iii-v nanostructured materials synthesized by mbe droplet ...etch in dilute hf solution repeated...

23
III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1 , C. C. Yu 1 , Q. Zhuang 1,* , B. Robinson 1 , O Kolosov 1 , V. Fal’ko 1 , R. Young 1 , M Hayne 1 , A. Sanchez 2 , D. Hynes 2 , and F. Anderson 3 , 1 Physics Department, Lancaster University 2 Physics Department, Warwick University 3 Oxford Instrument *[email protected]

Upload: others

Post on 29-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • III-V nanostructured materials synthesized by

    MBE droplet epitaxy

    E.A. Anyebe1, C. C. Yu1, Q. Zhuang1,*, B. Robinson1, O Kolosov1, V. Fal’ko1,

    R. Young1, M Hayne1, A. Sanchez2, D. Hynes2, and F. Anderson3,

    1 Physics Department, Lancaster University

    2 Physics Department, Warwick University

    3 Oxford Instrument

    *[email protected]

    http://www.lancs.ac.uk/

  • Outline

    Motivation

    Why droplet epitaxy

    GaAs/AlGaAs quantum dots

    In(As,Sb) Nanowires on Si (111) or graphite

    Structural properties

    SEM for geometry

    X-ray for phase and composition

    Optical properties

    Summary

    2

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • Motivation: why droplet epitaxy

    Droplet epitaxy –starts from metal droplets on substrate as the

    seeding followed by crystallization or spontaneous growth

    A new approach to fabricate novel nanostructures:

    QDs in any material systems

    no strain is required

    No wetting layer present

    One-dimensional nanowires

    Free standing NWs on cheap Si substrates

    Widely tuneable composition

    3

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • Motivation: why QDs & NWs

    Type-I GaAs/AlGaAs QDs

    Nearly strain-free in the QDs

    Easily tuneable confinement

    Solar cells – intermediate transitions: 55% efficiency; strain!!

    integrated quantum photonics, Kuroda et al. already demonstrated

    entangled photon emission (111A)! (PRB 88, 041306 ’13)

    InAsSb NWs on Si and graphene

    Dislocation-free

    Tuneable bandgap 100-350 meV (2-12 um spectral range)

    Integrated optoelectronics on Si

    Low-cost thermophotovoltaics

    4

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • Droplet epitaxy of QDs

    Three-step growth (self-catalyst)

    Gallium droplets (3 ML)

    Crystallization under As4

    Annealing

    5

    10/29/2013

    Ga droplets (1x1 μm AFM)

    Density: 5.1x109 cm-2

    Diameter: 80±3 nm; Height: 8±0.2 nm

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    Substrate

    As4

    http://www.lancs.ac.uk/

  • Structural evolution of GaAs QDs 6

    10/29/2013

    1x1 μm AFM of GaAs QDs

    Crystallized at different temperatures Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    280oC 360oC

    460oC 500oC

    GaAs/AlAs SL (28/28A)

    Al0.35GaAs

    GaAs (100)

    GaAs/AlAs SL (28/28A)

    Single QD

    characterisation

    http://www.lancs.ac.uk/

  • GaAs quantum well

    GaAs QD

    GaAs/AlGaAs QDs embedded in SL 7

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    • QD density is ~ 2 x 108 / cm2

    • Average diameter ~ 100 nm

    • Average height ~ 8 nm

    • A ‘wetting layer’ is clearly

    visible in TEM due to a

    specific recipe

    The QD’s are rather large,

    but we observe clear 0D

    confinement…

    http://www.lancs.ac.uk/

  • μ-PL 8

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    680 700 720 740 760

    PL In

    ten

    sity (

    arb

    . u

    nits)

    Wavelength (nm)

    T=20 K

    1.8 1.75 1.7 1.65

    Energy (eV) µPL from the bulk sample

    reveals the classic signature of

    QD’s and a wetting layer:

    •A broad ensemble of dots with

    a FWHM of ~50 meV and a

    confinement of < 100 meV.

    •Strong emission from a QW at

    690 nm, in rough agreement

    with width and composition of

    the WL from TEM.

    http://www.lancs.ac.uk/

  • Temperature elevated PL 9

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    • Wetting layer emission

    quenches quickly

    • QDs emission becomes

    dominant at above 23 K

    • Good quantum confinement

    Future work:

    • QDs without wetting layer

    • Dense QDs

    http://www.lancs.ac.uk/

  • Growth of NWs

    Challenging epitaxy on graphite due to the weak van der Waals bonds

    Metal droplet self-catalyst growth

    Indium droplets (3 ML)

    Epitaxy of InAs

    Start from growth on Si (111)

    10

    10/29/2013

    200nm

    Indium droplets:

    Average Density: 3.6x109 cm-2

    Average Diameter: 80 nm

    Average Height: 22 nm

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    1x1 μm AFM image

    http://www.lancs.ac.uk/

  • InAs NWs on Si(111) 11

    10/29/2013

    45o SEM image of InAs NWs on Si(111)

    500n

    m

    1.9 µm

    Geometrical properties:

    Height: 1.9 ± 1.1 µm

    Diameter: 62.5 ± 3.0 nm

    Density: 1.0 x 109 cm-2

    Parasite bumps on the surface

    Highly uniform diameter along

    growth direction

    Hexagonal cross-section –

    zinc-blende or wurtzite?

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • InAsSb NWs on Si(111) 12

    10/29/2013

    Growth conditions:

    Similar growth parameters to that of InAs

    Expose to Sb flux during the InAs growth

    Geometrical properties:

    Height: 1.3 ± 0.3 μm

    Diameter: 95 nm

    Density 1.8x1010 cm-2

    Comparison with InAs NWs:

    Thicker & Shorter

    More dense & uniform

    45o SEM image of the resulting

    InAsSb NWs on Si(111)

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • InAsSb NWs on Si(111) - XRD 13

    10/29/2013

    The InAs(Sb) peak (111) shifted to

    lower angle

    Indicating the incorporation of Sb

    into the InAs NWs

    4.2 and 4.5 % Sb

    The Sb flux has significant effect on

    the nucleation and the growth of

    NWs

    Attributed to its well known

    surfactant effect

    Method to modify the geometry

    of NWs

    XRD curves of the InAsSb NWs on Si

    (111) grown at various Sb BEP fluxes

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • InAs NWs on HOPG - SEM 14

    10/29/2013

    InAs NWs on highly oriented

    polycrystalline graphite

    Geometrical properties

    Diameter: 80nm

    Height: 1.1µm

    Density of 4.4 x 109 cm-2

    Compare with InAs NWs on

    Si(111): thicker, shorter and

    slightly more dense

    Poor wettability

    Poor chemical binding on the

    surface of HOPG 45o SEM image of InAs NWs on HOPG

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • PL of NWs on Si(111) 15

    10/29/2013

    Typical 4 K PL of

    bulk InAs

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • PL of InAs NWs on Si(111) 16

    10/29/2013

    Temperature dependent PL at 0.5 W

    Three peaks present

    Dominate 3.3 um – acceptor

    related or WZ-ZB mixture?

    2.9 um – band-band

    3.6 um – acceptor-donor

    Short wavelength emission

    quenches slower

    2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

    0.00000

    0.00005

    0.00010

    0.00015

    0.00020

    0.00025

    0.00030

    Inte

    nsit

    y (

    a.u

    )

    Wavelength (µm)

    10k

    20k

    40k

    60k

    80k

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    InAs bulk

    http://www.lancs.ac.uk/

  • Crystal structure - TEM 17

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    HRTEM image shows

    the mixture of WZ and ZB!

    http://www.lancs.ac.uk/

  • Possible origin of the dominant PL emission 18

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    Sun et al, Nano Lett. 12, 3378(2012)

    Confinement from the mixture of WZ-ZB?

    http://www.lancs.ac.uk/

  • Summary 19

    10/29/2013

    GaAs QDs from droplet epitaxy:

    Established control over the geometry of GaAs QDs

    Obtained high quality GaAs embedded in AlGaAs

    QDs solar cells next!

    In(As,Sb) NWs from droplet epitaxy

    Demonstrated InAsSb NWs on Si(111) – Sb modifies the

    geometry of the NWs

    Obtained InAs NWs on HOPG

    Observed photoluminescence from the InAs NWs on Si(111)

    xFurther optimization

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • 2D epitaxial growth on HOPG? 20

    10/29/2013

    Start growth at 2D

    favorite growth

    conditions then

    change to 3D

    growth conditions

    Flakes with NWs

    on them

    Nucleation along

    terraces

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • Motivation

    InAs-based III-V family

    Various applications ✔

    Expensive & type II or III band

    alignment ✗

    New architecture for lost-cost

    and more tolerance to strain

    1-D nanowires (Enhanced light

    absorption & dislocation free

    Graphite (flexible substrate,

    super-cells for lattice match)

    21

    10/29/2013

    A. Munshi et al, Nano Lett. 12, 4570 (2012)

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • Motivation (cont’d)

    Lattice matched: GaN, ZnO

    & InAs – epilayer is possible

    InAsSb NWs on HOPG and

    monolayer graphene towards

    flexible and cost-effective

    optoelectronics

    InAs & InAsSb NWs on Si

    InAs NWs on HOPG

    Graphene/InAs hybrid

    structure for band tailoring

    22

    10/29/2013

    A. Munshi et al, Nano Lett. 12, 4570 (2012)

    Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/

  • MBE growth – substrate preparation

    Growth on Si(111)

    Etch in dilute HF solution

    Repeated etching for smooth

    surface

    Growth on graphite

    Thin melt indium film Si (111)

    Mechanically exfoliate thin

    layer of HOPG (monolayers

    of graphene as well)

    Transfer onto Si wafer and

    cool down to RT

    23

    10/29/2013 Functional Thin Film 17 Oct 2013, Dr Q Zhuang

    http://www.lancs.ac.uk/