ii sem (csvtu) mathematics unit 2 (linear differential equation )solustions

Upload: mrityunjoy-dutta

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    1/31

    epared by Mrityunjoy Dutta

    Unit I I Differential Equations of higher order

    April -May, 2006

    1. Solve: 2 2 32

    2 cos2x xd y

    y x e e xdx

    Ans: 2 2 32 cos2x xD y x e e x ----------- (1)Here Auxiliary equation is 2 2 0 2D D i

    So, cos 2 sin 2hy A x B x

    2 321

    . . cos22

    x xpP I y x e e x

    D

    3 22 21 1

    cos2( 3) 2 ( 1) 2

    x xpy e x e x

    D D

    32

    22

    1 1

    cos211 2 361

    11

    xx

    p

    e

    y x e xD DD D

    3

    2

    2 2

    1 1cos2

    611 4 2 31

    11

    xx

    p

    ey x e x

    D D D

    2 32 23 22

    2

    6 66 2 131 ... cos2

    11 11 121 1331 4 169

    xx

    p

    D D D De D D Dy x e x

    D

    3

    2 2

    2

    6 1 36 2 131 ... cos2

    11 11 11 121 4 169

    xx

    p

    e D Dy D x e x

    D

    3

    2 2

    2

    6 47 2 131 ... cos2

    11 11 121 4 4 169

    xx

    p

    e D Dy D x e x

    3

    2 6 47 2 132 2 0 0 ... cos211 11 121 233

    xx

    p

    e Dy x x e x

    3

    2 12 94 4sin2 13cos211 11 121 233

    x x

    p

    e x ey x x x

    So, Solution h py y y

    3

    2 12 94cos 2 sin 2 4sin2 13cos211 11 121 233

    x xe x ey A x B x x x x

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    2/31

    epared by Mrityunjoy Dutta

    2. Solve: 3 23 23 2

    12 2 10( )

    d y d yx x y x

    dx dx x

    Ans:3 2

    3 2

    3 2

    12 2 10

    d y d yx x y x

    dx dx x

    ------------- (1)

    Let logzx e z x

    So,2 3

    2 3

    2 3', '( ' 1) , '( ' 1)( ' 2)

    dy d y d yx D x D D y x D D D y

    dx dx dx where

    'd

    Ddz

    Putting all these values in (1) we get

    '( ' 1)( ' 2) 2 '( ' 1) 2 10( )z zD D D D D y e e

    3 2' ' 2 10( )z zD D y e e -------(2)

    Its auxiliary equation is 3 2 2 0m m

    2( 1)( 2 2) 0m m m

    2 41,

    2m

    1, 1m i

    So, . . cos sin )z zhC F y Ae e B z C z

    . . cos(log ) sin(log )hA

    C F y x B x C xx

    -------------(3)

    Now,3 2

    1. . 10( )

    ' ' 2

    z zpP I y e e

    D D

    3 2 3 2

    1 1

    10 10' ' 2 ' ' 2

    z z

    py e eD D D D

    3 2 3 2

    1 110 10 (1)

    1 1 2 ( ' 1) ( ' 1) 2

    z zpy e e

    D D

    2

    15 10 (1)

    '( ' 4 ' 5)

    z zpy e e

    D D D

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    3/31

    epared by Mrityunjoy Dutta

    1

    21 4 15 10 1 ' ' (1)5 ' 5 5

    z zpy e e D D

    D

    1 45 2 1 ' ..... (1)

    ' 5

    z zpy e e D

    D

    15 2 (1)'

    z zpy e e

    D

    5 2z zpy e ze

    2log5p

    xy x

    x

    So, Solution h py y y

    2log

    cos(log ) sin(log ) 5A x

    y x B x C x xx x

    (Ans)

    3. Solve the following simultaneous equation: 2 , 2 , 2dx dy dzy z xdt dt dt

    (Ans.) The given equation is:

    2dx

    ydt

    ..(1), 2 ..........(2)dy

    zdt

    ,

    2 ..........(3)dz

    xdt

    Differentiating (1)w . r. t., we get

    2

    22 2(2 )

    d x dyz

    dt dt using(2)

    Differentiating again w. r. t. t,, we get

    3

    34 4(2 )

    d x dzx

    dt dt

    3

    3 2

    21 2 3

    2

    1 2 3 2 3

    2

    1 2 3 3

    2

    1 2

    ( 8) 0,

    8 0 ( 2)() 2 4) 0

    2, 1 3

    cos( 3 )

    1

    2

    12 cos( 3 ) 3 sin( 3 )

    2

    2 2cos cos( 3 ) sin sin( 3 )

    3 3

    cos 3

    t t

    t t t

    t t

    t t

    dD x whereDdt

    D or D D D

    D i

    x ce c e t c

    dxy

    dt

    ce c e t c c e t c

    ce c e t c t c

    ce c e t

    32

    3c

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    4/31

    epared by Mrityunjoy Dutta

    From(2)..2

    1 2 3 2 3

    21 2 3

    1

    2

    1 2 22 cos( 3 ) 3 sin( 3 )

    2 3 3

    4cos( 3 )3

    t t t

    t t

    dyz

    dt

    ce c e t c c e t c

    ce c e t c

    Nov-Dec 2006

    4. Solve the following : sin , cosdx dxy t x tdt dt

    , Given that , 2, 0, , 0x y when t

    Ans: Given simultaneous differential equation are

    sindx

    y tdt

    ------------- (1)

    cosdy

    x tdt

    ------------(2)

    From equation (2) we get cosdy

    x tdt

    ---------(3)

    Differentiating (3) with respect to t we get2

    2sin

    dx d yt

    dt dt ---------(4)

    From (1) and (4) we get2

    2sin sin

    d yt y t

    dt

    2

    2 2sin

    d y

    y tdt 2( 1) 2sinD y t -----------(5)

    Its Auxiliary equation is 2 1 0 1,1m m

    So, . . t thC F y Ae Be

    And2

    1. . ( 2sin )

    1pP I y t

    D

    2

    1( 2sin ) sin

    1 1py t t

    So, h py y y

    sint ty Ae Be t -------(6)

    Putting the value of y in (2) we get

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    5/31

    epared by Mrityunjoy Dutta

    cos cost tAe Be t x t

    t tx Ae Be ---------(7)

    Given that 2, 0, 0x y when t

    So, equation (6) and (7) becomes 0 A B and 2 A B

    1, 1A B

    So, solutiont tx e e and sint ty e e t (Ans)

    5. Solve the differential equation: 3 23 23 2

    12 2 10( )

    d y d yx x y x

    dx dx x

    Ans:3 2

    3 2

    3 2

    12 2 10

    d y d yx x y x

    dx dx x

    ------------- (1)

    Let logzx e z x

    So,2 3

    2 3

    2 3', '( ' 1) , '( ' 1)( ' 2)

    dy d y d yx D x D D y x D D D y

    dx dx dx where '

    dD

    dz

    Putting all these values in (1) we get

    '( ' 1)( ' 2) 2 '( ' 1) 2 10( )z zD D D D D y e e

    3 2' ' 2 10( )z zD D y e e -------(2)

    Its auxiliary equation is3 2 2 0m m

    2( 1)( 2 2) 0m m m

    2 41,

    2m

    1, 1m i

    So, . . cos sin )z zhC F y Ae e B z C z

    . . cos(log ) sin(log )hA

    C F y x B x C xx

    -------------(3)

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    6/31

    epared by Mrityunjoy Dutta

    Now,3 2

    1. . 10( )

    ' ' 2

    z zpP I y e e

    D D

    3 2 3 2

    1 110 10

    ' ' 2 ' ' 2

    z zpy e e

    D D D D

    3 2 3 2

    1 110 10 (1)1 1 2 ( ' 1) ( ' 1) 2

    z zpy e e D D

    2

    15 10 (1)

    '( ' 4 ' 5)

    z zpy e e

    D D D

    1

    21 4 15 10 1 ' ' (1)5 ' 5 5

    z zpy e e D D

    D

    1 45 2 1 ' ..... (1)

    ' 5

    z zpy e e D

    D

    15 2 (1)

    '

    z zpy e e

    D

    5 2z zpy e ze

    2log5p

    xy x

    x

    So, Solution h py y y

    2log

    cos(log ) sin(log ) 5A x

    y x B x C x xx x

    (Ans)

    6. Using method of variation of parameters: 22

    4 tan2d y

    y xdx

    Ans: Homogeneous equation is 4 0y y

    Its characteristics equation is2 4 0 2i

    Hence, Homogeneous solution is cos2 sin2hy A x B x

    1 2cos2 , sin2y x y x

    1 1 2 2

    2 2

    cos2 sin22cos 2 2sin 2 2

    2sin2 2cos2

    y y x xW x x

    x xy y

    rdxy

    y

    W

    rdxyyyp

    .. 12

    21

    sin2 .tan2 cos2 tan2cos2 sin2

    2 2p

    x xdx x xdxy x x

    cos2 sin2(sec2 cos2 ) sin2 .

    2 2p

    x xy x x dx xdx

    cos2 log(sec2 tan2 ) sin2 sin2 cos2

    2 2 2 2 2p

    x x x x x xy

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    7/31

    epared by Mrityunjoy Dutta

    cos2 .log(sec2 tan2 )

    4p

    x x xy

    So, Solutioncos2 .log(sec2 tan2 )

    cos2 sin24

    h p

    x x xy y y A x B x

    (Ans)

    April -May, 20077. Solve the differential equation 2

    22 sinx

    d y dyy xe x

    dx dx .

    Ans:2

    22 sinx

    d y dyy xe x

    dx dx

    Its auxiliary equation is 2 22 1 0 ( 1) 0 1,1m m m m

    So, . . x xhC F y Ae Bxe

    Now,2

    1. . sin

    ( 1)

    xpP I y xe x

    D

    2 21 1sin sin

    ( 1 1)

    x xpy e x x e x x

    D D

    1sinxpy e x xdx

    D

    1

    cos sinxpy e x x xD

    cos sinxpy e x x x dx

    sin cos cosxpy e x x x x

    sin 2cosx

    py e x x x So, general solution h py y y

    sin 2cosx x xy Ae Bxe e x x x (Ans)

    8. Solve by method of variation of parameters of : - 22

    sind y

    y x xdx

    .

    Ans: Homogeneous equation is 0y y

    Its characteristics equation is2 1 0

    2i

    Hence, Homogeneous solution is cos sinhy A x B x

    1 2cos2 , sin2y x y x

    1 1 2 2

    2 2

    cos sincos sin 1

    sin cos

    y y x xW x x

    x xy y

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    8/31

    epared by Mrityunjoy Dutta

    Wrdxy

    yW

    rdxyyyp

    .. 12

    21

    sin . sin cos . sincos sin

    1 1p

    xx xdx xx xdxy x x

    2

    cos sin . sin sin cospy x x xdx x x x xdx cos sin(1 cos2 ) sin2 .

    2 2p

    x xy x x dx x xdx

    2cos sin2 cos2 sin cos2 sin2

    2 2 2 4 2 2 4p

    x x x x x x x x xy

    2 cos cos sin2 cos cos2 sin cos2 sin sin2

    4 4 8 4 8p

    x x x x x x x x x x x xy

    2 cos sin2 sin cos2cos cos cos2 sin sin24 4 8

    p

    x x x x xx x x x x xy

    2 cos sin cos

    4 4 8p

    x x x x xy

    So, Solution2 cos sin cos

    cos sin4 4 8

    h p

    x x x x xy y y A x B x (Ans)

    9. Solve the differential equation 22 22

    3 4 (1 )d y dy

    x x y xdx dx

    .

    Ans:2

    2 2

    23 4 (1 )

    d y dyx x y x

    dx dx --------- (1)

    Let logzx e z x and

    2

    22' , '( ' 1)

    dy d yx D y x D D ydx dx where ' dD dz

    Putting all the values in (1) we get

    2'( ' 1) 3 ' 4 (1 )zD D D y e 2 2' 4 ' 4 1 2 z zD D y e e ----------- (2)Its auxiliary equation is 2 24 4 0 ( 2) 0 2,2m m m m

    So, 2 2 2 2. . logz zhC F y Ae BZe Ax Bx x

    Now,2

    2

    1. . (1 2 )

    ( ' 2)

    z zpP I y e e

    D

    0 2

    2 2 2

    1 1 1

    2( ' 2) ( ' 2) ( ' 2)

    z z z

    py e e eD D D

    2

    2 2 2

    1 1 1.1 2 1

    (0 2) (1 2) ( ' 2 2)

    z zpy e e

    D

    2

    2

    1 12 1

    4 '

    z zpy e e

    D 2

    12 1

    4

    z zpy e e dzdz

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    9/31

    epared by Mrityunjoy Dutta

    2 2 2 21 1 (log )2 2

    4 2 4 2

    zz

    p

    z e x xy e x

    So, general solution is2 2

    2 2 1 (log )log 24 2

    h p

    x xy y y Ax Bx x x (Ans).

    Nov-Dec 2007

    10.Solve: 22

    3 4 0d y dy

    ydx dx

    Sol. Its symbolic form is:2

    2

    3 4 0

    ( 3 4) 0

    D y Dy y

    D D y

    Its auxiliary equation is :2 3 4 0D D

    4, 1D

    Hence C.F.=4

    1 2x xy ce c e

    (Ans.)

    11.Solve: 22

    5 6 sin3d y dy

    y xdx dx

    Sol. It s symbolic form is 2 5 6 tan2D D y x

    Its auxiliary equation is: 2 5 6 0D D ( 2)( 3) 0

    2,3

    D D

    D

    Hence C.F.= y=2 3

    1 2x xce c e

    And P.I.=

    2 2

    2 2

    1 1sin3 sin3

    ( 5 6) 3 5 6

    1 1 5 3sin3 [ ][ ]sin3

    5 3 5 3 5 3

    5 3 5 3sin3 sin3

    25 9 25( 3 ) 9

    1 15cos3 3sin3(5 3)sin3234 234

    5cos3 sin3

    78

    x xD D D

    Dx x

    D D D

    D Dx x

    D

    x xD x

    x x

    Hence complete solution is:y=C.F.+P.I.

    2 31 2

    1(5cos3 sin3 )

    78

    x xy ce c e x x

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    10/31

    epared by Mrityunjoy Dutta

    12.Solve by method variation of parameters:2

    24 tan2

    d yy x

    dx

    Ans: Homogeneous equation is 4 0y y

    Its characteristics equation is2 4 0 2i

    Hence, Homogeneous solution is cos2 sin2hy A x B x

    1 2cos2 , sin2y x y x

    1 1 2 2

    2 2

    cos2 sin22cos 2 2sin 2 2

    2sin2 2cos2

    y y x xW x x

    x xy y

    rdxy

    yW

    rdxyyyp

    .. 12

    21

    sin2 .tan2 cos2 tan2cos2 sin22 2

    p x xdx x xdxy x x

    cos2 sin2(sec2 cos2 ) sin2 .

    2 2p

    x xy x x dx xdx

    cos2 log(sec2 tan2 ) sin2 sin2 cos2

    2 2 2 2 2p

    x x x x x xy

    cos2 .log(sec2 tan2 )

    4p

    x x xy

    So, Solutioncos2 .log(sec2 tan2 )

    cos2 sin2

    4

    h p

    x x xy y y A x B x

    (Ans)

    13.Solve the simultaneously equation:2 5 , 4 3t

    dx dxx y e x y t

    dt dt

    Sol. The given equation can be expressed as:

    ( 5) 3 ............(1)

    2 ( 5) ......(2)tD x y t

    x D y e

    To eliminate y , operating equation (1) by (D+5) and equation (2) by 3 then subtracting , we get

    2

    ( 5)( 4) 6 ( 5) 3

    ( 9 14) 1 5 3

    t

    t

    D D x x D t e

    D D x t e

    ..(3)

    The root of auxiliary equation of the equation corresponding homogeneous equation

    2( 9 14) 0D D x

    of the equation (3) is given by

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    11/31

    epared by Mrityunjoy Dutta

    2( 9 14) 0

    , 2, 7

    D D

    or D

    Hence the complementary function of equation (3) is:

    2 71 2. .

    t tC F ce c e

    The particular integral of equation (3) is

    2

    2 2

    2

    1. . (1 5 3 )

    ( 9 14)

    1 1(1 5 ) 3

    ( 9 14) ( 9 14)

    1 9 31 ............. (1 5 )

    14 14 14 1 9 14

    1 91 5 .5

    14 14 8

    1 315

    14 14 8

    t

    t

    t

    t

    t

    P I t eD D

    t eD D D D

    D eD t

    et

    et

    Hence the general solution of equation (3) is:

    2 7

    1 2

    2 71 2

    . . . .

    1 315

    14 14 8

    5, 2 7

    14 8

    tt t

    tt t

    x C F P I

    ex ce c e t

    dx eNow ce c e

    dt

    .(4)

    Substituting the above values of x and dx/dt in equation (1), we get;

    2 7 2 71 2 1 2

    2 71 2

    5 20 1243 2 7 4 4

    14 8 14 196 2

    1 3 5 272 3 .......................(5)

    3 7 8 98

    t tt t t t

    t t t

    e ey ce c e ce c e t t

    y ce c e t e

    Since the degree of D in the determinant4 3

    ,22 5

    Dis

    D

    it follows that the number of

    independent constant in general solution must be two. Hence (4) and (5) together constitute the

    general solution of the given system.

    April -May, 2008

    14.State Cauchys Linear equation.Ans: - A Differential equation of the form

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    12/31

    epared by Mrityunjoy Dutta

    Xyad

    ydxa

    d

    ydxa

    d

    ydx nn

    nn

    n

    nn

    n

    nn

    ........

    2

    22

    21

    11

    1 is known as Cauchys

    Linear differential equation.

    15.Solve2

    2

    2 4 sin2xd y dy

    y e xdx dx .

    (ANS). Its symbolic form is :2 2( 4 1) sin2xD D y e x

    Its auxiliary equation is:2( 4 1) 0D D

    16.Solveby method of variation of parameters of : - 22

    4 4tan2 .d y

    y xdx

    Ans: Homogeneous equation is 4 0y y

    Its characteristics equation is2

    4 0 2i Hence, Homogeneous solution is cos2 sin2hy A x B x

    1 2cos2 , sin2y x y x

    1 1 2 2

    2 2

    cos2 sin22cos 2 2sin 2 2

    2sin2 2cos2

    y y x xW x x

    x xy y

    rdxy

    yW

    rdxyyyp

    .. 12

    21

    sin2 .tan2 cos2 tan2cos2 sin2

    2 2p

    x xdx x xdxy x x

    cos2 sin2(sec2 cos2 ) sin2 .

    2 2p

    x xy x x dx xdx

    cos2 log(sec2 tan2 ) sin2 sin2 cos2

    2 2 2 2 2p

    x x x x x xy

    cos2 .log(sec2 tan2 )

    4p

    x x xy

    So, Solutioncos2 .log(sec2 tan2 )

    cos2 sin24

    h p

    x x xy y y A x B x

    (Ans)

    17.Solve 2 0dydx x ydt dt

    and 5 3 0dydx

    x ydt dt

    (Ans). The given equation are:

    2 0.....................(1)dydx

    x ydt dt

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    13/31

    epared by Mrityunjoy Dutta

    5 3 0.....................(2)dydx

    x ydt dt

    Subtracting equation (2) from equation (1), we get

    3 2 0...............(3)dx

    x ydt

    Writing equation (2)and (3) symbolically (i.e;D=d/dt),we have5 ( 3) 0..........(4)

    ( 3) 2 0..........(5)

    x D y

    D x y

    Operating equation (5)by D+3 ,we get2( 9) 2( 3) 0.........(6)D x D y

    Now, multiplying equation(4) by 2 and adding in equation (6),we get2( 1) 0D x .(7)

    This is the linear equation in x with constant coefficient s for which the auxiliary equation is2( 1) 0D

    D i

    Hence the general solution of linear equation is:0

    1 2

    1 2

    ( cos sin )

    ( cos sin )..........................(8)

    tx e c t c t

    x c t c t

    From equation (8)

    1 2

    1 2

    sin cos

    sin cos

    dxc t c t

    dt

    Dx c t c t

    Substituting these values in equation(5) we get

    1 2 1 2

    2 1 1 2

    1 1( 3 ) ( sin cos ) 3( cos sin )

    2 2

    1 1( 3 )cos ( 3 )sin

    2 2

    y Dx x c t c t c t c t

    y c c t c c t

    Nov-Dec 200818.Define the linear differential equation.Ans. A differential equation in which the dependent variable & its derivatives occur only in the first

    degree & are not multiplied together is known as Linear Differential equation.

    General form of Linear Differential Equation of nth order is:

    XyPd

    ydP

    d

    ydP

    d

    ydnn

    n

    n

    n

    n

    n

    ........2

    2

    21

    1

    1 , where XPPP n,,........,, 21 are functions of x.

    19.Solve the differential equation:

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    14/31

    epared by Mrityunjoy Dutta

    2

    23 2

    xd y dy ey edx dx

    Ans: - Its symbolic form is 2 3 2xeD D y e .

    Its Auxiliary equation is 2 3 2 0D D 1, 2D

    Hence, Complementary function is 2x xcy Ae Be

    Now, 2 1 1 1 13 2 ( 2)( 1) ( 2) ( 1)x x xe e ePI e e e

    D D D D D D

    2 2 21 1

    2 2

    x x x x x x x xx x x xe e e ePI e e e dx e e e e e e dx e e e dxD D

    2x xePI e e

    So, Solution 2 2x x xc pxey y y Ae Be e e (Ans)

    20.Solve by method variation of parameters:2 3

    2 26 9

    xd y dy ey

    dx dx x

    Ans: -2

    3

    2

    2

    96e

    yd

    dy

    d

    yd x

    Its Homogeneous equation is 0962

    2

    yd

    dy

    d

    yd

    Its symbolic form is 0)96( 2 yDD

    Its characteristics equation is 0)96( 2 DD

    3,3 D

    Hence, Homogeneous solution is 213)( ByAyeBxAy xh

    xx xeyey 323

    1 ,

    xxxx

    xxx

    xx

    exexeexeee

    xee

    yy

    yyW 6666

    333

    33

    21

    2133

    33''

    Wrdxy

    yW

    rdxyyyp

    .. 12

    21

    dxee

    xedxexe

    ey

    x

    x

    xx

    x

    x

    xx

    p 2

    3

    6

    33

    2

    3

    6

    33

    ..

    dxxedxeyxx

    p 2

    33 11

    xxexey xe

    xp

    1log 33 xe

    xp exey

    33 log

    So, Solutionx

    exxx

    ph exeBxeAeyyy3333 log (Ans).

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    15/31

    epared by Mrityunjoy Dutta

    21.Solve the simultaneously equation:5 2 , 2 0

    dx dyx y t x y

    dt dt being x=y=0 when t=0.

    Ans: - +5 2 = , +2 + = 0Its symbolic form is ( +5) 2 = ------------------(1)

    2 +( +1) = 0-------------------(2)Now, eq(1) X (D+1) +eq(2) X 2 we get

    [( +1)( +5) +4] = ( +1) +0 ( +6 +9) = 1+, which is linear differential equation.Its auxiliary equation is ( +6 +9) = 0 =3,3So,..= ( +)

    Now, ..= () (1+ ) = 1+

    (1+) = 1 2 +3

    + . (1+)

    ..= 1+ = + = + So, = ( +) + + ---------------------------------(3)Now, from (1) 2 = ( +5) = +5 2 = 5( +) + + 3( +) + + = (2 +) + + ---------------(4)Given that at = 0, = = 0, so equation (3) and (4) becomes

    + = 0 = and

    (2 +) +

    = 0 =

    2 ==

    +

    =

    =

    So, Solution is

    = ( ) + + and = + + +

    = {(1+6) (3 +1)} and = {(4+6) +(6 4)}April -May, 2009

    22.Explain briefly the method of variation of parameter.Ans: Let us solve

    2

    2

    d y dyP Qy X

    dx dx by variation of parameter method.

    Let its complementary function is 1 1 2 2cy c y c y

    Then find out wronskian1 2

    1 2

    1 2

    ( , )' '

    y yW y y

    y y

    Now, particular integral 2 11 2

    1 2 1 2

    . .

    ( , ) ( , )p

    y X y Xy y dx y dx

    W y y W y y

    Then general solution is c py y y (Ans).

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    16/31

    epared by Mrityunjoy Dutta

    23.Solve the differential equation 2 2 32 cos2x xD y x e e x .Ans: 2 2 32 cos2x xD y x e e x ----------- (1)

    Here Auxiliary equation is 2 2 0 2D D i

    So, cos 2 sin 2hy A x B x

    2 321

    . . cos22

    x xpP I y x e e x

    D

    3 22 21 1

    cos2( 3) 2 ( 1) 2

    x xpy e x e x

    D D

    3

    2

    2 2

    1 1cos2

    611 2 31

    11

    xx

    p

    ey x e x

    D D D D

    3

    2

    2 2

    1 1cos2

    611 4 2 3111

    xx

    p

    ey x e x

    D D D

    2 32 23 2

    2

    2

    6 66 2 131 ... cos2

    11 11 121 1331 4 169

    xx

    p

    D D D De D D Dy x e x

    D

    3

    2 2

    2

    6 1 36 2 131 ... cos2

    11 11 11 121 4 169

    xx

    p

    e D Dy D x e x

    D

    32 2

    2

    6 47 2 131 ... cos2

    11 11 121 4 4 169

    xx

    p

    e D Dy D x e x

    3

    2 6 47 2 132 2 0 0 ... cos211 11 121 233

    xx

    p

    e Dy x x e x

    3

    2 12 94 4sin2 13cos211 11 121 233

    x x

    p

    e x ey x x x

    So, Solution h py y y

    3

    2 12 94cos 2 sin 2 4sin2 13cos211 11 121 233

    x xe x ey A x B x x x x

    24.Solve the equation : - 22 2(1 ) (1 ) sin 2log(1 )d y dyx x y xdx dx .Ans:

    22

    2(1 ) (1 ) sin 2log(1 )

    d y dyx x y x

    dx dx (1) is a Legendres equation.

    Now let us put 1 tx e we get2

    2

    2(1 ) ( 1) , (1 )

    d y dyx D D y x Dy

    dx dx where

    dD

    dt

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    17/31

    epared by Mrityunjoy Dutta

    So, equation (1) becomes ( 1) sin2D D y Dy y t 2( 1) sin2D y t which is linear differential equation with constant coefficients.

    Its auxiliary equation is 2( 1) 0D D i

    So, 1 2. . cos sinC F c t c t ..(2)

    Now,2 2

    1 sin2 sin2. . sin2

    1 2 1 3

    t tP I t

    D

    So, solution 1 2sin2

    . . . . cos sin3

    ty C F P I c t c t (Ans)

    25.Solve the simultaneous equation: -2 , 2t t

    dx dyy e x e

    dt dt

    .

    Ans: 2 , 2t tdx dy

    y e x edt dt

    2 ...............(1) 2 ..............(2)t tDx y e Dy x e whered

    Ddt

    (1) 2 (2) D we get22 4 2 2 t tDx y D y Dx e e

    2( 4) 2 t tD y e e ..(3)

    HereIts auxiliary equation is 2( 4) 0 2D D i

    So, 1 2. . cos2 sin2C F c t c t ..(4)

    Now, 2 2 21 1 1

    . . 2 2

    1 1 1

    t t t tP I e e e e

    D D D

    2 2

    1 1. . 2

    1 1 ( 1) 1 2

    tt t t eP I e e e

    So, solution 1 2. . . . cos2 sin22

    tt ey C F P I c t c t e

    ..(5)

    Now putting the value of y in (2) we get

    2 tDy x e

    1 22 sin2 2 cos2 22

    tt tec t c t e x e

    1 22 2 sin2 2 cos22

    tt ex c t c t e

    1 2sin2 cos22 4

    t te ex c t c t

    (6)

    So, solution 1 2 1 2sin2 cos2 , cos2 sin22 4 2

    t t tte e ex c t c t y c t c t e

    (Ans)

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    18/31

    epared by Mrityunjoy Dutta

    Nov-Dec 2009

    26.Solve the equation: 2( 2) 0D D y .Ans: - 2( 2) 0D D y

    Its auxiliary equation is 2( 2) 0 1, 2D D D

    So, solution is 2x xy Ae Be (Ans).

    27.Solve the following differential equation:2

    2

    2log

    d y dyx x y x

    dx dx .

    Ans: - + = --------------------(1)

    Given equation is Cauchys Homogeneous Linear differential equation.

    Put

    =

    =

    , if

    =

    ,

    =

    ,

    =

    (

    1)

    So, equation (1) is ( 1) + = ( 2 +1) = Which is linear differential equation with constant coefficients.

    So, its Auxiliary equation is 2 + 1= 0 = 1,1So,..= + ------------------------(2)

    Now, ..= () = (1 ) = (1+2 +3 + .)

    ..= +2So, solution is =..+..= + + +2 = + + +2 (Ans).

    OR

    28.Solve the simultaneous differential equation:

    5 2 , 2 0dx dy

    x y t x ydt dt

    , given that 0x y when 0t .

    Ans: - +5 2 = , +2 + = 0

    Its symbolic form is ( +5) 2 = ------------------(1)2 +( +1) = 0-------------------(2)

    Now, eq(1) X (D+1) +eq(2) X 2 we get

    [( +1)( +5) +4] = ( +1) +0 ( +6 +9) = 1+, which is linear differential equation.Its auxiliary equation is

    (

    +6

    +9) = 0

    =

    3,

    3So, ..= ( +)

    Now, ..= () (1+ ) = 1+

    (1+) = 1 2 +3

    + . (1+)

    ..= 1+ = + = + So, = ( +) + + ---------------------------------(3)Now, from (1) 2 = ( +5) = +5

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    19/31

    epared by Mrityunjoy Dutta

    2 = 5( +) + + 3( +) + + = (2 +) + + ---------------(4)Given that at = 0, = = 0, so equation (3) and (4) becomes

    +

    = 0

    =

    and

    (2 +) + = 0 = 2 == + = = So, Solution is

    = ( ) + + and = + + +

    = {(1+6) (3 +1)} and = {(4+6) +(6 4)}29.Solve the following differential equation: 2

    24 sinh

    d yy x x

    dx .

    Ans: - 4 =

    4 = Its Symbolic form is ( 4) =

    Its Auxiliary equation is ( 4) = 0 = 2So, ..= +Now, ..=

    =

    .

    .=

    ()

    ()

    =

    ..=

    +

    ..=

    1+ + +

    1+

    +

    ..=

    + + = (

    ) (

    )

    ..= [3 2]So, solution is =..+..= + + [3 2] (Ans).

    April -May, 201030.Define Cauchy and Legendre L inear differential equation.

    Ans: - A Differential equation of the form

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    20/31

    epared by Mrityunjoy Dutta

    Xyad

    ydxa

    d

    ydxa

    d

    ydx nn

    nn

    n

    nn

    n

    nn

    ........

    2

    22

    21

    11

    1 is known as Cauchys

    Linear differential equation.

    A Differential equation of the form

    Xyad

    ydbaxa

    d

    ydbaxa

    d

    ydbax nn

    nn

    n

    nn

    n

    nn

    ........)()()(

    2

    22

    21

    11

    1 is

    known as Legendres Linear differential equation.

    31.Solve 33

    3 2xd y dy ey e

    dx dx .

    Ans: - Its symbolic form is 2 3 2xeD D y e .

    Its Auxiliary equation is2 3 2 0D D 1, 2D

    Hence, Complementary function is2x x

    cy Ae Be

    Now, 2 1 1 1 13 2 ( 2)( 1) ( 2) ( 1)x x xe e ePI e e e

    D D D D D D

    2 2 21 1

    2 2

    x x x xx x e x e x x x e x x ePI e e e dx e e e e e e dx e e e dxD D

    2 xx ePI e e

    So, Solution 2 2xx x x e

    c py y y Ae Be e e (Ans)

    32.Solve, by the method of variation of parameters: xeDD x log)12( 2 .Ans: - Its Auxiliary equation is

    2 2 1 0D D 1, 1D

    Hence, Complementary function is x

    cy A Bx e

    1 2,x xy e y xe

    1 2 2 2 2 2

    1 2

    x xx x x x

    x x x

    y y e xeW e xe xe e

    e e xey y

    WXdxy

    yW

    Xdxyyyp

    .. 12

    21

    2 2

    . log . logx x x xx xp x x

    xe e xdx e e xdxy e xe

    e e

    log logx xpy e x xdx xe xdx

    2 2

    log log2 4

    x xp

    x xy e x xe x x x

    2 2 23

    log 2log 32 4 4

    x x x

    p

    x x xy e x e e x

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    21/31

    epared by Mrityunjoy Dutta

    So, Solution 2

    ( ) 2log 34

    x x

    c p

    xy y y A Bx e e x (Ans)

    33.Solve the simultaneous equation: -0 y

    d

    dxt , 0 x

    dt

    dyt , given that 0)1(,1)1( yx .

    Ans: - 0 yd

    dxt ------------------- (1), 0 x

    d

    dyt ------------- (2)

    Differentiating (1) w.e.t. t we get2

    20

    dx d x dyt

    dt dt dt , by multiplying t both side we get

    22

    20

    dx d x dyt t tdt dt dt

    -------------------- (3)

    By putting (2) in (3) we get2 2

    2 2

    2 20

    d x dx d xt t t x

    dt dt dt -----(4) which is Cauchy

    Linear Differential Equation.

    Put logzt e z t and2

    2

    2( 1) ,

    d x dxt D D x t Dx

    dt dt where

    dD

    dz

    So, eqn (4) becomes 2( 1) 0 ( 1) 0D D x Dx x D x

    Its Auxiliary equation is 2( 1) 0 1,1D D

    So, z zB

    x Ae Be Att

    -------(5)

    Putting in (1) we get2

    dx B By t t A At

    dt t t

    ----------- (6)

    So, Solution is Bx Att

    and By Att

    (Ans).

    Given x(1) =1 and y(-1) =0, so2

    1,

    2

    10,1 BAABBA

    Hence solution is

    t

    tyBA

    ttx

    1

    2

    1,

    1

    2

    1(Ans).

    Nov-Dec 201034.Write the formula for P.I. for the method of variation of parameters.

    Ans: - Let equation is rybaDD )( 2 , then P.I is given by

    Wrdxy

    yW

    rdxyyyp

    .. 12

    21 where

    '' 21

    21

    yy

    yyW .

    35.Solve )2sin(8)2( 222 xxeyD x .Ans: - )2sin(8)2( 222 xxeyD x --------------------- (1)

    Its characteristics equation is 2,20)2( 2 DD

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    22/31

    epared by Mrityunjoy Dutta

    So, xxh BxeAeyFC22.. ----------------------- (2)

    Now, )2sin(8)2(

    1.. 22

    2xxe

    DyIP xp

    2

    22

    2

    2 )2(

    1

    2sin)2(

    1

    )2(

    1

    8 xDxDeDy

    x

    p

    222

    2

    21

    1

    4

    12sin

    44

    1

    )2(2

    18 x

    Dx

    DDe

    Dxy xp

    2

    2

    2

    22 ..........4

    32

    214

    12sin

    442

    1

    2

    18 x

    DDx

    Dexy xp

    ..........004

    624

    1

    2

    2cos

    4

    1

    2822

    2

    xxx

    ex

    yx

    p

    3422cos4 222 xxxexy xp

    So, Solution 3422cos4 22222 xxxexBxeAeyyy xxxph (Ans).

    36.Solve, by the method of variation of parameters:2

    3

    2

    2

    96e

    yd

    dy

    d

    yd x .

    Ans: -2

    3

    2

    2

    96e

    yd

    dy

    d

    yd x

    Its Homogeneous equation is 0962

    2

    yd

    dy

    d

    yd

    Its symbolic form is 0)96( 2 yDD

    Its characteristics equation is 0)96( 2 DD

    3,3 D

    Hence, Homogeneous solution is 213)( ByAyeBxAy xh

    xx xeyey 323

    1 ,

    xxxx

    xxx

    xx

    exexeexeee

    xee

    yy

    yyW 6666

    333

    33

    21

    2133

    33''

    Wrdxy

    yW

    rdxyyyp

    .. 12

    21

    dxee

    xedxexe

    eyx

    x

    xx

    x

    x

    xx

    p 2

    3

    6

    33

    2

    3

    6

    33 ..

    dxxedxeyxx

    p 2

    33 11

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    23/31

    epared by Mrityunjoy Dutta

    xxexey xe

    xp

    1log 33 xe

    xp exey

    33 log

    So, Solutionx

    exxx

    ph exeBxeAeyyy3333 log (Ans).

    37.Solve: xyd

    dy

    xd

    yd

    x elog2

    22

    .

    Ans: - xyd

    dyx

    d

    ydx elog2

    22 --------- (1)

    Let logzx e z x and2

    2

    2' , '( ' 1)

    dy d yx D y x D D y

    dx dx where '

    dD

    dz

    Putting all the values in (1) we get

    zyDDzyDDD ]12[1)1( 2 ----------- (2)Its auxiliary equation is 1,10122 mmm

    So, xBxAxBzeAeyFC ezz

    h log..

    Now, zD

    yIP p 2)1(

    1..

    zDDzDyp .........)321()1(22

    xzzy ep log22........0002

    So, general solution is xxBxAxyyy eeph log2log (Ans).

    April -May, 2011

    38.Find the particular integral of Solve

    3

    3. 4 sin2

    d y dy

    xdx dx

    Ans.

    3

    3.4 sin2

    d y dyx

    dx dx

    P.I will be3

    1sin2

    4PI x

    D D

    3 21 1

    sin2 sin24 4

    x xD D D D

    3 2

    1 1sin2 sin2

    4 2 4

    x x

    D D D

    31 1

    sin2 sin24 0

    x xD D D

    By differentiating3 4D D as

    1, 0in f D cannot bef D

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    24/31

    epared by Mrityunjoy Dutta

    3 21 1

    sin2 sin24 3 4

    x x xD D D

    3 21 1

    sin2 sin24 3( 2 ) 4

    x x xD D

    31 sin2 sin24 8

    xx xD D

    3

    1 sin2sin2

    4 8

    x xx

    D D

    P.I of

    3

    3.4 sin2

    d y dyx

    dx dx will be

    sin2

    8

    x x

    39.Solve 22

    3 2xd y dy ex y e

    dx dx

    Ans: - Its symbolic form is 2

    3 2

    xe

    D D y e .Its Auxiliary equation is

    2 3 2 0D D 1, 2D

    Hence, Complementary function is2x x

    cy Ae Be

    Now, 21 1 1 1

    3 2 ( 2)( 1) ( 2) ( 1)

    x x xe e ePI e e eD D D D D D

    2 2 21 1

    2 2

    x x x xx x e x e x x x e x x ePI e e e dx e e e e e e dx e e e dxD D

    2 xx ePI e e

    So, Solution2 2x x

    c p

    xx ey y y Ae Be e e

    (Ans)

    40.Solve the differential equation: 222

    5 4 .log .d y dy

    x x y x xdx dx

    (Ans). Let

    zx e andd

    Ddz

    . Then2

    2

    2, ( 1)

    dy d yx Dy x D D y

    dx dx

    Thus the given differential equation reduces to the following fotm:

    2

    ( 1) 5 4

    ( 4 4)

    z

    z

    D D D y ze

    D D y ze

    Which is the linear differential equation with constant coefficient s, for which the auxiliaryequation is:

    2 4 4 0D D 2, 2D

    C.F= 2 21 2 1 2 logzc c z e c c x x

    P.I Will be

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    25/31

    epared by Mrityunjoy Dutta

    1

    ( )

    zzef D

    i.e

    2

    1.

    ( 4 4)

    zP I zeD D

    2 2 21. ( 4 4) ( 1) 4( 1) 4 ( 6 9)

    z z

    z e eP I ze z zD D D D D D

    26. (1 )

    9 9 9

    ze D DP I z

    6.

    9 9

    zeP I z

    2. log

    9 3

    xP I x

    Complete Ans is C.F +P.I

    21 2 logc c x x + 2log

    9 3x x

    41.Solve sin , cos ,dx dyy t x tdt dt

    Given that x=2 and y=0 when t=0.

    Ans: Given simultaneous differential equation are

    sindx

    y tdt

    -------------(1)

    cosdy

    x tdt

    ------------(2)

    From equation (2) we get cosdyx tdt

    ---------(3)

    Differentiating (3) with respect to t we get

    2

    2sin

    dx d yt

    dt dt

    ---------(4)

    From (1) and (4) we get

    2

    2sin sin

    d yt y t

    dt

    2

    2

    2sind y

    y tdt

    2( 1) 2sinD y t -----------(5)

    Its Auxiliary equation is2 1 0 1,1m m

    So,. . t thC F y Ae Be

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    26/31

    epared by Mrityunjoy Dutta

    And2

    1. . ( 2sin )

    1pP I y t

    D

    2

    1( 2sin ) sin

    1 1py t t

    So, h py y y

    sint ty Ae Be t -------(6)

    Putting the value of y in (2) we get

    cos cost tAe Be t x t t tx Ae Be ---------(7)

    Given that2, 0, 0x y whent

    So, equation (6) and (7) becomes 0 A B and 2 A B 1, 1A B

    So, solution t tx e e and sint ty e e t (Ans)

    Nov-Dec 2011

    42. Explain Cauchys homogeneous linear differential equation.Ans: - A Differential equation of the form

    Xyad

    ydxa

    d

    ydxa

    d

    ydx nn

    nn

    n

    nn

    n

    nn

    ........

    2

    22

    21

    11

    1 is known as Cauchys

    Linear differential equation.

    43.Solve the differential equation2

    22 sinxd y dy y xe x

    dx dx .

    Ans:2

    22 sinx

    d y dyy xe x

    dx dx

    Its auxiliary equation is 2 22 1 0 ( 1) 0 1,1m m m m

    So, . . x xhC F y Ae Bxe

    Now,2

    1. . sin

    ( 1)

    xpP I y xe x

    D

    2 2

    1 1sin sin

    ( 1 1)

    x x

    p

    y e x x e x xD D

    1sinxpy e x xdx

    D

    1

    cos sinxpy e x x xD

    cos sinxpy e x x x dx

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    27/31

    epared by Mrityunjoy Dutta

    sin cos cosxpy e x x x x

    sin 2cosxpy e x x x

    So, general solution h py y y

    sin 2cosx x xy Ae Bxe e x x x (Ans)

    44.Solve the differential equation 222

    log .sin(log ) d y dy

    x y x xdx dx

    zx e andd

    Ddz

    . Then2

    2

    2, ( 1)

    dy d yx Dy x D D y

    dx dx

    Thus the given differential equation reduces to the following fotm:

    2

    ( 1) 1 (sin )

    ( 1) sin

    D D D y z z

    D y z z

    Which is the linear differential equation with constant coefficient s, for which the auxiliary

    equation is:2 1 0D

    ,D i i

    C.F= 1 2 1 2cos sin cos log sin logc z c z c x c x P.I Will be

    1sin

    ( )z z

    f Di.e

    2 2

    1 1

    . sin .( 1) ( 1)

    iz

    P I z z I P zeD D

    22

    1. sin .

    ( 1) 1)

    izeP I z z I P z

    D D i

    21

    . sin .( 1) 2

    izeP I z z I P z

    D D i

    2

    1 1 1. sin .

    ( 1) 2

    1 2

    izP I z z I Pe zDD i

    i

    1

    2

    1 1. sin . 1

    ( 1) 2 2

    DizP I z z I Pe zD i i

    2

    1 1. sin . 1

    ( 1) 2 2

    DizP I z z I Pe zD i i

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    28/31

    epared by Mrityunjoy Dutta

    2

    1 1 1. sin .

    ( 1) 2 2

    izP I z z I Pe zD i i

    2

    1. sin .

    ( 1) 2 2

    i iizP I z z I Pe zD

    21 1. sin .

    ( 1) 2 4iizP I z z I Pe z

    D

    21 1

    . sin . cos sin( 1) 2 4

    iP I z z I P z i z z

    D

    2

    1 cos sin sin. sin . cos

    ( 1) 2 4 2 4

    i z z z i zP I z z I P z z

    D

    2

    1 cos sin sin 1. sin . cos

    ( 1) 4 2 4 2

    z z z zP I z z I P i z z

    D

    2

    1 sin 1

    . sin cos( 1) 4 2

    z

    P I z z z zD

    2

    1 sinlog 1. sin log coslog

    ( 1) 4 2

    xP I z z x x

    D

    Ans.= C.F+P.I

    1 2cos log sin logc x c x +sinlog 1

    log coslog4 2

    xx x

    45.Solve the following simultaneous equation 2dx ydt

    , 2dy

    zdt ,

    2 .dz

    xdt

    (Ans.) The given equation is:

    2dx ydt

    ..(1), 2 ..........(2)dy zdt

    ,

    2 ..........(3)dz xdt

    Differentiating (1)w . r. t., we get

    2

    22 2(2 )

    d x dyz

    dt dt using(2)

    Differentiating again w. r. t. t,, we get

    3

    34 4(2 )

    d x dzx

    dt dt

    3

    3 2

    2

    1 2 3

    ( 8) 0,

    8 0 ( 2)() 2 4) 0

    2, 1 3

    cos( 3 )

    1

    2

    t t

    dD x whereD

    dt

    D or D D D

    D i

    x ce c e t c

    dxy

    dt

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    29/31

    epared by Mrityunjoy Dutta

    2

    1 2 3 2 3

    2

    1 2 3 3

    21 2 3

    12 cos( 3 ) 3 sin( 3 )

    2

    2 2cos cos( 3 ) sin sin( 3 )

    3 3

    2cos 33

    t t t

    t t

    t t

    ce c e t c c e t c

    ce c e t c t c

    ce c e t c

    From(2)..2

    1 2 3 2 3

    21 2 3

    1

    2

    1 2 22 cos( 3 ) 3 sin( 3 )

    2 3 3

    4cos( 3 )

    3

    t t t

    t t

    dyz

    dt

    ce c e t c c e t c

    ce c e t c

    April -May, 2012

    46.Solve3

    3 0d y ydx

    Ans: - Its symbolic form is Solve 013 yD .Its Auxiliary equation is 0)1)(1(01 23 DDDD

    2

    31,

    2

    31,1

    iiD

    So, solution 23

    23221 sincos..x

    xxx eCCeCyFC (Ans).

    47.Solve 222

    5 4 logd y dy

    x x y x xdx dx

    (Ans). Let

    zx e andd

    Ddz

    . Then2

    2

    2, ( 1)

    dy d yx Dy x D D y

    dx dx

    Thus the given differential equation reduces to the following fotm:

    2

    ( 1) 5 4

    ( 4 4)

    z

    z

    D D D y ze

    D D y ze

    Which is the linear differential equation with constant coefficient s, for which the auxiliary

    equation is:2 4 4 0D D

    2, 2D

    C.F= 2 21 2 1 2 logzc c z e c c x x

    P.I Will be

    1

    ( )

    zzef D

    i.e

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    30/31

    epared by Mrityunjoy Dutta

    2

    1.

    ( 4 4)

    zP I zeD D

    2 2 2

    1.

    ( 4 4) ( 1) 4( 1) 4 ( 6 9)

    z zz e eP I ze z z

    D D D D D D

    26. (1 )9 9 9

    ze D DP I z

    6.

    9 9

    zeP I z

    2. log

    9 3

    xP I x

    Complete Ans is C.F +P.I

    21 2 logc c x x +

    2log

    9 3

    xx

    48.Solve :

    3 2

    3. 22 sin2x

    d y d y dye x

    dx dx dx

    Sol. Its symbolic form is xeyDDD x 2sin2 23 Its Auxiliary equation is 0)12(02 223 DDDDDD

    1,1,0 D

    So, xxc exCCeCyFC 32

    01..

    xc exCCCy 321 ---------------------(1)

    Now, xeDDD

    yIP xp 2sin2

    1..

    23

    xDDD

    eDDD

    y xp 2sin2

    1

    2

    12323

    xDDDD

    eDD

    xy xp 2sin2.

    1

    13

    1222

    xDD

    eD

    xy xp 2sin)4(2)4.(

    1

    46

    12

    xD

    exy

    x

    p 2sin83

    1

    4)1(62

    xD

    Dexy

    x

    p 2sin69

    83

    2 2

    2

    xDex

    yx

    p 2sin64)4(9

    83

    2

    2

  • 7/28/2019 II sem (csvtu) Mathematics Unit 2 (Linear Differential Equation )Solustions

    31/31

    10

    2sin82cos6

    2

    2 xxexy

    x

    p

    -------------------(2)

    So, solution 10

    2sin82cos6

    2

    2

    321

    xxexexCCCyyy

    xx

    pc

    (Ans).

    49.Solve the equations simultaneously5 2 , 2 0, 0

    dx dyx t t x y x y

    dt dt when t=0

    Ans: - +5 2 = , +2 + = 0

    Its symbolic form is ( +5) 2 = ------------------(1)2 +( +1) = 0-------------------(2)

    Now, eq(1) X (D+1) +eq(2) X 2 we get

    [( +1)( +5) +4] = ( +1) +0 ( +6 +9) = 1+, which is linear differential equation.Its auxiliary equation is ( +6 +9) = 0 =3,3So, ..= ( +)

    Now, ..= () (1+ ) = 1+

    (1+) = 1 2 +3

    + . (1+)

    ..= 1+ = + = + So, = ( +) + + ---------------------------------(3)Now, from (1) 2 = ( +5) = +5 2 = 5( +) + + 3( +) + + = (2 +) + + ---------------(4)Given that at = 0, = = 0, so equation (3) and (4) becomes + = 0 = and

    (2 +) + = 0 = 2 == + = = So, Solution is

    = ( ) + + and = + + +

    = {(1+6) (3 +1)} and = {(4+6) +(6 4)}