nozzle?

5J.

I. FIQw rme through the nozzle is minimum

2. Flo" rate throu~h W1e nozzle is maxlmum

3. Velocit) at the throali;supersonlc. +. Velocity at the throot is sonic. Select the ccyrrect 1111swer using the codes given below : a. l alone b. I and 3 c. 2 alld 4 d. 4 nlon~

Which portion nf th" ce.ntrifug:~l compressor characteristics shown in the figure is dlllicult h) obtairt ;,xperimentally'l

j~s,../{,u .. - / , y

Page 8: Ies mechanical-engineering-paper-1-2001

www.examrace.com

a. RS b S'l c Ill tl uv

5~. Cons1der the followiug sunemenLS I(Jlardiug 1hc axial flow in a11 nir compr.:ssor I Surging is :t local phenomenon while

~~~~I iog 11fl'ects ah~ t.<ollr" compn:s:;or. 2 Srulling is n local phenomenon white

.surging ntlcc!S the entire compressor. J 1l1c pi'\:SSure ratio of an :l~ial

C(ltl11>te>~1r ~~~~g~ Is ,mallcr lhnn thai of n cenlrifug:;J compressor singe

Oflhese stntemenl5 a I. 2 and COITCCI

b. I tmd 21m: oom:et c. 2 and 3 nrc oorn:tt d. I nnd 3 are corn.'Ct

55, The Jhcrmnl cfficicnC)' or 11 gas IUrbJIIC cycle with regcncrution in tullll!i of 'J, (maximum mln•mum J. lempcrulure), rp (pressure rnlio and k. ( =CiC, J is given b)

S6.

'\7

rp J I )

t- !..L,- n a. 7; •

h. t-IL, t .~, ) 7; •

c. 1- r, /• ') r • r. ... t

d 1-....Lr T, r. r C.J11$ider lhc ~pceific speed rnnge~ (If the followir1g type' llfturblnll$ ' I. FranciS 2 Kaplun 3. Pelion The sequence of !heir spccilic SJJl'l!d fu incrctJSing ordor is

·~ 1.2.3 b. 3. I. 2 C;_].2~ J

d. 2. 3. I

A symm~lrical stolion3l)• VuM ~:Rpcn"""~ a fi1r"e ' F' 11f 1()0 N ~ ~11\1\l'fl ln rho givcu [igm~. wbcn the II!USS now 11\t.: ()( \V:Oler

SM.

:59.

60.

Ii i

& uf 17 over the van~ ts 5 tqys with u velocity ·v· 20 m/s witlmul friction.. The nngle. 'u ' of 1h~ vnne is v

v

a. Zero b. J()'l

C'. 45° d. 60"

.. F= lOO N

In a llUid coupling. the torque uansm1tted is 50 I;.Nm. when the s~d ()f I he dli\•ing and driven shall is 900 rprn and 720 rpm rcspectlvd_y nu~ cnkiuncy or tl1c nuid coupling will be 8. 20o/~ 0, 25t!.CJ I!, 80% d. 90% Con;ldcr the following stalcmenr, rcg;Jrding rhl: fluid couplinjl I !Ofliclency increases w1tl1 mcrease in

speed rntio. 2 Ntglcclin~ li-ic(iou the nu1p111 1orquc is

cqu!J]tQ input torque,

J. A l the same mpul s peed. higher slip requiros higher inpu1 tortlue

\Vhic.h or these sl.llrcmcnlli are correct1 a. 1. 2uod 3 b. I and1 c. 2 and 3 d lmu.IJ The level of runner ex1t 1> S m above the mil mce. and aimospher1c pressure is IO.Jm. The pressu<c at 1hc cxi1 of the runner fi1r n divcrl'ent draft tuhc cnn be

it. S m b. S.J m <j, I() m

d. 10.3 m

Con$idt'r che Jhllowfng sratcments' A surge 1ank provided on t11c penstock connccJcd to a wmcr 1\Jrbinc

helps in f\ltlucill~ the waccr hammer 2. stores extra water when nol needed.

Page 9: Ies mechanical-engineering-paper-1-2001

www.examrace.com

3. provides increased dcmnnd ofwtJter. Whft:"h of these swtemenls are Ctlrrett7 a I nnc:IJ b. 2and 3

u. I nml2 d. 1, 1aud3

62. If the reciprocatins pump having n 111eehwtical eOiciency of 80% delivem water nt the rate of80 kg/s wid• n h ... aJ or JO m. t/1~ broke power of the pump Is a. 19.41<W b. 20.8 k\V

c, 15.4 kW d. IO,g kW

63. The gross head on n turbine is JOO m. The lungth of pe11$tock supplying Water from reservoir Itt the turbine Is 4()i) 111. 1 he diameter of the pensmc~ ls I m and velocity of water through penstock is 5 m/s. If c(l~fficic:nt of liitti~n i~ 0.01>98, th~ net head on the turbine would be. nearly a. 310m b. 295m c. 200 Ill d. 150m

64. Co•JSider the following statc•uems pertaining to a centrifugal pump : I. The mnnomeu·ic head is tltc head is

developed b)' the pump.

2. The suction pipe has, generally. a larger diameter as compared to U1c discharge pipe.

J , Tho ~uiltion pi~ b proviJeJ with It foot valve and a strainer.

4. Th• dclivc!Y pipe 1s proviucd With a foo1 valve nnd a striliner.

Of these statements t1. I. 2, 3 and 4 are correct b. 1 nnd 111re con~-cl c. 2 nnJ 3 are. correct d. 1 nnd 3 are c..m-ect

65, For a water turbitle. nlllnin£ at consmnt head and speed. the operatin,. chnracteristic curves in the given figure show thai upto a ce.iain discharge ' <!' both output powcr and efficiency remain z,ero. fit" disc:burge q Js required lO

•lot 11

.-q-1 ~·~...,.._,'"f.,..j

"' overcome initial inen ia b. overcome initial friction c. keep the hydraulic circuit full d. keep tlJ~ turbi nc running nl no load

66. In tluid machinery t h~ rel~tion~hTp

between saturot ion tempemwre and prll.%llre 1lecides the pl'()cessol' a. Dow separation b. turbulem mixing c. cavita1ion d. water hummer

67. r\ ornlril"ugal blower dolivcring Q ltJlfs ag.unsl 11 head of H m fs driven 11l hull' the original spe.-d. ll1e new head and discharge would be a. i I a11d Qf2 b. I 114 and Qfl

~. Hfl and Q/8 d. H and Q/4

68. Tbe rnnximum uwnbtt or jlilll generally employed in Jln impul•e turbine without}el Interference i~ a. 4

b. " c. 8 d. 12

69. A lt)dmullc coupling rrnnsmils I kW of po"cr man Input speed l>f20() rpm. '>lith u slip of 2%. If the input is changed to 400 rpm. U1e power transmitted with d1e same sllp is a. 2kW b. lf2 kW c. 4 kW d. 8kW

70. A plane well of thickness 2L hns n unifol1ll volumetric fteat source q'" (Wim3

) , 1t is el\'poscd ttl local ambient lemp~ralurc 1. al t>otb lltl> end$ ('~ = = L). The sw:f.•te tempera111re T, rf the wall unuer steadY·

Page 10: Ies mechanical-engineering-paper-1-2001

www.examrace.com

stme condition (where b and k have their usual meaning) is given b}

a r ~r ... '1'1•

' " b. r=r.

q•J}

2/r

c. • I' T.=T. ~ • • + "

•L' d. r =r +.L_

I J./1;

71. A nat plu\C has thickn~~;;s S em. thcnnal condut!tlvit) I \V/(mK) oon~ective heat transfer coeflicicnts on it~ two 11at face!; 11f IU W/(m2Kl unJ 10 W/(m1K f. 11tc. nHmll heat transfer coenicient lbr ~;Uch n !lot plate is n. 5 Wl(m1KI b. 6.33. W/(m1KI c. 20 W/(ml K)

d. 30 W /(m:K)

72. I he eOlciem.l) ura pin lln •viU\ lnsUIUted Hris

tanh mi. U.-

Vlrl l 111'1°'

b. tanh mL mL mL c.

lllrlh mL

d. (h~ I kP)"'

wnh mL 13. 1\ <)' Iinder made l>f mewl uf cc•ntlurtivit)

~\l WflmK) ill to be insulaleU with b mal~rial ()f C<>ndudivity 0.1 W/(mK). I f lllc convL-<:ti l'e hem transli:r codlkkol with the ~mbienl nlmusphcre i~ S W/(m, K). the critict~ mdius of insulation is a. 2Cill

b. ~em c. 8 cm

d. 50 ..:m 74. Nussdt numher Jo.r full) de1 eloped

turbulent llow in a pipe is given by N. -CR;: P~. ·1 he values urn aod bare

n. D = O..i and h = 0.33 for ,heating and CO\))jng.lx>th

75.

111<11 17 b. o =u.s and b : o.~ for heating and b .,

0.3 f<>r C(>,,ling c, u = ().S uml b ., l),~ lor hcming uml b :

0 .3 l(l r eill> I ing d, a = 0.8 and b = 0.3 for healing, nnd b =

0.4 for cooling For naturul <.~In\ O::ti I~ nuw ,,, era 1'1!11ical llut plntc a> sl11m11 in I he giv~'O liguru. th~ go1eming dilferenl'ial equation lor momentum is

( i!11 cu .) . (" 11

u7 ...... - = g/JU- r h-, a;t cy , ..

If t-quatiun is non-dimentionali>ed b)' U = u!U. , V • v/U . • X « lCIL. ~· • y/L. y/l Wld

7'- 1' 6= • r, - r.

Then the tenn .!{p('l - I' ) ln

• uM Af~ T• > -,tk

'· /~

~· Orushof number b. PrandLI number ll. Ruylcight number d. Grashol' numbcr/(ltcynolds numbcr)l

76. The shape foetor or a hemispherical Qod)' placed un a nat surface "ith rc.\-pCct tn itscll'i~

77,

il~ zcn1 b. li.2S c. 0.5 d. 1.0

Which one of the tbUowing heal e.xchanges is gives parallel stmlghl line pmwm of tomp,·rnture di~tribtlllon for bOLh cold und hut lluid'! H. I'Jlmllcl nom

cupucities with un"q11ul heal

b. Coun(cr-Ou\1 capacities

\lith equal hcut

c. Parallel-tlo\\ with eqnal heal CllflDdties d. Countcr-tluw wilh uncquul bent

cupnciLies

Page 11: Ies mechanical-engineering-paper-1-2001

www.examrace.com

78. In o ~ounter-1low lte.11 ex~ttnger, the hot lluid i cooled from 110° r to 80" C' l>y a cold lluid which. g.cl~ heated lrnm 30" C lu 60" C. LMID for the-hoot cxdtougcr ill

" · 20"C b. 30"C.

c. 50' C \1. 80' ('

79 In u .:.ounter-tlow he.1t c:xchnng.,-, lh~ product M sp<£ilic he;~ I and rna;<t 1101> rate is same li>r llle hoi nod cold .Duid$. lf l\'1T i~ oqunl tv 0.5, then the clfecHvene;s of the heal e~ch;~nger 1,5

:t l .ll b. I).S

d. 0.2

80. For n ow owr a IJJJL plnlc tl1o hydrod)'llnmic boundary layer tbklrness t, 0 .~ mm. 111e d1'11amic vil<C<J~ill' is 2~ 10 " Pa ~- ~fl"Cifi~ · heal is .2.0 ki'(kil. K) and tlt"fDlal c<>ndul:th ity i~ 0.05 Wl(rn-1\:), llrc thcrmnl bounct.ry l•yc;rllticlrnc:s• wunld he

b. O.S mm c.~ 1 mm

d 2 mm

81. An enclosure consists of lour surfaces I. 2. 3 nnd 4. TI1c view faetors for rndindo11 bent tronsfor (Where the •ubsc.rit>ts J. 2 3. 4 refer 10 the te11j,l<.'<:tive surrnce>) ...., r, = 1}. 1, Fu = 0.4 and f'u = \1.25. 'fhe •urfae" •rre•s AI >od A4 •N ~-m= and 2 ro~ rt:.'lpcctlvely. Tltc view 6tctor F., lJ ... {),75 b. 0,50

e.. 1).25

d. O.UJ ~2. rite worklnl! IC111Jl"1'31Ure in evapqratnr~

and condemlct· coilll of a r~l'rig~raloe •n! -23° C :md 21' C n:spocliw ly. Tho COP of the refTigeralor is (),8 of lh" mo~um COP. 1~or a power input of I kW, tlte J'l::frig,.lrolion effecl.produco:.J \\ill bo

n. 4kW

b, 5 kW c.. Sk\V

d. 251\W

II ul 11 83. For ~ heat pump working on v~pour

C<Jmpre$sion cycle, enthalpy valu¢ of ihe WOI'kinjj lluitl Al the end Of' h<:al addilit\n fli'OCC!!~, al tho ~nd uf C(>lltpr<."'~iOn pi'OI:cSS,

at the end of l~¢ol n:jC<:Jjon p.roo:e~, )nd at lht end of i~enl h;llpic expan>ion proces. at'll 19S kJ!l..g, 210 I;JII;g and 9() kJil.~ rc~peejj,•ely. Th.e ma~8 flow mtc i6 O.S kg!~. 1l•cn tl1e he~~ting .::.p~oil) of heal pump is. neorlv a. 7.SkW

b. 4HW c. 525 k\Y d. 60 k\V

84. A one ton capacity wnt<'f cooler eooh wnter steadily from ~5• C lo 20• (', 1llc $pocific heat or water rs 4. 18 kJ/(kg J.::). The wnter now rat<> will be. neorl~· o.. I~.~.~ t lhr b. 3.'.51/ht c. :20() lthr

d. 250 /fhr

85. Milich Li.ol J (Refrigerun1) with 1:.1>1 T1 (C'hemical con~tilo¢111) nnd ~eltct lh<> CQm:t;l. •nS\1-tf •

S6.

l.lst t A.. R- 12 B. R- :22 ('. R- 717 D, R 113 Li>, l1

L T•lohlol'otrlfiuort:lllllll~ tCChPCCil',)

2 Ditluoro nlouooltloro.mcthanu(CIJFl) 3. Amtuooia (NH1l 4.. D.illunro dichloro metl~nne(CChf:)

3.

!]. c. d.

.\ 1:l C I} 3 4 3 4

2

2

l

4

3 a 3

2

2

fu 11 l'CU.lful~ 1{)\\'Cf, UJ" JllllllffiUm

lcmper~tute to which w~tor c~n be cooled l• cqu•J to the u. d.:w point lcrnpernturo of I he nir ~I tho

inlc:l b. dry bulb tCmJJeniiUre ol lhe air Bl the

inlet

Page 12: Ies mechanical-engineering-paper-1-2001

www.examrace.com

ss.

89.

c. Lltermodyn~mie \V¢1 bulb tempcrnture of I he air at U1e in lei

d, mean <If the de\\ pOint and df}' bu lh lcmpcraiUT<> oflho air at the inlet

Evlnteh Ll•l I (l'spnnslon deViCe) 1\i lh l..ist fl (Operation) aml $elect lite cuo1'ocl answer . List r A. l'l(>nt ~ulue

B. i\Ult>moti~ Cli.pansioo vn lv~

C. Internally eqUAliz-ed thenol"t'llic eXpansion vohc

D. ExternaUy .:quali:l.ed tht:rmosw!k o~ponsion valve

U~t II I. constant d<:gi'C<: of xuperiteot nL

.:voporntor exit pressure 2. Corullnnt ilegtce of ~~~p~th.,aL al

cvaporolor inlet presruro 3. Con•bnt level of n:frigcr.mt Jn the

ev•pomtnr

..C . CoMtont P"'""ure in Ute evaporator

A B C D L 1 2 4 3 b. 3 2 ol L

1!. 3 -1 2 1 d. I ~ 2 3

A <oillNh<orptlon o-efriJteration sy<tem IIJI! generator temperotur-= of 81' C. <:Vopornlor t~mpm-.turc of 3° C. condenser and absorber lemperature of 2J''C eoclt. Uten it~ maJ<imum pOll<iMe COP ill a. l ll.U b 9.0 c , t.NU d. J.S\1 C'onsider the following ~t~tl:ment~ • Sul.>eo<>ling Ill the conden8er oJ • tcfrigera1ion $YRtem is advi•illlle when l. expansion volu~ i~ ol # higboer elevation

than C<Jndenser. 2. there is a large pressure Jrop m th~ Hn~:

cOnnecting condenser lei the exj>ilnsifm value.

3. Ute tciHscrntion eiTcct o> lu be lncren .. ·u~(l

4. lbe contprt>~Ror \i'Ork i• IU be reduced.

90.

•11.

92.

93.

12<>1 11 Which oftltollle~IJitO)mcnl$ ;u-c coiTI:~!?

a. I and 2 b. l, 3nnd~

c, 2, 3 and + d. L 2 ~ud 3

Consider ll>e fallowlotg slalenoents; \Vh•11 dry bulb ond ihemoodynamic wet

bulb lerupotatur<:s at'<: same :

I. humidity r:ttio is I u00,,4 2. P"''"'' pressme of wate<" vapour equals

lutal pressure. 3. oil is fullysu luMI\w. 4. dew poml ll~ml""·ature os re;,ched.

S.:le<:t the correct ~t•lemetti(R) using the <llld,., gh on below: a. 3 alone

b. l and 2 c. 3 ~nd 4 d. 1, 2. 3 ond 4 If p is the porttnl pres~ure of vapOur. p t5

the partial pressure of vapour for salurnled a.r :md .Pb is the barometroc pressure. lloe. 1\lhltionshlp between rebtive bun1ldlty ·q,· lind degree nr u turotiou .,,· given by

a. JI ={~.-~J

b J•= i{~-~- ] c, p-~~A

p,

d. I ' - .;ft.. P.

TI1e by-p><~ !'actor of •ingla cooling~'"' in nn oir-<~ondili~>ne.· i.s 0.7. The by•p4Ss fao>lor if three such cooruog coils wilb lite same appnralus dew po.int ale !.:opt one behind the other. will be • . 0.210

b. 0.292

"' 0.343 d. UA12 Which one of lite foUqwing statements is true for nitiOOntlllitming duct deoign? a. Sllltic regain m~Uood h used wb~n lhc

duct work is uxlcnsh·a. tow l""ssorc drop os low and llow i.• balonced

Page 13: Ies mechanical-engineering-paper-1-2001

www.examrace.com

b. Sl.'lli¢ rug~in method is U$ed,. when the duet worl; l• exremive. tolll l pr<:S•Ure d!'Ut> i~ high und Ou~; is llllhalanced

.:.. bqlllll friction mclhod ;, used. when tl1e duct Work is .:~1cu~i\•o. totrtl Jlressu•·e dr.np iv low ;LUd tlow 1,. bulan~..<!

11. Equn I friction methotl is 111ed, "hen duel wvrl; i~ CJ~ten.live. ll)tn l. pres~ urtt dl'l)p i~ low ond now Is Ul\b3lancc:d

9+. Por •n a1r-conuilitmed sp:lce. RTif = l(lO kW, R STIP ; 0. 75. VQiumc t1ow nttc ls eqll.'ll to 100 m' 'minule and mdoor design spcc1l·ic humidil)' 1s. 0.0 I kgr(lrg ol dry air). 'n1e SllC:Citlc. humidily Of Supply air is n. ll.ll Hl b. 0.0075 ~. 0.0(1$ d U.002S

95 For an oir~ndilioning sy~lem. the o\ltdoor and in(IOor de~~tgn dry bulb temperature.. arc 45~ C and 25" C l'cspccti\•ct~ . 1l1c Npace lo be uir­conditiant>d is 20 m 3(l m S m und inliltTatlon Ill estimated to be cme air ~ange. If the density :o•d srecific beat of lUI' a.rc 1.2 (kj; of dry aw)lm ,mJ l.02 kJ/k (.kg of dt}• rur\"C, thon the sensible bent luad due; to in)iltr•tiH~ -.. nearly 11 17.2,-H•W h. (, 1.2 k\\'

"· 1224 kW ~~ 20A k\\'

?6. Mntch List I with Li•t II auu .o¢1cct U1c c•]rreC.t 1.1nswor :

n1., - mass trnnsfCI• coellicicnf, D - ml)let:uln• diiJu.~iun cutllicicnl, 1~- ch'llmc!~-ribtic length dimension, k - lherm>l c:noJuct ivity: (I · doos it) ,

("'.-, -~pecitic-ht::ll Hf C.Urt.'f-t;I.Ot J1f~IH.I11:~

11 - dynamic \'~CO•ity) T. i51' I .1\_ Schmidt nutlll>et B. TI1crmal dillUsivity

C. Lcwi~ n~ml>er

D. Sh"''"O'Id nJtrTther List n I k/ tp Ct, D)

91.

13 of 11 2. h11 LID)

3. II t> D

+ . I. ,,r, A B r D

II. ~ ~ 2 I b 4 ~ I 2 c, 3 4 2 .I 3 4 1 '2 In the upcrJtiu~< M four $h·oke di.,el en~inC<~. the term ·squish' referlt iCJ ihe a. Injection ol' luel in Lbe precombuo·tjun

chnm"er "· discharge fl f s••et~ lrom the

rnle<>mhu$tion chamber ¢. en1ry of ;~ir. mtv the; cnmbu~tkm

c)•~mbcr

d. ~uippins of fuel frnm 1ht: .:ore CiS. C'oflliidc;r 1~e fotl<•wing ·~•Jernenl't

rcgaJding t)JO 'lld\nnt~ges or fuel lttieetion o•'et Ciltburetioo in S.L OJigiues; 1. illghcr p<JW01' QUiJ!Ut tttld increa~cd

votumelri~ effielcn~y. 2 Simple ona in~<-nsive Injection

e<JUIJ/menl

~. LongcrJik oJinjcctlon equipment. ~. Loss knocking 11ud reduced tl!'lldcncy

lor btlck-fue. Select U>e co,..,.,.l 01n~ver using the codes given below: ~. I, 2 and .l b. I. 2 and 4

c. 2 ond 3 d. 1 and4

99. }..bleb List L (Pt1fonuauce Pl!tamct''T \ ') with [,ist ll (('urves l~beUecl L 2. 3, 4 and fiHP y[, Y) reg;>rding .a C::J. engme tun const:mt speed and sel~! Ute ~m:cl answer:

Li>ti A. Total f~el eonsumpli<ln r•lc B. M.:chnnicaJ "Ui~ienc) C. lnd1cated p<Jwer 0. Brake sp;:cifie fi1eld ~onsumption

Li•l 11

Page 14: Ies mechanical-engineering-paper-1-2001

www.examrace.com

v

a 11. c. 1.1.

2

B.H.P. f) c :! ~

J 4 ~ 2

4 2

0 2 2 3 3

I \1[1 MDich lh~ LUll I "11h Ust II und sclecl corn .. "CI -am;'' or I i51 I A Sujl<:rd\urgtng B Mor;~ lest C llctcrogcncous combtL~tinn 0 Ignition quality of~trol List II I Mullicylinder engine 2. C. I .l'11ginc 3. Calmi11t>valuc 4 1\m;rnft cngme

5 Octane numhcr 6 Single cylinder $.1 cogmc

a. b. C,

d.

A B C D 4

0 II ·I

3 I 3

1 2

s 5

5 5 2 2

I() I With reference to fmboj~l and Rocket engines, consid~r the lollowin_g slnlcmcnl~

I Ul'iciouc) of Rockel en sines is hishcr thfill thtll or 1<1 enftines.

2. Exit veludtk'!. of' i.'Xhaust gnses in Rocket engines are much bi£,her tbatt tho:>C !11 Jet engines.

J Sutgmuion e<.ntdilion; c~i~t n1 tho combU$1ion chumhcr In Rookd l!ogines.

-1 Rook,cl cugincs arc mr·brcathinf!. cngmes.

Whtcb of these Slalom eo IS are CQrr\!ct'!

a. 1 and 2 1!. 1, 3and.J c, 2, 3 and~-

1.1. I 2 Utldl

U ol 17

1112 Wiih r<."Spct:l 10 I.C. .. :ngw~ enus~ions. consider ~1e iilllow111a slalen>ttliS: I .E.vaporatl\~ enlli~ions huve nu carbon

m1111u~ide and oxides or ohrogcn. 2. Blow hy cnussions aro cssen1ially

cnroon monoxide und suspend<.:! purtiCUlal~ IDUtWr,

3 E.xhuusl emis.>1on:. CQnlain 100•,. of carbon mono~ ide. I QO'}o or (lxid~ of nnrogen and around 50 - 55% of hydmcurbon~ em illod t>y the en gin~-

~- l'her~: •~ no ~~1spcndetl pnrliott lnl"-~ in lllc cxhltlll;l

Of lhes~ .Sialcmcnls a. 1 and 4 urc ~orrcct b. 1 w1d 3 are <'t'lrte<:l e. 2 and 3 ·l)l'e oon~t

d. I, 2. 3 and -J. arc com.:ci I 03 A hydrocarbon fucld was bum I with air

and the Orsat analysis of tl1e dJy produ~IS of combustion yielded Ute following. dnto • lnnrnl 'olumoofdry gussnmpl~ lOne Valume an"absorpuoo 1n p1peue I cantaa1ttng. potnssium h~dro.xid~ !SOhiiiOI\

Vol urn~ anc:r Dbsofl}tmn m p1pCUC 2 comnming solution of pyrofl!UIJ<! n<td :md pP\llSSlumbydroxide

VolumO\ all;:r nbsorpuon 1n p1penc J oon1nu1ing euprou" <hluride gJIIfliOn

The pcrccntuge 1 b) volume) uf CDJ m the dry producl~ wos u. ~~ b. 5% c. I I%

d. 18'!-o Hl4. Mmch list 1 (Mall:r~al) wiOt list U (Use )

and sel~ct the correc1 ttnsw~r: Lht l

1\ Grophit~

B rhorium - 233 C Molten Sodium

Page 15: Ies mechanical-engineering-paper-1-2001

www.examrace.comIUS.

D, J>Jutunltun-239 l. in ll I. Coolant 2. Modcnuor 3 . f.iSI<ionablo:: material ~ - 1-'is.lle mat.,rlal

A B C Ll 1 3

~ 2 4 3 o, 2 3 I u. 3 2 ••

I he data given in the tahle refers '" nn <nPoC bused on Carnal oyck. when: Q1 = Heal n:cdvcd (kJ/min)

Q1- He-•t rejected (k.lls) k ~ W = Work uutnut l •\ I

S.ND. U1 ()., w I . l50U 1 6.~1) ll.20

2. I b(){t 17.92 8.75

3. 1700 19.03 9.30

~- 1800 :!0. 1 ~ 9.85 II' heat rccciwd output will Qo:, ncmly by the llngine blOC)() k.l/mfnt.lle IJ>e " tori;, u. 1/.YII b. ttU9 c. I 1.54 d. 111.115

IU6. A sysu:n1 whi le umleryolng n ~o:yck A- B - C' - 0 - A haS tl1e values ,,r hettl .utJ wnrl< trunsrers g, gh'<n In the uibkt

~ w - )l.i\nln

A- B + 687 + 474 I B' - C -269 0 c - o -199 - 180 0 - A + 75 0

l11c prw,er dev~JiofK..'<.I tn k W i.:; n~.:urb·.

a. 4-.9 b. 145 c. -19 d. 98

I 07. Tn a """ tcmpcralure scuJe say "P· th~ t>oil1ng nnd freezing polms o J' "a1er m (lne atmosphere rtrl! l l.')('r p und .300" p f\!$J.~Ctiv~l} . Co.rr"' lot~ lhis Scttk whh tht: Centigrade sc-..tl~. 1n~ readlos \,r 0'' f' ~'" thi.! tJ~ntigrnd~ !.Cill~ is

108.

15v117

•• IY' (

b. 50" C o. IOO" C

<1. 151)" c Match Li>t l (Name or c"litity) with Li>t lJ ( Definition) and select the cot'rt:ct answer :

List l A. Compressibility factQr

B. Jnul~· [homson cc,e111cicnl

C. ( \ m .. <uun pressure >retiJic hent

IJ. ISQthcrmal comprcssibilit)

Li•l II

I. -+.(.~ ), 2. ( alt )

iJT ' J . ( •'T)

i'p •

~- (:;;) A (l c IJ

"' 1 I .J 3 h. 4 3 2

c. 2 3 •I I

d. 4 2 3 lh\1. rrp. a nll " ' denOie rcspeotlvel) !he ponial

prcs.surl! of d.l)• 1tir nnd thot of water , ·;.:1pour in moist air. the: -)-pC"cilk humidil) or a1r ls gh~n by

"· -.P.J_ , ,,+ f')tl

b. .&.. p,.

c. 0.62lp-

fl.

d. (t.l>22p,

P11 t /1,

I I() Cnnslder the rhase diagram of a certain substnm:C ~ shf.lwn in the: g i' 'cn llgun:-. Mnlch List 1 (l'rucess} whh l.lst II (Cu1-ve!lilln"sl 1lJJd select the ct>rrcct nns,,er ~

Page 16: Ies mechanical-engineering-paper-1-2001

www.examrace.com

J f

r· ' I ...

Lisl I A. Vaporillltion B. Fusion C. Sublimation Lisr ll I. FE

1. EG ' ~- ED

A ll c a. I J 2 b. l 1 3 c. 3 2 I d. 3 I ].

I ll - l'lvmber of componen~ (C) . ph:L«.'$ (P) and degrees or freedom(F) 31\! related by Gibbs-phase •·ule us a, C - P - F= 2 b. F - C - P= :! c. C + F-P ~2 d. P- F- X 2

l I::!. Consitlcrthc followi.ug statemcnrs : I. Availability is the maximum

theoretic~ I " ork. oblllinablc.

2. Clapeyron's equa1ion fo1· dry salutation is given by

(1'-1' )=r.JT.("·-"') • , dQ T.

J . A gas can huve an) rempemtun: a1 given pn:;ssurc unlike 11 vapour whh:h has s fixed temperature at a given pres~ure.

4. Joule lltomson coefficient is- expressed u.~ fl = [f.\';/(lp]l,

Of tbese •1ati;t111Cili;!;

a. I. 2 and 3 are tOITL't:t

b. I. 3 and 4 are correct a. 2 and 3 are correct

d. 1. 2 and 4 are corn:cl 11 3. Match Li~ I with list II and select the

correcL answer :

114.

16 o) 17 List I (Cycles opcrMing between fixed tempeo·arure limit$) A. Otto cycle B. Diesel cycle C. Cam01 cycle D .. Bra)'lOu cycle Lis t II (C haracleris tlc o>fryde efficiency

lll I. '1 depend;. only ~JXIn temperature

limTts ., '1 depends only. on pressure limits

3. 11 depends on VI' I um~ compression mtio

4. '1 depend~ <ln em-otT ratio and volume compression mtio

A B C D

a. J 4 1 2 b. c.

d.

I 3 I

1

2

3 I

3

2

" 4 The lemp<'!tlture-enrropy dTa!(rrun for n sie.am tUrbine power plant. operttting on lhc Rankine cycle with r~hcat and regenerative feed heating is shown i11 the given figure. If Ill denotes the fraction of steru11 blc.d f()r feed he:~ting. the wurk developed in the turbine per kg ste~m entering the turb!M m state 5 is

6 3 T

6 / v I j \ ~

1f \ 2

91_8 /10 1\

s a. (b,-h,) + (J- m)(hj - h1l b. {hs- h.) t (hJ- hl}- ( 1- m){hl - hll c. 1h, - h, - b, + (1 - m)(h, - h,)

d. (hr h1l + ( I - m) (h.•- h, ) 115. The working temperatures in the

evapomoor and condenser coils of a refrigerator an: - 30" C und 32" C respectively. If the actual refrigerator bas a C.O.f' of 0.75 of the mtl.ximum. the required power input for a refrigemoin!!c ufTcet of5 kW. is, nearly

Page 17: Ies mechanical-engineering-paper-1-2001

www.examrace.com

.... l.7kW b, 2.94kW il, 3.921.:\\" d.. 4.0kW

llo_ ~ l~tclt L'"' l willa Li.t U and select Ute ~O.rteCt :JruiWOI'!

T, ist l A Air st~ndord c:Jlid<.'ll.c\' of Olio cvcle

' . B. Morse tesl C.. Consi.anl volume cycle I) , ronstanl pres~ure heat :tddition List II

I Mccltankal oil1cionc)•

2. DiO<Sol cycle 3. .Btak<> tlt~nn•l offid<!Ucy

-l. Otto cyelo I

5. 1--.­, • • H

A

n )

.... 3

c. J

B c I 4

5 2 j 4

l)

2 •I

2

d. ) 1 2 4

ll7. 1-.·lntdt Li.'lt 1 with. Lil<l .ll and select tlJe correct .uaswcr:

Ust [ (Fucb)

A. Seuti-bituminou• coal

B. Jligb.-..pced diesel oil C. Biogn.• b . I. PG t .i~t II (Choracterislks/usages)

I, Methane and carbon di<JXtde 2. Prop;tne-and bu!Jine 3 CnloriJi~ vruuc of !0,600 l(Cal4:&

-+. Power p~n~ A 13 C D

... : 4 l b. ~ 3 2 J c 3 4 2 d. 4 3 2

liS Consider the rallnwing statements : 1.. motor gasoline is n mixture of variout.­

lrydrocarbons, 2. Cnmpres•ed natuml g.. ts mainly

oompnsed or ruetltane.

17 ull 7 ~. producer s•• has ~ predomilllllll

component or hydrogen 1\ hh lesser propo1ti<>n ol' carbt\o monoxide

4, Cclrrne number of fuel used In tliC.<cl engine$ in Indio is in tho rnnge yf 80 tu !>0.

Which of these •t~tcmcnls '"" cot1'(:ct ? a. laod2

b. I and 3

c. 2. 3 and4 ll 1.2, 3 andA

119 <"'mu1der the followittg statements ; 1. tlnr the comhoslion o_f pul,•erized cool,

S 10 1 0~~ excess nir is 1>:qulred..

2. Air contain• 21% o:..-ygen by weight. 3- 11•e llue ga'"'s :&0t11 ~ coal-flfed

funroce contaill around 70"1> nitrog;:n b¥ volum~

4. ln tltc COid~U$ltC!n of liquid rud;_ Uoe nurnl>cr of moles of tlto rcactnrtts,

Of these: otnlCmcnts

a. L 2 and 4. at\! cotTCcl b. L 3 11m! ~ are COI"l\."CL

c. 1, :; 11nd -hre correct d, I rutd J a.re correct

120, Maldt l, iSt I with l..i<;l II and ••liOCi iht oon"I!Cl an8'ver :

Listl (Proc~) A, 'l'hrottling process B. J.eniropic proces• C. l'n:c t;xpaMion

D. lsotltem,.l pmo""s List U(Ch~raetcrist ic)

1. No wm:k done 2. No t hange in cnh Pp.V

3. Constant internal energy 4. r """!Jini enthn lp~

A B r ~. 4 2 b. 1 2 4

1:. ~ 3 I d_ 1 3 4

D 3 J

2

2