ifsc / a derivada prof. júlio césar tomio notas de aula ...julio.tomio/calculo 1/mat ensino 06 -...

14
IFSC / A Derivada Prof. Júlio César TOMIO Página 1 de 14 x y x y x y x y NOTAS DE AULA: Diferenciação ou Derivação Implícita Introdução: Funções Explícitas: 3 14 2 5 x x y 1 3 ) ( 2 x x f ) ( ) ( x sen x x g Funções Implícitas: 25 2 2 y x 12 5 3 4 2 2 5 x y x y xy y x 6 3 3 2 2 2 3 2 2 ) ( 9 ) ( y x y x [Fólio de Descartes] [Forma Polar: ) 2 ( cos 3 r ] Outros exemplos: x e y y x sen y 3 2 3 ) ( 1 ) ( ) ln( . 3 2 4 x sen y xy y

Upload: dangcong

Post on 10-Nov-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

IFSC / A Derivada Prof. Júlio César TOMIO

Página 1 de 14

x

y

x

y

x

y

x

y

NOTAS DE AULA: Diferenciação ou Derivação Implícita Introdução: Funções Explícitas:

31425 xxy 13)( 2 xxf )()( xsenxxg

Funções Implícitas:

2522 yx 1253

4225 xyxy

xyyx 633

222322)(9)( yxyx

[Fólio de Descartes] [Forma Polar: )2(cos3 r ]

Outros exemplos:

x

eyyxseny323

)(

1)()ln(.324

xsenyxyy

IFSC / A Derivada Prof. Júlio César TOMIO

Página 2 de 14

Exemplos:

1) Derive as expressões dadas a seguir:

a) 01232

yx

b) 2522 yx

c) 1yx

d) xyyx 633

e) x

eyyxseny323

)(

Espaço para Anotações:

Para refletir: A Álgebra é generosa; ela frequentemente contribui com mais do que foi pedido.

Jean le Rond d’ Alembert (1717-1783) In Carl B. Boyer: A History of Mathematics [Wiley, 1968, p. 481]

Tópico Extra!

[b1] Derive explicitamente as

funções de 2522 yx .

[b2] Determine o coeficiente

angular da reta tangente à curva

2522 yx no ponto em

que 3x , do 1º quadrante.

IFSC / A Derivada Prof. Júlio César TOMIO

Página 3 de 14

EXERCÍCIOS – Derivação Implícita 1) Determine implicitamente a derivada 𝑑𝑦/𝑑𝑥 das funções dadas a seguir.

a) 𝑥3 + 𝑦3 = 8 [] h) 𝑥𝑦2 + 2𝑦3 = 𝑥 − 2𝑦

b) 4𝑥2 − 9𝑦2 = 17 [] i) 𝑥2𝑦2 + 𝑥. 𝑠𝑒𝑛𝑦 = 0

c) cos 𝑥 + 𝑦 + 𝑠𝑒𝑛 𝑥 + 𝑦 = 1/3 j) 𝑒𝑥2+ ln 𝑦 = 0

d) 𝑦. 𝑡𝑔(𝑥 + 𝑦) = 4 k) 𝑥. 𝑒(𝑥2+𝑦2) = 5

e) 2𝑥 + 3𝑦

𝑥2 + 𝑦2 = 9 l) 𝑠𝑒𝑛 𝑥 + 𝑦 = 𝑦2 . 𝑐𝑜𝑠𝑥

f) 𝑥2 − 𝑦2

𝑥2 + 𝑦2 =1

2 m) 𝑦4 − 4𝑦2 = 𝑥4 − 9𝑥2 [] é conhecida como curva do diabo!

g) 𝑒𝑐𝑜𝑠𝑥 + 𝑒𝑠𝑒𝑛𝑦 = 1/4 n) 𝑦2 = 𝑥2 + 𝑠𝑒𝑛(𝑥𝑦) []

2) Dada a equação 𝑥4 + 𝑦4 = 24, chamada Quártica Especial de Lamé [sendo, às vezes, apelidada de círculo gordo],

determine 𝑦′ e 𝑦′′ e utilize um software para representá-la graficamente, confirmando seu singelo “apelido”.

Ao final da aula de cálculo, o professor pergunta: alguma dúvida?

RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS

1a) 𝒅𝒚

𝒅𝒙= −

𝒙𝟐

𝒚𝟐 1b) 𝒅𝒚

𝒅𝒙=

𝟒𝒙

𝟗𝒚 1c)

𝒅𝒚

𝒅𝒙= −𝟏 1d)

𝒅𝒚

𝒅𝒙=

−𝒚. 𝒔𝒆𝒄𝟐(𝒙+𝒚)

𝒚.𝒔𝒆𝒄𝟐 𝒙+𝒚 + 𝒕𝒈(𝒙+𝒚)

1e) 𝒅𝒚

𝒅𝒙=

𝟐(𝒙𝟐 + 𝟑𝒙𝒚 − 𝒚𝟐)

𝟑𝒙𝟐 − 𝟒𝒙𝒚 − 𝟑𝒚𝟐 1f) 𝒅𝒚

𝒅𝒙=

𝒚

𝒙 1g)

𝒅𝒚

𝒅𝒙=

𝒔𝒆𝒏𝒙 .𝒆𝒄𝒐𝒔𝒙

𝒄𝒐𝒔𝒚 .𝒆𝒔𝒆𝒏𝒚 1h)

𝒅𝒚

𝒅𝒙=

𝟏 − 𝒚𝟐

𝟐𝒙𝒚 + 𝟔𝒚𝟐 + 𝟐

1i) 𝒅𝒚

𝒅𝒙= −

𝟐𝒙𝒚𝟐 + 𝒔𝒆𝒏𝒚

𝟐𝒙𝟐𝒚 + 𝒙.𝒄𝒐𝒔𝒚 1j)

𝒅𝒚

𝒅𝒙= −𝟐𝒙𝒚𝒆𝒙𝟐

1k) 𝒅𝒚

𝒅𝒙= −

𝟐𝒙𝟐+𝟏

𝟐𝒙𝒚 1l)

𝒅𝒚

𝒅𝒙=

𝒚𝟐.𝒔𝒆𝒏𝒙 + 𝐜𝐨𝐬(𝒙+𝒚)

𝟐𝒚.𝒄𝒐𝒔𝒙 − 𝐜𝐨𝐬(𝒙+𝒚)

1m) 𝒅𝒚

𝒅𝒙=

𝟐𝒙𝟑−𝟗𝒙

𝟐𝒚𝟑 – 𝟒𝒚 1n)

𝒅𝒚

𝒅𝒙=

𝟐𝒙 + 𝒚.𝐜𝐨𝐬(𝒙𝒚)

𝟐𝒚 – 𝒙.𝐜𝐨𝐬(𝒙𝒚) 2) 𝒚′ = −(𝒙/𝒚)𝟑 e 𝒚′′ = −

𝟒𝟖𝒙𝟐

𝒚𝟕

Para refletir: A vida é um eco. Se você não está gostando do que está recebendo, observe o que está emitindo. (Lair Ribeiro)

[] Construa o gráfico

das funções indicadas utilizando um software adequado!

IFSC / A Derivada Prof. Júlio César TOMIO

Página 4 de 14

Resolução do Exercício 2 – Derivação Implícita

1644 yx

Calculando a 1ª derivada:

044 33 yyx Derivação Implícita em relação à variável x .

33 44 xyy

3

3

4

4

y

xy

3

3

y

xy Logo, a 1ª derivada é:

3

y

xy

Calculando a 2ª derivada:

Inicialmente, vamos “preparar” a expressão 3

3

y

xy para facilitar o cálculo da 2ª derivada. Assim:

3

3 1

yxy

33. yxy Agora, fazendo a Derivação [pela Regra da Multiplicação]

).3().()().3( 4332 yyxyxy

).(33 4332 yyxyxy Lembre-se que:

33. yxy

)..(33 334332 yxyxyxy

7632 33 yxyxy

7

6

3

2 13

13

yx

yxy

7

6

3

2 33

y

x

y

xy

Tirando o MMC de

3y e 7y

7

642 33

y

xyxy

Note que: 1644 yx

44 16 xy

7

642 3)16.(3

y

xxxy

7

662 3348

y

xxxy

7

248

y

xy

Logo, a 2ª derivada é: 7

248

y

xy

IFSC / A Derivada Prof. Júlio César TOMIO

Página 5 de 14

CONSTRUINDO E INTERPRETANDO GRÁFICOS ATRAVÉS DE DERIVADAS [Máximos e Mínimos] Relembrando... O que o valor da derivada nos diz quando analisamos graficamente uma função? Considere uma função f(x).

Onde f’ é positiva *f’ > 0+, a reta tangente ao gráfico de f(x) está “subindo”.

Onde f’ é negativa *f’ < 0+, a reta tangente ao gráfico de f(x) está “descendo”.

Onde f’ é nula *f’ = 0+, a reta tangente ao gráfico de f(x) não está “subindo e nem descendo”, está na horizontal.

Assim, temos que o sinal de f’ nos diz se f(x) é crescente ou decrescente. Logo:

Se f’ > 0 em um intervalo, então f é crescente nesse intervalo.

Se f’ < 0 em um intervalo, então f é decrescente nesse intervalo.

Se f’ = 0 em um intervalo, então f é constante nesse intervalo.

Além disso, o valor absoluto da derivada nos dá a taxa de variação. Logo, se f’ é grande em módulo (positiva ou negativa), então o gráfico de f(x) é bastante inclinado (para cima ou para baixo), enquanto, se f’ é pequena em módulo, o gráfico de f(x) tem inclinação “mais suave” (mais próximo da horizontal). Com isso em mente, podemos entender melhor o comportamento de uma função através do comportamento de sua derivada.

Derivadas Positivas

Derivadas Negativas

Texto acima adaptado do Livro: HUGUES-HALLETT, Deborah et al. Cálculo de uma Variável. 3. ed. Rio de Janeiro: LTC, 2004.

Pontos Críticos

Seja f(x) uma função definida no intervalo fechado [ a , b ] definida pelo gráfico abaixo. Vamos identificar, através dos valores de “x”, os pontos críticos, os extremos relativos e os extremos absolutos.

x

y

x

y

Y

IFSC / A Derivada Prof. Júlio César TOMIO

Página 6 de 14

Os pontos críticos de uma função são aqueles em que a derivada é zero ou que a derivada não existe. Esses pontos podem ser extremos relativos, ou ainda, pontos de inflexão, ou mesmo, “bicos” no gráfico.

Pontos Críticos: 0)( xf : x1 , x2 , x4 , x6 , x7

)(xf : x3 , x5 , x8

Extremos Relativos: Valores Máximos Relativos: f(x4) e f(x6)

[Local] Valores Mínimos Relativos: f(x2) , f(x5) e f(x7)

Extremos Absolutos: Valor Máximo Absoluto: f(a)

[Global] Valor Mínimo Absoluto: f(x5)

Observe, no gráfico, que o valor mínimo relativo f(x2) é MAIOR do que o valor máximo relativo f(x6).

Considere também que os pontos críticos da função em: x1 , x3 e x8 NÃO representam um extremo relativo.

Fonte: http://www.uff.br/webmat/Calc1_LivroOnLine/Cap15_Calc1.html

[i] Critério da Derivada Primeira:

a) Para determinar quais são os extremos relativos de uma função )(xf , devemos encontrar os valores para os quais a

derivada de uma função é igual a zero, ou seja, 0)( xf . Veja o esquema abaixo:

b) Para determinar se os extremos relativos de uma função )(xf são valores de máximo ou de mínimo, analisamos:

0)( xf para cx )(xf é decrescente

0)( xf para cx )(xf é crescente

Logo, )(xf tem mínimo relativo em c

0)( xf para cx )(xf é crescente

0)( xf para cx )(xf é decrescente

Logo, )(xf tem máximo relativo em c

[ii] Critério da Derivada Segunda:

Note que no exemplo ao lado, em ambos os lados do ponto P, o gráfico da função é

crescente, mas à esquerda de P a concavidade está para baixo e à direita de P a

concavidade está para cima. O ponto em que uma função muda sua concavidade é

chamado ponto de inflexão, nesse caso, o ponto P.

c

+ –

c

c

+ –

P

Nota:

O ponto de uma curva em que a função muda sua concavidade é chamado ponto de inflexão.

IFSC / A Derivada Prof. Júlio César TOMIO

Página 7 de 14

Assim: a) Para determinarmos o(s) ponto(s) de inflexão [caso exista(m)], devemos encontrar o(s) ponto(s) em que

a derivada segunda se anula, ou seja, 0)( xf .

a) Para determinar a concavidade de uma função, ou seja, se a função é côncava para cima ou côncava para baixo, num dado intervalo, analisamos:

Com )(xf crescendo, a função )(xf é côncava para cima [nesse intervalo]

Com )(xf decrescendo, a função )(xf é côncava para baixo [nesse intervalo]

Então, concluímos que: Se 0)( xf então a curva de )(xf é côncava para cima.

Se 0)( xf então a curva de )(xf é côncava para baixo.

Exemplos:

1) Avalie os pontos críticos e as concavidades das funções:

a) 106)(2

xxxf b) 1)(3 xxg

x

y

x

y

IFSC / A Derivada Prof. Júlio César TOMIO

Página 8 de 14

2) Construa o gráfico da função 43)(23 xxxf e identifique os pontos críticos.

Note que:

)43(lim23

xxx

e

)43(lim23

xxx

EXERCÍCIOS – Construindo e Interpretando Gráficos Através de Derivadas

1) Construa o gráfico da função 33)(3

xxxf , indicando os extremos relativos e os pontos de inflexão.

2) Construa o gráfico da função 22)(24 xxxf , indicando os extremos relativos e os pontos de inflexão.

3) Construa o gráfico da função 104)(34 xxxg , indicando os extremos relativos e os pontos de inflexão.

4) Construa o gráfico da função 3

64)(3x

xxh , determinando todos os pontos críticos.

5) Construa o gráfico da função xexy ).3(

2 , indicando os extremos relativos e o ponto de inflexão.

IFSC / A Derivada Prof. Júlio César TOMIO

Página 9 de 14

RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS

1) 2) 3)

4) 5)

Para refletir: As ciências têm as raízes amargas, porém os frutos são doces. [Aristóteles]

Revisando:

IFSC / A Derivada Prof. Júlio César TOMIO

Página 10 de 14

PROBLEMAS DE OTIMIZAÇÃO [MÁXIMOS E MÍNIMOS] EXEMPLO 1: Quais devem ser as dimensões [em cm] de uma lata com capacidade de 1 litro e com a forma de um cilindro reto, de modo que se utilize o mínimo de material? Observação: Ignore a espessura do material e o ‘desperdício’ na fabricação.

Eu estava furioso por não ter sapatos; então encontrei um homem que não tinha pés e me dei por muito satisfeito. [Provérbio Chinês]

h

h

2 r

Figura adaptada da Fonte: http://www.somatematica.com.br/emedio/espacial/espacial16.php

IFSC / A Derivada Prof. Júlio César TOMIO

Página 11 de 14

EXEMPLO 2: Suponha que, numa empresa, a receita seja definida por xxR 9)( e que o custo de produção seja definido

por xxxxC 156)(23 , ambos em u.m. [unidades monetárias], onde “x” representa milhares de unidades de um

produto. Considerando que tudo que é produzido é vendido, pergunta-se:

a) Qual o nível de produção que maximiza o lucro?

b) A partir de quantas unidades vendidas se obtém lucro?

Fonte da Figura: http://www.jlcarneiro.com/production_line/

Dica do Prof. Tomio!

Na resolução dos problemas de otimização, você deve “montar” uma função *obviamente, respeitando todos os dados do problema] em que a variável dependente [costumamos representá-la por “y” ou “f(x)”] é aquela que representa a grandeza do problema que necessitamos otimizar, ou seja, calcular o seu valor máximo ou mínimo.

IFSC / A Derivada Prof. Júlio César TOMIO

Página 12 de 14

EXERCÍCIOS – Problemas de Otimização [Máximos e Mínimos]

1) Uma caixa aberta deve ser feita com uma folha de papelão, medindo 8 cm de largura por 15 cm de comprimento, cortando-se quadrados iguais dos 4 cantos e dobrando-se os lados. Qual deve ser o tamanho dos quadrados cortados para a obtenção de uma caixa com o máximo volume?

2) Um terreno retangular é cercado por 1500 m de cerca. Quais as dimensões desse terreno para que a sua área seja a maior possível? E qual a área máxima? 3) [ROCHA] Um tipógrafo quer imprimir diplomas retangulares com 512 cm

2 de texto impresso, margens superior e

inferior de 6 cm e margens laterais de 3 cm cada uma. Quais as dimensões da folha para minimizar o gasto de papel? 4) Uma área retangular está limitada por uma cerca de arame em três de seus lados e por um rio reto no quarto lado. Ache as dimensões do terreno de área máxima que pode ser cercado com 1.000 m de arame. 5) [ANTON] Um terreno retangular deve ser cercado de duas formas. Dois lados opostos devem receber uma cerca reforçada que custa R$ 3,00 o metro, enquanto os outros dois restantes recebem uma cerca-padrão de R$ 2,00 o metro. Quais são as dimensões do terreno de maior área que pode ser cercado com R$ 6.000,00?

6) O rio da figura a seguir tem uma largura de 100m e o ponto C está deslocado de 400m do ponto A, na outra

margem. Deseja-se ir do ponto A ao ponto C, fazendo o percurso AB remando e depois BC correndo pela margem. Sabendo que se pode remar a 40m/min e correr a 100m/min, qual deve ser o valor do segmento “BC” para que essa travessia seja feita no menor tempo possível? Qual é o menor tempo que será gasto para executar tal travessia?

Lembre-se que: t

SV

7) [ANTON] Um recipiente em forma de paralelepípedo com base quadrada deve ter um volume de 2.250 cm

3. O material

para a base e a tampa do recipiente custa R$ 2,00 por cm2 e o dos lados R$ 3,00 por cm

2. Quais as dimensões do

recipiente de menor custo? 8) Uma lata cilíndrica fechada tem capacidade de 1 litro. Mostre que a lata de área mínima é obtida quando a altura do cilindro for igual ao diâmetro da base. 9) Um grupo de escoteiros possui uma peça de lona circular de 3 m de raio. Cortando-se um setor circular pode-se construir uma tenda de forma cônica. Quais as dimensões da tenda para que seu volume seja máximo? 10) Uma folha de papel para um cartaz tem 2 m

2 de área. As margens no topo e na base são de 25 cm e nas laterais 15 cm.

Quais as dimensões da folha para que a área limitada pelas margens seja máxima? 11) Um fazendeiro tem 200 bois, cada um pesando 300kg. Até agora ele gastou R$ 380.000,00 para criá-los e continuará gastando R$ 2,00 por dia para manter cada boi. O gado aumenta de peso a uma razão de 1,5 kg/dia. Seu preço de venda hoje é R$ 18,00 o quilograma, entretanto o preço cai 5 centavos por dia. Quantos dias deveria o fazendeiro aguardar para ter o maior lucro possível?

IFSC / A Derivada Prof. Júlio César TOMIO

Página 13 de 14

12) [ANTON] Ache o raio e a altura de um cilindro circular reto com o maior volume, o qual pode ser inscrito em um cone reto com 10 cm de altura e 6 cm de raio. 13) Dois terrenos retangulares, com dimensões x e y e um lado comum x, como mostra a figura, devem ser murados. Cada terreno tem uma área de 400 m

2. Determinar as dimensões de cada terreno para que o comprimento do muro seja o

menor possível.

14) Certa fábrica produz embalagens retangulares de papelão. Um de seus compradores exige que as caixas tenham 1 m de comprimento e volume de 2 m

3. Quais as dimensões de cada caixa para que o fabricante use a menor quantidade de

papelão? 15) [FLEMMING] Um retângulo é inscrito num triângulo retângulo de catetos medindo 9 cm e 12 cm. Encontre as dimensões do retângulo com maior área, supondo que a sua posição é dada na figura ao lado. 16) Um agricultor deseja construir um reservatório cilíndrico, fechado em cima, com capacidade de 6.280 m

3. Sabendo

que o custo da chapa de aço é de R$50,00 o m2, determine:

a) o raio e a altura do reservatório de modo que o custo seja mínimo; b) o custo mínimo.

17) [FERREIRA] Sendo 5.832 cm3 o volume de um reservatório de água sem tampa com base quadrada, R$ 3,00 por cm

2 o

preço do material da base e R$ 1,50 por cm2 o valor do material para os lados, calcule as dimensões desse reservatório de

modo que o custo total do material seja mínimo.

18) Uma forma líquida de penicilina produzida a granel por uma indústria farmacêutica, é vendida a granel a um preço de R$ 200,00 a unidade. Se o custo total de produção para “x” unidades for C(x) = 500.000 + 80x + 0,003x

2 e se a capacidade

de produção da fábrica for, de no máximo, 30.000 unidades por mês, quantas unidades de penicilina devem ser fabricadas e vendidas nesse período para que o lucro seja máximo? E qual o valor do lucro máximo?

19) Uma certa indústria vende seu produto por R$ 100,00 a unidade. Se o custo da produção total diária, em R$, para “x” unidades for C(x) = 0,0025x

2 + 50x + 100.000 e se a capacidade de produção mensal for, de no máximo, 15000 unidades,

quantas unidades desse produto devem ser fabricadas e vendidas mensalmente para que o lucro seja máximo?

20) [FLEMMING] Uma fábrica produz “x” milhares de unidades mensais de um determinado artigo. Se o custo da produção desta fábrica é dado por C = 2x

3 + 6x

2 + 18x + 60, e o valor obtido na venda é dado por V = 60x – 12x

2, determinar o

número ótimo de unidades mensais que maximiza o lucro L = V – C.

IFSC / A Derivada Prof. Júlio César TOMIO

Página 14 de 14

21) Suponha que o número de bactérias em uma cultura no instante “t” é dada por N = 5000.(25 + t.e–t/20

). Ache o maior

número de bactérias durante o intervalo de tempo: 0 t 100.

22) [MUNEM] Uma centena de animais pertencendo a uma espécie em perigo estão colocados numa reserva de proteção.

Depois de “t” anos a população “p” desses animais na reserva é dada por 25

255100

2

2

t

ttp . Após quanto tempo a

população será máxima?

23) Um tanque para peixes, de base quadrada, deve ser construído de forma que seu volume seja 2500 m3. O material do

fundo do tanque (base) vai custar R$ 1200,00 por m2 e o material das paredes (laterais), R$ 980,00 por m

2. Encontre as

dimensões do tanque de modo que o custo material seja mínimo.

24) Um cilindro deve ser fabricado para conter 6 litros. Que medidas [raio e altura] devem ter esse cilindro para custar o mínimo possível, sabendo que:

O material do fundo custa R$ 5,00/dm2; O material da lateral custa R$ 3,00/dm

2;

O material da tampa custa R$ 2,00/dm2; 1 litro = 1 dm

3.

25) Um clube campestre será construído, tendo uma área de 12.100 m2. A prefeitura exige que exista um “pedaço” livre,

com 25m na frente, 20m nos fundos e 12m em cada lado do terreno. Encontre as dimensões do lote [retangular] que tenha área mínima na qual possa ser construído esse clube.

26) [GUESSER / Adaptada] Uma caixa de massa “ m ” está sobre uma mesa horizontal. A caixa é puxada por uma força F

,

no ângulo , conforme a figura abaixo. O coeficiente de atrito estático e é 0,80. O valor mínimo da força necessária

para deslocar a caixa depende do ângulo . Assim:

a) Escreva a expressão da força mínima F

em função de , necessária para deslocar a caixa com peso NP 400 .

b) Determine o ângulo que dá a melhor eficiência [menor força] para deslocar a caixa.

RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS – RESPOSTAS

01) 5/3 cm 14) Largura = altura = 2 m

02) 375 m por 375 m e 140.625 m2 15) 4,5 cm por 6 cm

03) 22 cm por 44 cm 16a) r = 10 m e h = 20 m 16b) R$ 94.200,00

04) 250 m por 500 m 17) Base de 18 cm por 18 cm e altura de 18 cm

05) 500 m por 750 m 18) 20.000 unidades e R$ 700.000,00

06) x = 356,36 m e t = 6,29 min 19) 10.000 unidades

07) Base de 15 cm por 15 cm e altura de 10 cm 20) 1.000 unidades

08) h = 2r = 10,8 cm 21) t = 20 N 161.788 bactérias

09) r = 6 m e h = 3 m 22) Após 5 anos

10) 1,09 m por 1,83 m 23) 15,98 m e 9,79 m

11) 66,67 dias 24) r = 0,935 dm e h = 2,185 dm

12) r = 4 cm e h = 10/3 cm 25) 104,33 m por 195,62 m

13) x = 40 3/3 m e y = 10 3 m 26a)

sen8,0cos

320)(

F 26b) º66,38

Lembrete:

Nfat sendo N a Reação Normal de Apoio