iii'.ii meu onll* -- imm2.2 unsteady two-dimensional cascade nomenclature 17 2.3 precise...

206
7 AD-A141 004 T W O4IEWNSI CSAL AND UASI THU E -01 NSI OSAL 1TC N /f EDPERAS0 ASSIWSAII LSASIENTAL SIAWiARO COW IOU. Sil II COLE POLTOIU UNCLASSIFIED T FRANSSON VI At. 30 SUP 63 FIG 204 NI. 'III"'."II onll" * MEu... -- IMM

Upload: others

Post on 15-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

7 AD-A141 004 T W O4IEWNSI CSAL AND UASI THU E -01 NSI OSAL 1TC N /f

EDPERAS0 ASSIWSAII LSASIENTAL SIAWiARO COW IOU. Sil II COLE POLTOIU

UNCLASSIFIED T FRANSSON VI At. 30 SUP 63 FIG 204 NI.

'III"'."IIonll"* MEu...-- IMM

Page 2: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1111110 1 32 32.

ml .1 1.8_

11U IMICROCOPY RESOLUTION TEST CHART

NAT)ONAL BUREAU OF STANDArDS-1963-A

I

Page 3: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

ECOLE PO YTECHNIQUE ERALE

DE LAUSANNE

)IlrLaboratoire do Therique Appiqude

I--

A~J

Iv

6kITWNsESOALADOAITRE-IESOA

Page 4: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

FJ

ECOLE POLYTECHNIQUE FEDERALEWNW= DE LAUSANNE

FL Laboratoire de Thermique Appliqude

TWO-DIMENSIONAL AND QUASI THREE-DIMF NSIONAL

EXPERIMENTAL STANDARD CONFIGURATIO NS FOR

AEROELASTIC INVESTIGATIONS IN

TURBOMACHINE-CASCADE S.

Compiled by T. Fransson and P. Suter

DTICJUN7 I 94

ASeptember 30, 1983

This work is jointly sponsored by the United States Air Force under GRANT

AFOSR 81-0251, AFOSR 83-0063 with Dr. Anthony Amos as program

manager and by the Lausanne Federal Institute of Technology.

Peport

LTA-TM-83-2 ' - t~~ Yc.Ie t

Page 5: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1

Preface

At the 1980 "Symposium on Aeroelasticity in Turbomachines", held in

Lausanne, Switzerland, it became clear that it was Oirtually impossible

to compare different analytical models for flutter and forced \ibration

prediction and to establish their alidity.

The Scientific Committee (*) of this meeting has deiided to initiate a

workshop on "Standard Configurations for Aeroelasticity in Turbomachine-

Cascades". The aim of this project is to establish a data base with a

few well documented experimental data, and to initialize and coordinate

future experimental investigations in existing test facilities. The standard

configurations to be compiled should also ser~e as test cases for present

and future prediction models for aeroelastic phenomena in turbomachine-

cascades.

This report constitutes the first product, a standard set of two-dimensional

and quasi three-dimensional experimental configurations. These configura-

tions will be treated by calculation models from several research groups

during 1983, whereafter a second report with a comparison between the

experimental and the theoretical results will be established and presented

at the Third S.mposium on Aeroelasticity in Turbomachines 1984). It

is the hope of the Scientific Committee that these reports will constitute

a bench-mark for the \alidation of both experimental and theoretical

aeroelastic inmestigations in turbomachines.

September 30, 1983

P. SuterChairman of the Scientific Committeeof the 1980 "Symposium on Aeroelasti-city in Turbomachines"

The members of the Scientific Committee at the 1980 Symposium are:

• H. Forsching, GermanyG. G~armath , Switzerland -cor ForR Leqendre, France A& -I-

A A.A. Mikolajczak, USA ' ,M. Ro\, FranceP. Suter, Switzerland 'chairman). .

Y. Tanida. JapanD.S. Whitehead, United Kingdom

F , 1',,.oI _ I ;tII__ 4

Page 6: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

3

Abstract

The aeroelastician needs reliable, efficient methods for the calculation

of unsteady blade forces in turbomachines. The \alidity of such theoretical

or empirical prediction models can only be established if researchers

apply their flutter and forced vibration predictions to a number of well

documented e\perimental test cases.

In the present report, the geometrical and time-a~eraged flow conditions

of nine two-aimensional or quasi three-dimensional experimental standard

configurations fcr aeroelasticity in turbomachine cascades are giken.

For each configuration some aeroelastic test cases are defined, comprising

different incidence angles, Mach numbers, interblade phase angle, reduced

frequencies, etc.

Furthermore a proposal for unified nomenclature and reporting formats

is included, in order to facilitate the comparison between the different

experimental data and theoretical results.

\j*1

i'4

Page 7: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

tIn it erits page

Preface I

Abst ract 3

Cont ent s 4

Nomenclat ure 5

1. Introduction 11

2. Recommendations for Urnfied Representation of the Results 13

2.1 Stead\ Two-Dimensional Cascade Nomenclature 14

2.2 Unsteady Two-Dimensional Cascade Nomenclature 17

2.3 Precise Reporting Formats 28

3. Standard Configurations 35

3.1 First Standard Configuration 59

1.2 Second Standard Confiluration 55

3.3 Third Standard Configuration 72

3.4 Forth Standard Configuration 87

3.5 Fifth Standard Configuration 90

3.6 Sixth Standard Configuration 119

,.7 Se'enth Standard Configuration 149

.8 Eighth Standard Configuration 167

,.9 Ninth Standard Configuration 1804. Proposed Calculation of the Standard Configurations 190

4.1 Present List of Participation 191 J4 .2 Participation With a Prediction Model 191

Acknowledgement 195

Re ferences 196

Appendix: To he returned b\ the participants in the theoretical

part of the pro)ect. 199

rIJ

• _..=-,L* "4

Page 8: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

5

Nomenclature

Note:

a) Throughout this report, "standard configuration" will designate a cascadegeometry and "aeroelastic case" or "aeroelastic test case" will indicatethe different time dependant (and, in some cases time averaged) conditionswithin a standard configuration.

b) The tables and figures will be numbered as the chapters. For example,Figure 3.7-2 denotes the second figure in chapter 3.7.

Sy mbol Explanation Dimen-sion

Latin Alphabet

A amplitude (A-h for pure sinusoidal heaing)(A= " for pure sinusoidal pitching) rad

A Fourier coefficient

c chord length m

"F t) unsteady perturbation force coefficient vectorper unit amplitude, positive in positive coordi-nate directions:

C'F(O)=CFe t-F 1

" L't) unsteady perturbation lift coefficient per unitU amplitude, positive in oositive y-direction:

CL(t)=CLeIWt -LINote: In the present work, the lift coefficient

is defined as the force component perpen-dicular to the chord.

CMt) unsteady perturbation moment coefficient perunit amplitude, positive in clockwise direction:

cmmt)cme, vt - M1

C ",t) unsteady perturbation blade surface pressure -

Cp coefficient per unit amplitude:

C,,(x,t)-C,(x)e1w - Pcoefficient for aerod-namic work done on the

airfoil during the cycle of oscillation

d maximum blade thickness 'dimensionless

with chord)

,4>

Page 9: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

6

f vibration frequency Hz

f function

h x,.',t) dimensionless (with chord) bending vibration,positive in positive coordinate directions

h dimensionless (with chord) bending amplitude

Vi-

i indicence deg

k reduced frequency = CW

k harmonic in Fourier series

M Mach number

n unit vector normal to blade surface, positivenwards

p \,t) pressure N/m 2

,without superscript :time dependant perturbation),with superscript 11 :time averaged)

"l dimensionless vector from mean pikot axisIto an arbitrary point on the mean blade surface

R real part of complex valuei ~Vic

tRe Reynolds number = j

s unity %ector tangent to blade surface, positive

in positive coordinate-directions

Str Strouhal number fet (-k/TT)

T dimensionless time: T = t/T °2 T0

T period of a cycle S0

t time s

V velocity m/s

7i

Page 10: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

7

Vre f reference velocity for reduced frequency and m/sStrouhal number:

Vref V for compresor cascadeVref V2 for turbine cascade

w circular frequency = 2rf rad/s

dimensionless (with chord) chord-wise coordinate -

x dimensionless (with chord) chord-wise position -

of torsion axis

dimensionless (with chord) normal-to-chord -

coordinate

dii iensionless (with chord) normal-to-chord po- -

sition of torsion axis

z dimensionless (with chord' span-wise coordinate -

(reek Alphabet

(t) pitching vibration, positive nose-up rad

pitching amplitude rad

13 flow angle deg Jchordal stagger angle deg

heaving vibration direction = tai (h/h x) deg

ac(xjt) unsteady perturbation pressure difference coeffi- -

cient

&C;'(x't)-CV 'SI(x't)_CP (",S)(x,t) 17C(x)e,* -wt 0P)

phase lead of pitching motion towards heaving deg,radmotion of blade (m)

V/ kinematic viscosity rn/s

-' aerodynamic damping coefficient, positive for -

stable motion

+IiS3

Page 11: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

bJ

interblade phase angle between blade "m-l" and deg,rad

blade "m". rie for constant interblade phaseangle.

is positive when blade "m" preceeds blade"m-i t.For idealized conditions (constant interbladephase angle between adjacent blades,d , andidentical blade vibration amplitude for all blades)the motion of the (m)th blade, for flexion,is given by:

- (0)h (x,y,t)=h(x'y) e'llwtmcl

1' dimensionless (with chord) blade pitch= gap-to-chord ratio

OF phase lead of perturbation force coefficient deg,radtowards motion

A phase lead of perturbation lift coefficient to- deg,radwards motion

0M phase lead of perturbation moment coefficient deg,radtowards motion

OF' phase lead of perturbation pressure coefficient degradtowards motion

O phase lead of perturbation pressure difference deg,rad

coefficient towards motion

phase angle in the Fourier series deg

i.

-- 4 a,

Page 12: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

9

Subscripts:

A A h for heavingafor pitching

G center of gravity

global global (= time dependant + time a~eraged)(see eq. 7)

imaginary part

is isentropic \,alues

LE leading edge

k k-th harmonic in Fourier series

R real part

ref reference \elocity for reduced frequencyVref V1 for compressor cascade

SV2 for turbine cascaderef 2

TE trailing edge

t total head \alue

x component in x-direction

y component in y-direction

z component in z-direction

a position of pitch axis (see Fig. 1)

1 measuring station upstream of cascade

2 measuring station downstream of cascade

- '.alues at "infinity" upstream

,do values at "infinity" downstream

______ _ V !

Page 13: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

10

Superscripts:

'B) designates lower or upper surface of profile,B) 'B) = Js' for lower surface of profile

,us) " upper

(is) lower surface of profile

im) blade number m = 0, 1, 2, ... If the amplitude.interblade phase angle, .... are constant for theblader under consideration, this superscript willnot be used

,.us) upper surface of profile

time a\eraged (= steady) \alues. This superscript willonly be used in ambiguous context

amplitude of unsteady complex \alue

I

V9

Page 14: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

11

1. Introduction

In axial-flow turbomachines considerable dynamic blade loads max occur

as a result of the unsteadiness of the flow. The trend towards exer greater

mass flows or smaller diameters in the turbomachines leads to higher

flow \elocities and to more slender blades. It is therefore likely that

aeroelastic phenomena, which concerns the motion of a deformable struc-

ture in a fluid stream, will increase exer more in future turboreactors

'fan stage! and industrial turbines last stage' 1101.

The large complications, and high costs, of unsteady flow measurements

in actual turbomachines makes it necessary for the aeioelasticiar, to

rely on cascade experiments and theoretical prediction methods for minimi-

zing blade failures due to aeroelastic phenomena. It is therefore of great

importance to \alidate the accuracy of flutter and forced Oibration predic-

tions as well as experimental cascade data and to compare theoretical

results with cascade tests and trends in actual turbomachines.

Sexeral well documented unsteady experimental cascade data exists through-

out the world, as well as many different promising calculation methods

for sol\ing the problem of unsteady flow in two-dimensiona , and quasi

three-dimensional cascades. However, due to different basic assumptions

in these prediction methods, as well as many different ways of repreqenting

the obtained results, no real effort has been made to compare the difeient

theoretical methods with each other. Furthermore, the \alidity of these1!theoretical prediction analysis can only, since hardly any exat solutions

are known, be \erified by comparison with experiments. This is very seldom

done. partly because of the reasons mentioned abc'e. partly as well docu-

mented experimental data normally are of proprietar\ nature.

It is the purpose of the present project to partly remedy this situation

by selecting a certain number of standard configurations for aeroelastic

in\estigations in turbomachine-cascades and to define an unified reporting

format to facilitate the comparison between different theoretical results

and the experimental standard configurations.

The final objective of a comparatixe work of the present kind is of course

to \alidate theoretical prediction models with experiments performed

under actual conditions in the turbomachine, i.e. under consideration

of unsteady rotor-stator interaction, flow separation, %iscosity, shock-boun-

dar la 'r interaction, three dimensionalit., etc. Such a far-reaching ohjec-

J

Page 15: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

12

tie does howe\er not correspond with the present state-of-art of aeroelas-

fie knowledge, neither for predict ion models nor as regards well doumen-

ted experimental data to be used as standard configurations.

The scope of the present report will thus be limited to fully aeroelastic

phenormena under )dealized flow conditions in two-dimensional or quasi

three-dimensional cascades. Such interesting phenomena as rotor-stator

interact ions, stalled flutter and fully three-dimensional effects will thus

be excluded, unless as an extension from the iGealized two-dimenrsional

cascade flow.

In this first report, nine standard configurations, ranging fiJm flat plates

to highly cambered turbine bladings and from incompressible to supersonic

flow conditions, are selected and a certain number of aeroelastic test

cases, mostly based upon existing experimental data, are defirtd for

analysis by existing prediction methods for flutter and forced brations.

It is intended that an extensive number of "blind test" calculations b,

different prediction methods "see chapter 4) should be performed in the

autumn of 1983. The experimental data will thereafter be distributed

,in beginning of 1984) to all researchers ha ing performed the recom-

mended analysis; the comparison of the experimental and theoretical

results will so prepare a base for detailed discussions of the different

e\perimental and theoretical results during the "Third Sfniposium on

-\eroelasticity in Turbomachines" 1984 I1, 121.

In the beginning of 198Lt it will also be possible for the participants to

. e~ entually refine some aspects of their experimental or theoretical proce-

dure and to prepare, if possible, a contribution to the 1984 Symposium

on Aeroelasticit y.

The final comparison of the experimental and theoretical results will

he distributed at the 1984 S\mposium on Aeroelasticit\. Attention will

then also be focused upon still unresoled aeroelastic problems and a

coordination of future experimental and theoretical inkestigations may

be iitiated.

\ ,,

Page 16: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

13

2. Recommendations for Unified Representation of the Results

The physical reasons for self excited blep kibitions in turbomachines

are not presently understood in detail. Various representations of experimen-

tal and theoretical results are thus used by different researchers. The

number of different reporting formats used may be \ery large, as \arious

importance is attached to different results, depending upon the scope

of the aeroelastic in,,estigation.

However, as the main objecti\ve for both experimental and theoretical

aeroelastic studies is to provide a tool for the designer of turbomachines

to minimize blade failures, the important results from the different inesti-

gations should be standarized to allow for interpretation of non-specialists

in aeroelasticity.

In order to facilitate the comparison and to establish the mutual \alidity

of both theoretical and experimental results, a certain amount of informa-

tion must be unified. This is also desirable in order to a~oid misinterpreta-

tion of some results.

In the present project, a minimum number of prescriptions ha~e been

defined. Both the nomenclature and the representation formats are based

upon references 131 - 19 1, especially the publication by Carta 131 117 1'.

It has been chosen, furthermore, as similar as possible to the presentation

prep iousl, used for the experiments serving as standard configurations,

this to aoid e\cessike retreatment of the data.

, IQ I'

I- -.

Page 17: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

2.1 Steady Two-Dimensional Cascade Nomenclature

The profiles under investigation are arranged, in a two-dimensional section

of the cascade, as in Fig. 2.1-1. In this figure, all the physical lengths

are scaled with the chordlength "c", and the nomenclature in Table 2.1-1

is used.

It is here important to note that the chord is defined as the straight

line between the intersections of the camber line and the profile surface,

and that the x-coordinate is aligned with the chord.

Throughout this report, e\tensi e use will be made of the time a\eraged

blade surface pressure coefficient, which will be defined as

/cascade leading

edge plane

y

profile "0"MI - - -t

.- >+I 0.0 1.0 " " "

/ M2

• d .. . profile "-l"

lower surface

t i(Ire 2.1-1 (1 eady t wo-dimnerisional cascade (jeometry

4'

Page 18: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

5 mbol I \planat ion Dimen-s i o n

chord lenght m

d ma\imum blade thickness dimensionless with chord',

Cp time a~eraged pressure coefficient

i incidence d e

M Mach number

n" unity \ector normal to blade surface, positie inwards -

p time a~eraged pressure N/m 2

Rdimensionless vector from mean pi~ot to an arbitrarypoint on the mean blade surface

Re Reynolds number

s4 units \ector tangent to blade surface, positike in posi-tihe coordinate directions

V elocity m/s

Vref reference ,clocity for reduced frequency andStrouhal number: "Vref" "V " for compressor cascade

"V " = "V 2 11 " turbine " m/sref c

dimensionless 'with chord) chord-wise coordinate

y ~ dimensionless 'with chord) normal-to-chord coordinate -

z dimensionless 'with chord) span-wise coordinate

flow angle deg

- chordal stagger angle deg

'V kinematic \iscosity M /s

dimensionless blade pilch - grap-to-chord ratio

Table 2.1-1 contl iii;)n cf) ne\t page,

Np

Page 19: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

16

Subscripts

G center of gravity

is isentropic values

t total head value

X component in x-direction

y component in y-direction

z component in z-direction

1 measuring station upstream of cascade

2 measuring station downstream of cascade

- 0 \alues at "infinity" upstream

0 v alues at "infinity" downstream

OL pitch axis '.see Fig. 1)

Superscripts

m) mth blade, m=O, 1, 2,....If the amplitude, interblade phase Vangle,... are constant for the bladesunder consideration, this superscriptwill not be used

Js) lower surface of profile

(us) upper surface of profile

steady ( time a~eraged) values. This superscript will only beused in ambigous context.

Table 2.1-1 Steady two-dimensional cascade nomenclature

h .

Page 20: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

17

2.2 tkisteady Two-I)inensional Cascade Nomenclature

Bllade Motion

Fig. 2.2-1 is a -cheiiatic representation of cascaded two-dimensional

airfoils; the form of the profiles is co'isideed to re-1 in rigidly fixed

during heaving and/or pitching oscillations, "} (x,y,t) and -&(t) resp., in

which the components h., h and 1 of the motion vectors h and a arey

noted in complex form to account for phase differences between the

translation and the rotation.

We will therefore define

hm(xyt)-hx~y) le1 wlrntlfor heaving motion

(2)(m)(t)-- ne(m)t +e for pitching motion

where ,m) a(m) are the dimensionless amplitudes, and W m ) the circular

frequency, of the vibration of blade (m).

It is also assumed that the torsional motion, for tie (m)th blade, preceeds

the bending motion by a phase angle- Furthermore, if the amplitude,

circular frequency or phase lead is identical for all blades, the superscript

(m) will be omitted on the corresponding symbol (see Table 2.2-1).

k

1ii

4 Li'

Page 21: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

prfle8l

Zupper surface

-profile "-1"'

Fiqiure 2.2-1 Unst eady two-dimensional cascade nomericlat Lire

L -j

Page 22: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

11% [bol I \planat ion I)fn n-S i o n

A amplitude A h for pure sinusoidal hea\ing

A- .. .. p. ching r a d

C F t, unstead\ perturbation force coefficient kector perunit amp' Wude, positive in positive coordinatedirections:

C L t, unstead perturbation lift coefficient per unit ampli-tude. positi\e in positike )-direction:

CL(t)= CLe,,t -WI

Note: In the present report, the lift

coefficient is defined as the force componentperpendicular to the chord.

C t unstead\ perturbation moment coefficient per unitamplitude. positike in clockwise direction:

U \.t instead\ perturbation pressure coefficient per UnitI

amplit ude:

C (xt)=C (x)e " I(" v'oefficient for aerodynamic work done on the ssstem

\/ during rice c cle of oscillation

f ibrat on frequency Hz

h -,.\.t dimensionless with chord bending %ibration, positivein positive coordinate directions

h *,.s dimensionless with chord' bending amplitude

k reduced frequency - CW

p time dependant perturbation pressure N/m 2

St r St rouhal number f /C (==k/n)Vref

Table 2.2-1 continuation on next page'

.... ,

Page 23: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

20

T dimensionless time T-t/T °

T period of a cycle s0

t time s

w circular frequency = 2n f rad/s

a(t) pitching vibration, positive nose up rad

pitching amplitude rad

heaving vibration direction z tan-l(hY/h,) deg

ACp(X,t) unsteady perturbation blade surface pressure differencecoefficient:ACo ~,t) =CPOls)(x ,t )- c p'us'(x ,t ) ACp(x)e",!wt " - pl

phase lead of pitching motion towards heaving motion deg or

of blade (m) rad

_ aerodynamic damping coefficient, positive for stablemotion

phase lead of perturbation force coefficient towards deg or

motion rad

phase lead of perturbation lift coefficient towards deg or

moti on rad

0,.. phase lead of perturbation moment coefficient towards deg ormotion rad

P(, ) phase lead of perturbation pressure coefficient towards deg ormotion rad

0 (y) phase lead of perturbation blade surface pressure deg or

difference coefficient towards motion rad

Cm) interblade phase angle between blade "m-I" and deg or

blade "m" rad

Table 2.2-1 'continuation on next page"

I I I

Page 24: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

21

o"% d for constant interblade phase angle. -1 is

positike when blade "rm" leads blade "m-I".

Under idealized conditions constant interblade phase

angle between adjacent blades.e , and identical

\ibration amplitude for all blades) the motion of

the mth blade is gien, for flexion, by

-- P'0) =?ma0h(x,y,t)=hNx,y) e' t-m~l

and similar for torsion, b%

a' ' (t)__-G(O)e 'wt- to- ea

Subscripts

A A = h for hea% ing

A = a for pitching

global global (- time dependant - time a\eraged ,see eq. 7)

Iimaginar\ part

R real part

Superscript

Is) lower blade surface

'M) blade number m 0, 1. 2.

us) upper blade surface

amplitude of unstead\ complex alue

Table 2.2-1 Unsteady two-dimensional cascade nomenclature

$

_ _ _ _ _ _ _ _

Page 25: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Two-PIm)itosisowal Aerodynamiiic (ne fficiet its

T he unst eadv %comnplex' blade surface pressure coefficient C *as wellp

as the lift C Ll force C F and moment C I coefficients per unit span

are scaled with the amplitude of the corresponding motion amplit ude

-"A", where A- h mor a I Accordinrg to the con\ ent jonal di'fini ti is

of these parameters, we thus ha~e:

p8 (x t)C,: (X,t)o P, I

LA A~ 0 J -00

S~I~3C9XLe

lCFA (t)A F -P 4P(x~t) -n'-dS

-s4n

C 1 R0x IP(X,t)d.sJIi-e 6

"~A A Fropt c~

where

- p is the unist each pFert urbat ion pressure

- "li ft" coe fficient is de fined normal to chord

- force components are positi~e when acting in Pnsiti~e coordinate direc-ions

- is posit i\.e when acting in clockwise direction

-superscript B. denotes the blade lower surface (ls' or blade upper surface

Furtermrethe global &time a~eraged + time dependant) blade surface

pressure coefficient is defined as

P 5-- P5-5 (OP-P-- (7

A further important quantity, for slender blades, is the normalized un-

steadv pressure difference along !he blade chord. ACp(X).

This is defined as the difference of the time dependant nressures on the

blade lower and upper surfaces:

f~s) ((8

Acjx) Co(x~) -C (X~) (

Page 26: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

23

All of the abo~e mentioned \ariables can be expressed in either complex

exponential form or in component form as:

Cp(xt)= Cp(x)e'lwt 0p(x) 1 - {CpR(x)+4iCp(x)}ewt (9)

Here, the subscripts "R" and "I" denotes the real and imaginary parts

of the pressure coefficient C p(x,t). Physically, these two parts can be

interpreted as the components of the pressure coefficient which are in-pha-

se real part) and out-of-phase (imaginary part) with the blade motion.

Furthermore, the phase angles 0 p(x), OAp(N), OL' OF' OM are all defined

positive when the pressure pressure difference, lift, force or moment,

resp. leads the motion.

The amplitude and phase relationships in eq. '9) are defined in the usual

mariner, that is:

{ o(X VCpR(X+C2 2 (X)

SCP(x))//CP C (x) i 0a)

{ q~)C xlcs¢(x),,b)C,,Wx = (p(x)-sin(¢ ()IO

It should here be noted that, in computing the blade surface pressure

distribution, only components, and not amplitudes or phase angles may

be differentiated (/3/). Therefore(is)t (us)

ACVR(X)=CpR (x)Cp(X)- ts(us) J 1 a)

aC,(X)=Cp,(x) I-C (X

A,(X)*Cp ()- eps x) Jib)

(Is) (us)

Two-Dimensional Aerodynamic Work

The two-dimensional differential work, per unit span, done on a rigid

system by the aerodynamic forces and moments is conventionally expressed

by the product of the real parts 'in phase with motion components) of

force and differential translation, as well as mo.rient and differential

__'i 't

Page 27: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

24

torsion. Thus, the total aerod\ narnw work coe'fficieot per period of oscill a-

tion, done on t~systemn is obtained b c'o;-mputmri

CW-CWh+ CWO± CWrCO±CWan ( 12,

Expressed in this wa\, the aerod~nanm work coilfficiprit. c, c c

C wahW c wh- are all in nondimensionalized form, with the product of the

pressure di f ference ,W ) and chordl as normalizing factor.

From the definition eq. 12 and 1 5 it is se-n that these cooificio nts

become neqati, e for a stable motion.

As the force and momnrt coefficients each ha\ c timne d-pendart parts

from both the h-a\ ing and pit chinig wail Ia t ions.; c wh 's defined Rs the

work done on the profile duririg a pore hea\ rig i- cle rio torsion . 5li ml r-

k . c is the work done On the blade' duingM A pore pitihing c~ c rio

bending ;c w hanid - h6is the wi! done t) the pitching force due

to hea\ ing arid b tte hea~ij mn tliinr'r dute to pit ching. respect i\ cl

Thus, the work coeffi cts maij he e ~ sdin cor entional form as

Cwh-f Rejh-C",t) Re~dhft~cycle 01

cycl if

osc ' 0

CW0o- #RejdCcot)[Rejcttlt)ICyc e 0 f

Intecase of pore sinusoid(al rra ta-i r bending or pure sinusoidal

to-sional '%ibration, as well as SirisoidAl lft arid nioment responses,, respF-c-

tively, the expressions .15, rna\ be initeri;ited to qi\,Ce the following simple

formulas -2 -2

Cwh=nh -CLI =~h -CL'Sifl(L)

CwG,,Tra'CM n'Cm-sin(0Mj)

CWhaO-

VVOP = 0It is thus seen that the aerodyriarmc work onl-, depen"dS upon the \alute

of the out of phase component of the lift and moment ca)efficrents, and

that the airfoil damps the motion when thr, imaqinar part of the lift

Page 28: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

25

and moment coefficient, resp. is negatie.

The aerod\namic work can be e\pressed in normalized form as the aerod -

namic damping parameter _ /3/. With the same assumptions as in eq.

,14), this parameter is defined as{ - -Ch 21=C1

The normalized parameter = is thus positive for a stable motion.

Non-Harmonic Pressure Response

All theoretical prediction methods for flutter and forced \ibrations aaila-

ble today, make a few basic assumptions.

Most of the methods are submitted to restrictions regarding

o sinusoidal blade %ibrations

o sinusoidal pressure response

o identical ibration frequencies for all blades

o identical \ibration amplitudes for all blades

o constant interblade phase angles

In experiments, howe~er, these assumption can ne\er be e\actl fullfilled.

The large energ input needed to drive a cascade with prescribed frequen-

cies. amplitudes and phase angles makes it impossible to satisf the three

ittter Issumptions, apart from in tests with low frequencies and/or small

anplitudes. Een in this case though. the pressure response on the profiles

will, in general, not be sinusoidal.

For the detailed comparison between the experimental data and the predic-

tion model, it is thus important to realize how well the theoretical assump-

tiors approximate the experiment.

The non-sinusoidal pressure response on the \ibrating blades does not

hinder the computation of the aerodynamic work and damping coefficients,

as only the frequency of the pressure response spectra corresponding

to the blade \ bration frequency contributes to the aerodynamic work.

The \alidit of this statement ran be demonstrated if we suppose that

Ihe blade motion is sinusoidal with angular frequency w, and as any perio-

dic signal F'wt), of which fwt) is the unsteady part, can be represen-

ted as a Fourier series

00

FRwt)=A + fw )A+ I Ae '' wk~l

', J

Page 29: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

2 I

As exernple of proof of the statement, let us cionsider a pure sinusoidal

pitchingi mode (oG real)

ai(t)aelw

with a moment signaldcma(O OO I C .' ! lk

w l ' 0 M kj}aCMa(t)={ Z cMk

k=1The aerodynamic work coefficient cwa becomes thus

2n 0Cx

cw = RejdCM,(t)Rejdc(') }f(1 Red I CMk eClkwl.MkI 'Rejide'wt d(wt)Oscl lation

2,n oo

=16'1 I CM0,k COS(kwt±-M k)} {-asin(wt)}d(wt)=0 k=l

co 2v=-a2 I CMak{JCOS(kt+OMk) sin(wt)d(wt)}=

k=l 0

2-CuakSin(kom) if k=l CW0 &C (17)

0 if k1 Ca

Thus, in the computation of the work coefficients only the first harnonic

of the force or moment response appears (compare eq. 14).

This simplification of a non sinusoidal pressure response is however only

possible due to the existence of a pure sinusoidal motion and the integra-

tion over a cycle of vibration. A verification of the actual time histories

of the experiments is thus needed.

This is even more important in experiments with non-identical blade vibra-

tion amplitudes and interblade phase angIles, as these differences largely

ma\ contribt to discrepaerles between the experimental and theoretical

Cleatli/eJ, results.

(On the bse; ()f (Itet l11.(11 tilne ruordin s, a statistical evaluation or a

di ,'relte I o)Jrlr lNir,'li l; ea\ be used to appreciate how well the different

i~leall/ lItm !i in itli, F710(11 l(011 ilih(11'15 a)prOxXiit mhe real cascade flowh' lli}l t It) v;

II I',J; r ,- ... ... ,'',t t' f If ' Wam Iflit IA P ,)t all lhr"' physic-al quLant it ies

1. r I, . . l' l w rl;

II m I t i ;impllhll id , C ) l ti(e first hair iii(, it a I (utirier analysis is used

Page 30: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

27

o as the root-mean-square \alue ,RMS' times a factor V"'. if a statisti-

cal e aluation is used (example: h -t/ TJh(t) d(t) :,*). The factor0

is here introduced in order to equalize the statistical amplitude with

the full amplitude for a purely sinusoidal fluctuation.

In both cases, an indication of the quality of the signal should, if possible,

be given. This criteria can, for example be established as

o higher harmonics for Fourier analysis

o fluctuation of result with different averaging times for a narrow-band

filter

o shape of spectral peak at a distance of, e.g., 20 dB relative to peak

for spectrum analysis

In order to e\aluate e entual discrepancies between the experimental

data and theoretical results, it is of importance that an analysis of the

abo\e mentioned kind accompan, the data.

i

! 1

T) This RMS-\alue may occur e.g. as the output of a narrow-band filter

applied to the unsteady pressure signal, centered at the blade oscillation

frequency.

_ _ iI

aN

Page 31: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

2. !" I iii(2i a I oein 111 I urinals

Cj f tlie riwi;l Voblirrc; fur Ima cnini,)ii loon of experinierit a iol id r' I

cat ar.reli~ ii! iri\ c s: ioA Ian- ; 11 1 ti 19 8f0 "S, rnm i Limrn Avroetzust icit

in -1uLrbacn achire_;' wa s t hf hick< of cofl lr (.1 cy i n I hu I epuI in(1 f orrIfolat! i

t: e rei Iarcl i I ;P'! I IL pa t i i i(Ii i t he p,, it p10oc 1 are t he re fnre in,, it ed

to f oftI !w I W, lide-I ifnes for a st ,viod~ri /zed report rfig forrmat, giv~en iri

this, chap er.

Two rn in qvfo :p of rr-sei ita;t ion' %v'. 11 be used:

1: IT-hic i~ !A ucur icr s t hec de't Oil Ped cornpariSOr IOf the [TMSUred and

cakl lat ed hi ac pressri ir di st ri bUtions.

11. I he SeCoi it re'preseit'at ion is direct ed towa rd- the physi en I mechanism,

of t Ibe Ifott t er pher iomnena, its import anft pzirameters and t) owa r d

Itie est ahl i sfirmrnt of thfe flut teri boundaries for t he di ffereicit cascades.

It is evi tier it that alt part ici rant S are DFncouraged to uise any I'fI f crrpr

irig format s in order to0 est ablish ot her compari so[ s or to 1 emphasi ze

any special poit it of iot crest in thei r in\ est igat ions.

I: Detaniled comparison of experimentnil iosuls m id theoretical approaches

The coe biihilr of the \ati (lit y of ttreoret ical result s (:ari oily be dorne

by a rout tal agreement '1.t ween thte Mea.51ui-ed soid cluat1 UriSt eaitx

pressuce dist r ibut ionis on hot h blade( Su~t aces3. T!his (let a iIe d cor-opar isori

will hec performed on the basis of Figure 2.-5-1 \vhich is to be presentedi

for- di ffererit comibinat ions of

0 interhlacle phase anqlo,

0 rfCIL~edfrequency

0 inlet Condtitions

o CaSCOCle g, Oiii(!t[Vdeperidiri upon thte e \isting cetiwri.-iwi t Odatita for, trie con firourat ion tinder-

invest igat ion.

Quit C. a few pT ecdit ion0 models fOr' ftJ I tCi or forC-ed vi brat, ions are based

Upon S'1all pert urhabit ion theorlies, Vtirf-ii the St eail jPressure( dist ribut err

on ttcm blade is arfi input dat a. The expar imeritally drt ermiried I irn amcra-

gad h IA(tf Sulr f ace'( p~re'ssuLre (list ritbat iris is t herefore speci fiert for soti

SItric'"S.as iii I ig. 2.3-2.

F r tihcinior e I h- comnpariion btwrihtte st ead 'J ig 2.3-2) aird inst eady'

() W2 -1bade' pressLre (fi~tritLitit ! Mrsra\ in some~f cases give a qiiarit i-

Page 32: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

29

ti'e notion about the aeroelastic phenomena under in~est gation instabili-

ties due to stall, choke, shockwa\es, coupling effects between the stead'

and unstead> flow fields...).

The distribution of the blade surface pressure difference coefficient along

the blade, A C X,, indicates the presence of stable and unstable zones.P

This information is thus also of interest, and will be plotted as in Figure

2.3-3.

II. Flutter boundaries

The second form of representation concerns the \.alues of the resultant

aerod'namic blade forces and moments, as well as the aerodynamic work

and damping coefficients.

Two different representations see Figures 2.3-4 and 2.3-5' will be used

to elaborate the influence of se.eral important parameters on the flutter

boundaries

o reduced frequency

o interblade phase angle

o inlet flow \elocity

o inlet flow angle

o outlet flQw \elocity

o cascade geometry

First. the unsteady blade pressure coefficients will be integrated to 'ield

the aerod.namic force, or lift, and moment coefficients as in Figure

2.1-4. The phase angles 0 , ariOcM resp., gi\e in this repr-;2titation imme-

diate information about the aeroelastic stability of the s\stem see chapter

2.2

Secondl>, the aerodynamic work and damping coefficients per ccle ofoscillation may be calculated if the mode-shape of the motion is wellknown. Most of the problems treated in the present work will concern

motion of nondeformed profiles "at least for the theoretical predictions,

wherefore the aerodniamic damping coefficient can be easil computed

and plotted. This information is useful for the turbomach~ne designer

for the judgement of the aeroelast ic beha,.iour of a specific cascade

Figure 2.5-5.

I

-I

Page 33: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/

2 Y,,

x I

flr,.i Z .' ' I r tL: r:~.;.i ,' . ., r3 S

20. 2

I P2x

c 10. W

k

0. d:

+360 + +-- _ _ -360

STABLE

+180 -180

UNSTABLE

-380 ++-360

.0 .5 1.x

FIG. 2.3-I: MAGNITUDE AND PHASE LEAD OF UNSTEAoY BLADESURFACE PRESSURE DISTRIBUTION. f

r P:]N pIT'H " ' ;T' \, V I. 1 LF'3 1 i I. IF r. 1*lit

Page 34: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

7 -

,

X

x

x 1m

P2

AEROELRSrICITY IN IURBOMRCHINE-CRSCAOE5.STNOARD CONFIGURPTION NUMBER

M2 ,

hx

hY

k

P -

-1o. -- 4 - -

c

0.

Ix

b$

FIG. 2.3-2: TIME AVERAGED BLADE SURFACEPRESSURE COEFFICIENT.

:

Page 35: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Jc

_,_,_,,_-----.---- -----.

/- - '17' ' x/x

,c

p 3 i

3 i N- i T, N' " r SLo

2.

C .

+360

STABLE

i +180

UNSTABLE

0 O.z P S T A B L E

hI

'" -180

. UNSTBLE

-3 6 0 , - -- --- .. . .I -0. .5I.I

X

FIG. 2.3-3: MAqGNITUDE AIND PiiASLE LEAD OF I,STEPiDT BLADOE.SURFACE PRESSURE [3IFFER-NICE COEFFICIENT,

10", ,1 If .,

Page 36: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

xx

Pi m 2Ya

REROELRSTICETI IN 7UPBOMACHrNE 'p DES.5TPNDARO CONFIGURPTION NUMBER

2.

L C :

k

F 8

c a:M

0. 'd a :)

~+360

STABLE

+180

UNSTABLE

O0.L

STABLE

F-180

M UNSTABLEM

-360 - ' I

-180 0 180

FIG. 2.3-4: AERODYNAMIC FORCE, LIFT AND MOMENT COEFFICIENTSTOGETHER WITH THE CORRESPONDING PHASE LEADS IN DE-

PENDRNCE OF CASCADE GEOMETRY AND FLOW QUANTITIES.

Page 37: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

I ,, i

/h x 1

-____ _____ _____ __ p

CI(~U \k

Sb ~f~L'CT

di91 -1.ARL

;TBL0.x

JO h

-30 0 30

F16.2.3-: RRODYPMI WOP (;N DR1PIN COFFICE (3

IN D~cfDRNE OF CRCPO GCOETR AN

FLO _ CNTTES

Page 38: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

35

3. Standard Confiqurations

On the basis of existing test facilities of the participating laboratories,

and in relationship with the state-of-art of theoretical methods, nine

standard configurations(*) for establishing the mutual validity of two-dimen-

sional and quasi three-dimensional aeroelastic cascade experiments and

prediction models have been selected. The configurations should approxima-

te idealized flows, wherefore stall effects have been excluded, except

as extensions of unstalled experiments.

In order to guarantee a correct validation of the theoretical models,

the quality of the experimental results must also be verified. If possible,

two rather similar experimental cascade geometries have therefore been

identified as standard configurations for each of the following flow regimes:

o low subsonic (- incompressible)

o subsonic

o transonic

o supersonic

Out of the nine standard configurations, which are summarized in tables

3.0-1, seven are based upon experimental cascade results; the eighth

is directed towards the establishment of validity for prediction models

in the limiting case of flat plates and for comparison of the large number

of existing flat plate theories. The final configuration (ninth) is defined

as to investigate blade thickness effects upon the aeroelastic behaviour

of the cascade, and upon the theoretical results, especially at high subsonic

flow velocities.

Each of the standard configurations selected allow for a systematic varia-

tion of one or several aerodynamic and/or aeroelastic parameters. How-

ever, a too large number of aeroelastic cases in each standard configura-

tion would limit the usefulness in this report in providing comparisons

for experimentalists and analysts working independently of each other.

For this reason, a restricted number of aeroelastic configurations for

each test case, based upon available experimental data, has been chosen

(*) Throughout this report, "standard configuration" will designate a

cascade geometry and "aeroelastic case" or "aeroelastic test case" will

indicate the different time dependant (and, in some cases, time averaged)

conditions within a standard configuration.

'~i

I

Page 39: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

- - - -------

I x x x

>' Y) X( X

____- x I <xI

___ I X x

--- -- x - . x x

X x x< x

- n _ _ x _ _

X X

___ x x __

________I ______ _____ ____MM ____

Page 40: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

57

0

"o - 0. -......

,4.-. . --

,4 0.. .4 4. 7.4 0 4). 0. 07 - . . . . ..

O o 0. O C. C * CO 00 C .. . - C- . o C o C .

0o U, o U U U U U C UrU 4. 4- -

0 0 _. -. C-I

Page 41: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

ii(i

\'F: Ft' ' U[+' if I((l ltd l .'t; 11:51 i ' l ''0 !t '3 V t ( ' itt] F \t'l F ! F ( :.' '

I) tt1 ! ,f :

I'Ii ii FJ'; ' JI ' ' i. i i, '' " '' ' 'jtJ t ' '''''V . ' ' ' ' 1I 0 1 V. I

C, I ;t I I :' F ': I FiF

i , F Iii, ' ' ii I l t . " i t I i F I it (t I t I if s It

I L F 1i ' 1~ F3' II''i F' fi Fw t I t t t t/'U 3 'Fl f fl it' .3 i tS 'lt I it I w f I tt It . I i I

f t7 t ntt F I , '> ' r i t' ' ! ', t . t ' ' , i t It I t 'II 1,

Iit' : l I FIt f it I 11 3) (f ( 3(Y 111(3

lit0 13 I I l C II c i 3 f I F i ti t 3 i( It fro F( o3(

Il + it t + w ,or i , + I o .I t , h :. 1 1 I f' I r, f' t1 , 1 ,I I'

lIl i'I f 1 , i] [;O ll, t):tl Al I{Jl ' :; ' , ( C:i ! t ( l'+ ; l~ I , , lf t Lji, t . J, F!)O -

tlr if{ Iiil dt r tl I' I P 'I It O"f f !f F,

(-'(;[] !' ; l }(][ ++ ('( [IL £'I' I ] \'. t t ['f~ l]: l } :[ [+(: l'. ' l~ l' Jiql ' I t (> t~ J 5; ".. { i[ [1[

,,viii,~ ~~~~ ~~~ ~ r1 LI{ I, r, Ifi+ Ii(.' ,.il IP t ,, , h ,j, . I ,' i~ t ,; ]t [i

Page 42: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

5.1 f irst Standard Confiquration

This configuration is compiled from two-dimensional cascade experiments

in the low subsonic flow region. It is therefore mainly directed towards

the validation of incompressible predictions.

The experiments have been performed, in air, in the linear low subsonic

oscillating cascade wind tunnel at the United Technologies Research Center

andi are included in the present work by courtesy of F .0. Carta.

The cascade configuration consists of eleven vibrating NACA 65-series

blades, each having a chord c 0.1524 m and a span of 01.254 m, with a

10 degree circular arc camber arid a thickness-to-chord ratio of 0.06.

The gap-to-chord ratio is 0.750 and the stagger angle for the experiments

here presented is 351 .

The cascade geometry and profile coordinates are given in Figure and

lable 3.1-1.

The airfoils oscillates in pitching mode around a pivot axis at (0.5, 0.0115).

Experiments have been performed with oscillation frequencies between

6 and 26 Hz and with two pitching amplitudes (0.50 and 20). Both the

time averaged and time dependant instrumentation on this cascade is

very complete, and a large number of well documented data have been

obtained during the tests. The instrumentation allows for determination

of both local and global unsteady forces on the blades (i.e. several high

response pressure transducers arid integration of these signals for global

effects), and th'- "esults are presented in several ways.

F r o m these tests, 15 aeroelastic cases have been retained as recomrnmenda-

lions for off-design calculations. The cases are contained in Table 3.1-2,

together with the proposal for representation of the results. They corres-

pond to two different mean settings of the cascade (see Table 3.1-2),

for each of which the steady blade surface pressure distribution is given

in F igures 5.)-2 and Table 3.1-3.

According to the recommended representation, the test data concerning

the, unsteady blade surface pressures as well as the mornent coefficient

i rnd 'rd,,r VmiW dtintpl[ 1 shall he gliffri ii dependanice of the redonce d

tl''(I I II(-, ;Ind l' I (' r h I; angeIf . Anii e(xaTple of t he rep fe wler Iti if I

ii fh, ;t ;arndiid r i/ed i, )oirt iiiij format to hi used II N, l ne rj) 1 it l it) I

of I h ' ' ifi,'1w 'r la;11 ;tll th 'oret il-;)1 da t a' o t t thfile depoor ;it r ' ;ill

ti lti ha-a di' r' ;htow I ci igores I. ;rid I abli' 1. -,.

Page 43: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

u C,

0 . + . . 0 . " 1

y_ _ 35. -0 --

f i l l !

c '0 15 1 5 0 7

c 01%' IC T= 0.75(

cho2.d

'4

Page 44: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c 15.24 cm (0 in.)

SUCTION SURFICE PRIESSURE SURFACE

x Y x Y

0.0008 0.0020 0.0012 -0.0019

0.0046 0.0053 0.0054 -0.0042

0.0070 0.0064 0.0080 -0.0050

0.0120 0.0083 0.0130 -0.0061

0.0244 0.0116 0.0256 -0.0077

0.0494 0.0164 0.0507 -0.0098

0.0743 0.0204 0.0757 -0.0115

0.0993 0.0237 0.1007 -0.0129

0.1494 0.0290 0.1506 -0.0150

0.1994 0.0331 0.2006 -0.0165

0.2495 0.0364 0 .2505 -0.0177

0.2996 0.0387 0.3004 -0.0185

0.3998 0.0411 0.4002 -0.0188

0.5000 0.0406 0.5000 -0.0176

0.6002 0.0370 0.5998 -0.0146

0.7003 0.0306 0.6997 -0.0104

0.8003 0.0223 0.7997 -0.0069

0.8503 0.0176 0.8497 -0.0053

0.9003 0.0127 0.8997 -0.0040

0.9502 0.0078 0.9497 -0.00320.9975 0.0030 0.99,3 -0.0025

RADIUS CENTOR ODORDINATES

J' L.E. RADIUS/c = 0.0024 X = 0.0024, Y = 0.0002

T.F. RAI)IUS/c = 0.0028 X = 0.9972, Y = 0.0003

l tble 5.1-1 1 ir,;t 'ir;m rd.r[ C {{}rnfi(j-rat un: I)lm nsionless Airfoil ('oor{ir ales

Page 45: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

-u - -. -r

XI -),).i~uV" - .7.

O )Sr.:)

.J~w 'A

I 2l )!I m lf Ii V . 'I

Page 46: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

P2 1

REROELR5TIC1TY IN TURBOMRCH]NE-CRSCROES. jSTANOARO CONFi:2JFRATIDN NUMBER I

P2

hx

h

k

XX x xd

0. 5

FIG. 3.1-2A: FIRST STANDARD CONFIGURATION.

TIME AVERAGED BLADE SURFACE PRESSURE i,COEFFICIENT FOR INCIOENCE 2. DEGREES.

Page 47: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

//

, C

/ T ;

*,' ..

!FL. L T

- / Yu.

• " ,_ _ 2... .. .. ... .. ..".........

//

M

h :x

XX t

O. .5 1.X

F;G 3. I-2B: FIRST STPNDRRD CoNFIGURPTUIc.

TIME AVERRGED BLi cES!3 E. ,-- PES SRE

COEFFICIENT FOR INCIDENCE . DEGREES,

Page 48: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Aeroelasticity in Turbomachine-CascadesFirst Standard ConfigurationTime Averaged Blade Surface Pressure Distributions

l-) 0.18 0.17

0) 2 6

p2/PtI ( 0.9818 0.9852

(o) 28 17.5

Upper Lower Upper Lowersurface surface surface surface

x Cp Cp Cp Cpp p p p

.012 -.2341 .2618 -.7874 .6278

.062 -.2587 .0904 -.3910 .3139

.148 -.1992 .0441 -.2390 .2148

.261 -.1561 .0503 -.1465 .2015

.392 -.1078 .0688 -.0485 .2115

.530 -.0565 .0955 .0385 .2269

.661 -.0S8S .1345 .0782 .2599

.774 .0236 .1817 .1531 .2896

.860 .0739 .1961 .2037 .3128

.910 .0934 .2094 .2247 .3106

la I)I( 5.1 -5 1 11- ;t 0) ;1 1(h ~f (d I f q)) f I t f~lr: 1 1(m ' ,\ (,[.a (jc d M a d l~ ; ( ' m l fa ('f

i tm d

Page 49: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

( ( :~ t tS Na~ .0

(1 1 -- 0

L c I" i) 'n" ',) 11 c= F, u = o . i c [ c 1 t,

S ) (s0 ()

' 2 i r 2 :p ) ' F p

'.l ...... . 1: ____ o: '-

b] Loc: T. o V l . dn iJ ~ Sturf <cc Peossure t~oefectnit (12 I c

b ___ 1KI __ __ I_ _

IL

1{ f______ , i

'i _ _- _ _ _

_!t I_ _

__________-___i_;i <,, ,': '< t i ;,,,I ___________'I I. l ',.f t i(i _________

IIl l' 'fi:,:fl :c<l ,Ul l I'!,! I1 :._ __ _ _ __-,_ ___ _ ___ __ _

_____ B I__

_ "_ _"_-_ _ _ _

Page 50: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y

2 xa

x 1 : 4

I 1:

AEROELRSTICITT IN TURBOMRCHINE-CRSCROES. 1 ,STANOARD CONFIGURnTION NUMBER I J

40.

P2h

x

hy

a:

p Ca :

k

5 :

a:

d

+360 -360

STABLE

+180 -180

UNSTABLE0.S~ f{LS ___

STABLE

-180 +180

UNSTABLE

-360 ' - 1 -I--1- +360.0 .5 1.

xFIG. 3.1-3A: FIRST STANDARD CONFIGURATION.

MAGNITUDE AND PHASE LEAD OF UNSTEADY BLADE

SURFACE PRESSURE COEFFICIENT.I": IN PITCH M11J .NflIfIt ,H N VAI ID IJP TflI[H PM ['1 I LI ,ix I'll\.~

Page 51: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

m /

h M

-10..

0..I I

4 6 313 : FIS5T RDC0N URAT1MnGN TUD nio PH SE fi-Ll F U11c-T[-*AD

540.EPHSSR Dl:E.-NI-ECIF E

f i T(,

Page 52: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

X :

Z0 2

x l :

REROELRSTICITr IN TURBaMRCHINE-CRSCADES. I i.STANDARD CONFIGURATION NUMBER I I

P2

hx

hY

L

k

- __8 .:

a.

+360

STABLE

+180

0. UNSTABLE

o..L

STABLE

-180

.1 UNSTABLE

-360 - ' I-180 0 180

FIG. 3.1-3C: FIRST STANDARD CONFIGURATION.

AERODTNRMIC LIFT COEFFICIENT AND PHASE LEADIN DEPENOANCE OF INTERBLADE PHASE ANGLE.

Page 53: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

V P. / / C

i / / / " '"

/

r7 ,

k k

.. I

0F.L

-10INS A* c

-450 0 4LI G :, R___1_

A STFiLE

-180 .. . ... . . .. .

__ I UNSTRUBLE

I! I I

-. JVU -- - II. .-- Jr-- i-, - -- T" ,

- L 5 0 15

F I C ., 3 . 1 - 3 : F I E K T S 5Lr ,f lFI[ : O '.] ! r ] F__ , IR ? ! Z_ , ., ,

f E C 9ll T ~ i 1 q ' C L I F T fC , _F F j E E ND Fr, P H R $S E r aFI

I .4 fFI F '~f" N C F O F r '. , U E F- ..I ~

Page 54: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y )1

xx

m P2

REROELRSTICITI IN TURBOMACH[NE-CR CROES. 1STANDRRD CONFIGURRTION NUMBER I _

P2

hx

hy

k

. a

I I I I :

+360 -

STABLE

+180

UNSTABLE

M 0.

STABLE

-180 =

UNSTABLE

-360 -

-180 0 180

FIG. 3.1-3E: FIRST STANDARD CONFIGURATION.AERODYNAMIC MOMENT COEFFICIENT AND PHASE LEAD

IN DEPENOANCE OF INTERBLADE PHASE ANGLE.

Page 55: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

7 c

xx

m 2P 2

xx

h

mx

k

cr

d

UNSTRE F

UST RBL E

0..51k

3V 2 -F: F R 5T 5 T A!-4'DJIMD CFGIJRRTI ON.H 1100'rNO~MIC HOMENT COE~FFICIENT flND PHR BE LEROTM tJ[P[NEDPNCIE OF F73fjlUCFO FIF-OK N CY

Page 56: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

7 7:

I

AEROELRST[CITT IN TURBOMRCHINE-CPSCABES.STRNOPRO CONFIGURATION NUMBER 1

P 2 :

-1".

hxh

(X)

-5 k

C:

w 0.

C • USTABLE

-180 0 180

FIG. 3.1-3G: FIRST STANDARD CONFIGURATION.

AERODYNAMIC WORK AND DAMPING COEFFICIENTSIN DEPENDANCE OF INTERBLADE PHASE ANGLE

U

Page 57: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/' /

/ / ,

i3 ,/L~ / '- : 3 '

f / " / 2

+ .

I T C

I... . . ... . . . .... .I F:.TS

... .... . . . . . " N

I _ _

"° ... ... . .. . ...... . . .. .. .. . . .

" - 1I- - - -. .--.- .- !*

. .. . . .4 . ... . .... .. ...

0. 5 1.

~Ic

\ i .1 H F 2 I IfT 11Thil I I . .

Page 58: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

3.2 Second Standard Configuration

This incompressible two-dimensional cascade configuration has been mea-

sured in a water cascade tunnel at the University of Tokyo. The results

have been submitted by courtesy of H. Tanaka.

The cascade consists of eleven vibrating and six stationary double circular

arc profiles. Lach of the blades have a chord of c 0.0)%) m and a span

of 0.100 m, with a camber angle of 16' and a gap-to-chord ratio of 1.00.

The water velocity during the tests was V 1=2 m/s, with the R~eynolds

urnber situated at Pe 1.2 . 10 The eleven vibrating blades oscillate

in pitch, with an amplitude of 0.06 rad (3.4' ) and a frequenc\ between

1.i and 1 5Hz. Thus, the reduced frequency lies in the domain 0.1 tol.0.

The cascade geometry is given in Figure 3.2-1 and the profile (coordinates

in Table 5.2-1.

Lxperiments nave been performed with incidence ranging from attached

to partly separated and fully separated flow. Further, the stagger angle

as well as the interblade phase angle and pivot axis have been varied

systematically.

Tne experimental data indicates the unsteady lift and moment coefficients

(arnplitudes together with the corresponding phase lead angles). These

coefficients are computed from strain gage measurements; no time depen-

dant pressures are measured on the blade surfaces.

From the experiments, 22 aeroelastic cases are selected for "prediction".

These aeroelastic test cases are summarized in Table 3.2-2, toqether

with the proposal for representation of the results.

The 22 aeroelastic cases correspond to 5 cascade geometiles see Table

5.2-2). The recommended representation of the results of the second

standard configuration includes therefore trends of lift and momrent (oeffi-

ci onts for aeroelastic pararmeters, such as interhlatl, pha;v ang(l, anid

reduced frequency. bul also for cascade pararm't'!; Ih' w,

and1 stagqer angle.

The tirne-averaqed ba de irifi, e ;t di l r i it i l nil' w;e i. i n ' f lrw , 1 t l irl(

tiew experimeits.

It i l re(oni n wrr h d t i lf ith , r ,- Jl , t i 11 f I ) I I I ''. ' I

i- an I IIlf Z I

Page 59: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

d /

t];it C:.<--0 0'"g'l !'h i

//it 1\/

/i

2 / LC ' J_0H-5 l "i;. e

S . S 2------.

5y/l I Mi

/ : ) iil .O

c/0 ____ __'__

- c Ti-l d -11 O. O 2)

! illi'l J. -!(;' ;~i h or li <fiL ( 16ii 1trl!ll V 6. Q,,, Th.2, ,

Page 60: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1)7

)ouble (ircular Arc Bladec- 0.150 m (1.968 in.)

Suction surface Pressure surface(upper surface) (lower surface)

\ ( iy / % ) 0 "0%

0 0 0

5 1.644 -0.404

10 2.657 -0.127

15 3.509 0.115

20 4.262 0.326

25 4.897 0.505

30 5.416 0.650

35 5.818 0.764

40 6.105 0.845

45 6.272 0.893

50 6.334 0.910

55 6.272 0.893

60 6.105 0.845

65 5.818 0.764

70 5.416 0.650

75 4.897 0.505

80 4.262 0.326

85 3.509 0.115

90 2.637 -0.127

95 1.644 -0.404

100 0 0

L.L. and T.E. R ADIUS RADIUS CENT[ R COORDINATES

L.JA. RADIUS/c 0.666 (%) x 0.666 (0if), 0 0 (0)

[a e .R I ( i/t 0. 6( 6 0A.99 5 % 1oin o

Table 5.2-1 !wcornd 'Aamliard (C ai tura~ tio: Dimnsioiiloss Airtoil C Wordi-

Page 61: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

) I

__ ~ 441 2

I I

ii I I

'1 ~ 1' I

.....-..........I.................- I I

I

Page 62: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Necroc last ic itN in Turbomachline-Cascakcs.

;ci t aridard Configuration.

Aeroelastic test' case No:.

0 .0V 1=2 rn/s. y __= . 1

-(-2)= (-l)= -(O) = -(+1)= -(+2) = ___ (a

0(-2)= * 1(-1>= 0 0)% 0(+1)= (+2) = __ 0 (0)

a) Global Aeroelastic Coefficients

b) Local Time Dependant Blade Surface Pressure Coefficients

p p p p PA

_______________________i iy j~a f o~ i Ta______________ f____________ __________ __________

_ _ _ _w _ _ _ _' _ _IMf~~ _ _[0 h ; I( t (w

Page 63: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Ic

/

I /6 . / / r ,

Si

1.

Y

+18:

UNSTABLE

0. ---- -- -- -_-___

m/

I STAlBLE

-150

-180 0 180

F 16. 3.2- r'; : S [C 0N' 0 -rfn o P.,, Ui ctF JGu ii n io :nFR6D~fYNflNIC IOFC I CEFIF IFNT FINO FHqSE LEAD

N 0p[IND il C GF f F; ' )E F..GLE

Page 64: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

x

P2 2________x__ xm

m 77 2

x x I

AEROELAST]CITY IN TURBOMACHINE-CASCADE7. ISTANDARD CONFIGURATION NUMBER 2I

hx

h :Y

c 2.- (J)H :

k

0 . I , , 'd :

+360

STABLE

+1801UNSTABLE

UNSTABLE

" 1 USTABLE

. UNSTABLE

-360 - - -O.0. 2.

k

FIG. 3.2-2B: SECOND STANDARD CONFIGURATION:RERODTNAMIC MOMENT COEFFICIENT AND PHASE LEAD

IN OEPENDRNCE OF REDUCED FREQUENCY.

Page 65: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

l II

/

Y /c

-L // // ,.:.

/ /.

X/

S " 2 . -- --- -

CM 2.

0.*

, I ,.. ___. ...__ . . . .....

I £ A /oa

-- - STAlBLE

-- 180NSTABLE

36 t /_____

-I-. . 0

F I. 3 2-C:SFjCC1N S)TPUJD CVCf0jr' t ;MJrf- I C fOiE~i E11V H I T r;:.1 PIP.SE LERO

Di c P~ r .N D I u P N C E E t :L E

Page 66: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/ c

7 Ex 7 ,

x m IM M1

AEROELASTICITY IN TURBOMCHINE-CRSCROES. 1..STANDARO CONFIGURATION NUMBER ! 2

P2

hxhy

c

M 2. :a

k

+360

STABLE

+ 180 UNSTABL

UNSTABLEO0.

M. STABLE

-180-- _ _ _

UNSTABLE

-360 - ---10. 0. 10.

i

FIG. 3.2-2D: SECOND STANDARD CONFIGURATION:RERODTNAMIC MOMENT COEFFICIENT AND PHRSE LEADIN DEPENDANCE OF INCIDENCE ANGLE.

Page 67: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/P

2

F~ 14 .

,k

5 T_

STBLK0.

USTRBLE_13

I U_[I_1__t

7j( Y fl : F ' CC[iF f F I JE IT _E H2A flJ> iF9 [I P;.' 9.- F GD F L.

Page 68: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/ c

7x

01 OJ ~ 2 aO

REROELAST[CITT IN TURBOMACHINE-CASCROES. 1 1.:

STANDARO CONFIGURATION NUMBER 2 jP 2

8.

h

h

cF 4.)

k

82:

0. - -d

+360

STABLE

+180

UNSTABLE

0F 0. - _ _:

STABLE

-180

UNSTABLE

-360 - -

0. 1. 2.k

FIG. 3.2-2F: SECOND STANDARD CONFIGURATION:AERODYNAMIC FORCE COEFFICIENT AND PHASE LEADIN DEPENOANCE OF REDUCED FREQUENCY.

Page 69: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/ i..

- •... . . . . . . . . . ..... .o ,

,I .. .-.

II

7:h

.L

".....~... _ _6

I d

IF.: . >T

f l ... .... . .. ..(

V ,

Page 70: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/ ,C

//XX

YY

x ml

1, 7 -1,y SCoc

m2

8.

h

c .

F 4 W

k

0. - - - - d

+360 "

STABLE

+180.8 -UNSTABLE

0. O __ _--_- _ _

FSTABLE

-180 -

UNSTABLE

-360 - --60. 0. 60.

FIG. 3.2-2H: SECOND STANDARD CONFIGURATION:

AERODTNAMIC FORCE COEFFICIENT AND PHASE LEAD

IN DEPENDRNCE OF STAGGER ANGLE.

Page 71: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Moi-

xx

hY

k

0*

dC _ UNSTRBLE

sl RFOLE

-180 0 180

F IG. 3. 2- t'I: SEMOKJ STPNL1PRO CON I GURPT ION:AERODYNnRMIC HORK DRU0f~1ING COEFFICIENTSIN LJFPENODiNCE OF INTERBLRAjE PHR,3E INGLE .

Page 72: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y c

x

x l :

AEfROELRSTICITT IN rURBOMACHINE-CASCROES. ISTANDARD CONFIGURATION NUMBER :2I

P 2

h

h:T

k :

d :

c 0. U N S T A B L E

W!• STABLE

[ . . 2.

FIG. 3.2-2K: SECOND STANDARD CONFIGURATION

L AERODYNAMIC WORK AND DAMPING COEFFICIENTS

IN DEPENDANCE OF REDUCED FREQUENCY.

.- .. ... , I I

Page 73: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

[ij~

. IP

I I

I f-. 1

I-

I I . jhA

. 2 .

I I II I

* j t

I U

I.: cI* j..- I ..- *1 t ~3II;:j:A I

-I.. I p

T

I.

TI I

-. ~ I * p * pI ' I

Q

I~i.~v C.

Page 74: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Cy 71

RERBELRSTICITT IN TURBMRLHINE-CRSCROEz. 2.:STRNOPRO CONFIGUBRTION NUMBER 2

xx

P2

Pi ~Y

k

d :

P,

W IN I I -H- +- E n USTABLE I

-60. 0. 60.

IFIG. 3.2-2M: SECOND STANDARD CONFIGURATOON:N U 2

AERODTNAMIC WORK AND DAMPING COEFFICIENTS

~IN DEPENDANCE OF STAGGER ANGLE.

------ I I2

Page 75: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

.i.

I!

it / V

I.

I F.tFF I,.

1. (r .F~[;

F I Ft'FIiFI'ii..!

V F 'lW1 1

:v I

V. FYI ii ';1

V . 5 p, 5 it F: F I i.i~n~> . H

F ~~ F 'F ,', '<F'' Fr'!.' 'FF2 F

F. ''Fl F'!'

'I F

IF i '''I F ' : F '.~ F''

F ' F'' F ~,. '' I F',,'FF F F

[F .1.

Page 76: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

73

configuration allows detailed comparison of the local time dependant

blade surface pressures and trends of global effects (moment and aerody-

namic damping coefficients) in dependance of expansion ratio (P 2/Pt),

blade vibration frequency and interblade phase angle (see Table 3.3-4

and Figure 5.3-3).

it

Page 77: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

- S

/

-' I ~---- ---

'1 - - - ~---- ------- - -

C C ~7 r. y C>

C ~:: *'j ) ((1 1 1, 4

I.

.- ~ '-.' I - -

I

Page 78: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

7"

0.072 m

SUJCT ION qWX:ALE PRESqRE S.JRFACE

(Lower surface) (Upper surface)

x Y x ys Ip

0.0 0.0 0.0 0.0

-0.073 -0.0096 0.0247 +-0.0108

-0.0115 -0.0290 0.0439 +0.0066

-0.0051 -0.0487 0.0718 -0.0073

0.0102 -0.0698 0.0932 -0.0144

0.0296 -0.0918 0.1213 -0.0265

0.04o2 -0.1080 0.1478 -0.0356

0.0668 -0.1240 0.1742 -0.0434

0.0887 -0.1384 0.2014 -0.0502

0.1117 -0.1508 0.2289 -0.0538

0.1358 -0.1610 0.ZS63 -0.0601

0.1606 -0.1693 0.2840 -0.0637

0.184 -0.1749 0.3119 -0.0660

0.2122 -0.1781 0.3395 -0.0674

0.2354 -0.1797 0.3676 -0.0676

0.2584 -0.1800 0.3891 -0.0669

0.2814 -0.1793 0.4113 -0.0662

0.3046 -0.1772 0.4329 -0.0657

0.3274 -0.1745 0.447 -0.0646

0.3432 -0.1719 0.4765 -0.0639

0.3591 -0.1692 0.4982 -0.0623

0.3748 -0.1657 0.5201 -0.0613

0.3904 -0.1621 0.5419 -0.0596

0.4058 -0.1580 0.5633 -0.0579

0.4806 -0.1396 0.5850 -0.0562

0.5552 -0.1208 0.6069 -0.0540

0.6291 -0.1018 0.6285 -.0.0519

0.7038 -0.0829 0.6502 .0.0497

0.7780 -0.0640 0.6721 -0.0470

0.8525 -0.0452 0.6939 .0.0446

0.9270 -0.0264 0.7152 .0.0419

1.0 -0.0075 0.7368 -0.0388

0.7583 -0.0.359

It. 7986 -0.0295

o.8387 -0.0237

0.8792 -0.0170

0.9195 -0.0118

0I.9597 - 0.00t6t

1.0 0.0

|I ab le 1. 5- 1 1 d ,I ;Irl(l;)[ (I I ( m t tl l I(pi) ;ilf ).l. ' \If hl~ l] mI () firJ;ft,,

I ( 'ril l(';Il ( 'r I l ' ti - V ifl f,)I( ) );irl ,,

Page 79: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

I -

I ..

1 I

I -. ~.

-. - - . I

- - . , - -~ I ~ ~

I..

M -~ I.. -~ .----- ~.-.. I 1(1~.. -. 1 -.

-I

I. . *. . .

Page 80: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

pp

hx

f A,

IL L

Page 81: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Y

- I

I..

K

h

h

2

P {L x : 'K >< i:-... x K-6. I' m dLi

m _ m

~ I I I ~ L

0. V 1.

'I

TII;I ~~':§?;~.'i ~ 7 rr

Page 82: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/ "L

-,-'--7 --.

f2P.,

cJ-

I IL × × ,, x *x

IC - + ' r

-114.i ' I I

0. .51.

i .P i . i *II

Page 83: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

I,

- I! ,-.'

I ,-' I~ I- -- I----

K r '-

* II 1~--*-~~ - I

I I

- - .- - - - - - ~ ~-~:'

- - - __ __ -C,.'; --.- '

I,'.!-

Page 84: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Acroe last i city in Turbomach inC-CascadesThird Standard Configuration.

Aeroelastic test case N 0°:

X1 1=P2 /Ptl I NI2= - 0 B1= o a B2 0 k=-(-2)= -(-1)= -(0)= -(+1)= (+2)= 9 (fads)

go 'A 0 0 CLras

(-2) • (-1) = o(0) • (+1) = (+2 = ___ ()

a) Global Aeroelastic Coefficients

____=__ =______ ____ •_7_ _ = 0 (-)

______ _____- Cw-__ (0)

b) Local Time Dependant Blade Surface Pressure Coefficients

SCp(lS I) lS) (0) C (us) (pus) (0) ACp (-) Vp ()

I aiuLe S. 5 5-4. Thi11d Ht ;IrOtIn r(1t a o ari ti i Irt. k atle tot tI-,ett it im oi ot

t he 1 1 i ,t ( '(-o rI 1 d ed \ r'v wtfc t ivI;t 1 ( ; I ,; , ,.

Page 85: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C,

N , - - . I

'N .

I I

h

(K)

:1 2;1~~, I A I F, ci

I I

I I S{r~7.: 7

I .. -300I Ii>0[iAL H

I F IF'

I , ST&;LL~j F

I (' , I (~

At"

I I UI<7>'JAI

- , 1,~,*, - - I~ *:-- -

I' I,x

Page 86: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

x7 7 :

o PM2

m 1 I

AEROELASTICITY IN TURBOMRCHINE-CASCAOES.STANOARD CONFIGURATION NUMBER : 3

M2

h

h

M

k- 8 :

d

+360

STABLE

+180

UNSTABLE

M 0.

STABLE

-180

UNSTABLE

-360 - - I-180 0 180

FIG. 3.3-3B: THIRD STANDARD CONFIGURATION.AEROOTNAMIC MOMENT COEFFICIENT AND PHASE LEADIN DEPENDANCE OF INTERBLADE PHASE ANGLE.

Page 87: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/ I

/. 7

h' \

c/

" //

/ /

/k

/d

, --~ /

II I.._,

-9 T h

CC..

I iST fB L.E

+180 -I .. . ... .

u o. - ....._

-STPBLE

I UNST P OLE

Page 88: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

7 ',

xxml xc :

N1 :

m

AER ELRSTICITY [N TURBOMACH[NE-CASCROES. I.:

STRNOARO CONFIGU RTION NUMBER 3

N2

P2hx

h

k

d:

W 0. STABLE

-180 0 180a

FIG. 3.3-3D: THIRD STANDARD CONFIGURATION.

REROOTNRMIC WORK AND DAMPING COEFFICIENTS IN

DEPENDANCE OF INTERBLADE PHASE RNGLE. .1

Page 89: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y

86 'r

P! 7

N1 N2Y,

{m IM1

REPOELA5T1CITY IN TURBOMRCHINE-CPSCROES. 1~TANDARD CONFIGURATION NUMBER !3J

hx

hcc

a)

k

8:•

a:

d

0 . UNSTRBLI

w STRBLE

0.5 1. 1.5M 2

FIG. 3.3-3E: THIRD STANDARD CONFIGURATION.

AERODYNAMIC WORK AND DAMPING COEFFICIENTS INDEPENDANCE OF OUTLET FREON MACH NUMBER.

Page 90: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

urbinir ro t or sect. ns are, perfol rried in I few u uJlflari u'adl taluiIt '~at

thIe I W aann I s t e II.IIPOf I echruog o b M. I)igeri.

h IS fourtfh st andard cofig urat Ion i; o f mnt erest rmiuly hecaww fe ut le

relative high blade thickness and camnber, the ighjl Subsonic- flow (Mirdition:i;

and for Its resemblance with the third standard con figuration.

I etailed test results will be ivailable at. the end of 19[35. so that t henreti

cal res;ult s can be validated against the data from this configuration seoul-

aneousk as aglainst other standard configurations.

The cascade con fi gurati0o) consists of twent y vibrating prismatic blades,

each ha\.ing a chord of c 0).0744 mn and a span of t0.04t) m, witht 4110

towMig and a maX imum ticknes--t n-chord ratio of 01.17 7

The st agger angle is 15.4'. with) the gap-I n-chord rat io of the C-ascadle:

0.07 hub)

t0.76 midspan)

0.84 .tip

The hub-tip ratio in the test. facility is 0.8.

The cascade geometry is given in Figure 31.4-1 and the profile coordinates

are tabulated in Table 3.4-1.

Experiments are performed with variable inlet flow angle (MV, i), expansion

ra tio0 (pp M2 ), vibration mode, oscillation freguency and interblade(Pphase angle. All the experiments presently performed have constant span-wise flow condi tions iipst ream. The time dependent instrument at ion ifcl u-

vies pressure rainsduIcers on one blade nidspan) and strain gages.

T he aeroelast ic eases for this Standard con figurat ion are not yet full\

defined. whereforo they will be dist ribut ed together with the corresponding

m1fe a\.eraged bl1ade sur~face' pressure dist ribut ions towards the end of

I90 5.

The recommejfndedj present ation formiat will be Similar to the one used

in~do r ud n1I urot or;six.

Page 91: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

cascade leading

edge plane C/C

y 33.35 upper surface

BI lower surface

pressure surface

Nsuction surface0.1 -~. *. ____ ____ ____

0.0 . ... pressure surface . .

-0. 1 -" -__

-0.2 --

0 0.2 0.4 x 0.6 0.8

c = 0.0744 m = 33 350

span = 0.040 m camber = 45

T = 0.67 (hub) thickness 0.170.76 (midspan) chord0.84 (tip) hub/tip = 0.8

Nominal values: MI: 0.31 M2:0.90

a,= 45.90 2 17.60

Figure 3.4-1 F ourth Standard Configuration: Cascade Geometry

Page 92: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C .0744 M

UPPER SURFACE LOIR SURFACE

0.000 0.000 .514 -.053 0.000 0.000 .443 -. 163.003 .010 .524 -.055 .001 -.011 .443 -.160.010 .018 .535 -.055 .003 -.021 .464 -.160.020 .021 .546 -.055 .006 -.031 .464 -.156.031 .022 .556 -.055 .010 -.041 .485 -.154

.042 .022 ,567 -.055 .014 -.051 495 -.151

.052 .021 .578 -.055 .020 -.060 -.149

.063 .020 .588 -.055 .025 -.069 .506 -. 146

.074 .019 .599 -.054 .031 -.078 .526 -. 144

.084 .018 .610 -.054 .038 -.087 .536 -. 141

.095 .016 .620 -.053 .044 -.095 .547 -.139

.105 .014 .631 -.052 .052 -.102 .557 -.136

.116 .012 .642 -.052 .059 -.110 .568 -.134.126 .010 .652 -.051 .067 -.117 .578 -.131

.136 .008 .663 -.050 .076 -.124 .58 -.129

.147 .006 .673 -.049 .084 -.130 .590 -.126

.157 .004 .684 -.048 .093 -.136 .609 -.123

.168 .001 .695 -.047 .102 -.142 .619 -.121

.178 -.001 .705 -.046 .111 -.147 .629 -.11

.188 -.003 .716 -.044 .120 -.153 .640 -.115

.199 -.006 .726 -.043 .130 -.157 .650 -.113

.209 -.008 .737 -.042 .139 -.162 .660 -.110

.220 -.011 .74? -.040 .149 -.166 .671 -.107

.230 -.013 .758 -.039 .159 -.170 .681 -.104

.240 -.015 .768 -.037 .169 -. 173 .691 -.101

.251 -.019 .779 -.036 .179 -. 176 .701 -.099

.261 -.020 .790 -.034 .190 -. 179 .712 -.096

.271 -.022 .800 -.032 .200 -. 181 .722 -.093

.282 -.025 .811 -.030 .211 -. 182 .732 -.090

.292 -.027 .821 -.029 .221 -. 184 .742 -.087

.303 -.029 .832 -.02? .232 -.105 .753 -.084

.313 -.031 .842 -.025 .243 -. 185 .763 -.081.314 -.033 .852 -.023 .253 -.186 .773 -.078

.334 -.035 .863 -.021 .264 -.186 .783 -.075

.345 -.037 .873 -.019 .274 -.186 .794 -.072

.355 -.039 .884 -.017 .285 -.186 .804 -.06

.365 -.041 .894 -.015 .296 -.185 .814 -.066

.376 -.043 .905 -.013 .306 -.184 .824 -.066

.387 -.044 .915 -.010 .317 -.183 .834 -.060

.397 -.046 .926 -.008 .328 -.182 .844 -.057

.408 -.047 .936 -.006 .338 -.181 .855 -.054

.418 -.048 .946 -.004 .349 -.179 .865 -.O50

.429 -.049 .957 -.001 .359 -.178 .875 -.047

.439 -.051 .967 .001 .370 -.176 .885 -.044

.450 -.051 .978 .003 .380 -.175 .895 -.041

.461 -.052 .988 .006 .391 -.173 .905 -.037

.471 -.053 .401 -.171 .926 -.031

.482 -.054 .412 -.169 .936 -.020

.493 -.054 .422 -.167 .946 -.024

.503 -. 055 .433 -.165 .956 -.021

.966 -.017

.976 -.014

.986 -.011

.996 -.007

Ifa lh V, ) I ;m(hil d ( rflyulr'dl I' : I. IIIrisio ol h ;sI \irtoil ( ou di-

11 1| l' t I•i III .' I 1 w|~l ,

Page 93: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

5.5 F ifth Standard ['ofi(quration

This two-dimensional subsonic/transonic cascade conficura-tion has been

tested in a ft ctilinear cascade air tLinnel at the Office NI 1t onal d'lt udes

2t de Recherches A6rospaciales ONERA. The configuration arid experi-

mental results are included by courtesy of E. Szechen,,i.

The cascade configuration consists of six fan stage tip sections, each

blade haing a chord of c-0.090 m and a span of MID) m. The maimum

thickness-to-chord ratio is 0.027, with no camber and a gap-to-chord

ratio of 0.95. The present configuration was measured with a stagger

angle of 30.70.

The cascade geometry is gien in Figure 3.5-1 and the profile coordinates

i-i Table 3.5-1.

The two center blades can ,ibrate in pitch about seeral axis, whereafter

the aeroelastic coefficients for different interblade phase anq!es are

cnmputed b'v linearized summation of the unstead\ pressure r ;pnoses

on all six blades.

Experiments have been performed with oscillation frequencies between

75 and 550 Hz, inlet Mach numbers between 0.5 and 1.0 and with iriidernce

angles between attached and fully separatei flow .2' to I')'.

Both the time averaged and time dependant instrumentation on this cas-

cade is very extensive and 3 large number of well documented da; a haye

been obtained during the experiments. The large amount of flush mounted

high response pressure transducers on one blade allows the determination

of resultant time dependant blade forces.

From the results obtainei during these tests, 27 aeroelastic cases are

recommended for off-desiqn calculations. They' are contained in Table

3.5-2, together with a recommendation for representation of the results.

The 27 cases correspond to 11 different settings of the cascade ,see Table

3.5-2.

The steady blade surface pressure distributions of the 11 time-averaged

settings are given as a basis for time-variant calculations by small perturba-

tion prediction models in F iqure 3.5-2 and Table 3.5-3.

Of special interest in this fifth standard configuration is the extensive

,ariation of time-averaqed parameters, such as inlet flow velocity "'v

and incidence (i.

The inlet Mach number is varied from M1 0.5 to M -1.0, and the ranget1

Page 94: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

91

of incidence is from fully attached (incidence less thdn 51) up to fully

separated (incidence greater than 10u) flow conditions.

The recommended representation of the results includes detailed compari-

son of unsteady blade surface pressure coefficients as well as aerodynamic

damping arid moment coefficients in dependance of the parameters inci-

dence (i), flow velocity (M 1 ) and reduced freguency (k), as proposed in

Figure 3.5-3 and Table .5-4.

I

- t. .

- ~ -___________.

Page 95: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

ascade leadir-.gedge Plane.

C

+y

suction surface (upper surface)

leading -edge

trail ingedge

c O.090 m T = 095span = 0.120 m y 30.7camber =00 thickness

chord- = 0.027

Fi(pire 3.5-1 Fifth Standard Configurat'on: Cascade Geornetr>

Page 96: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

9 5

c 0.090 m

Upper surface Lower surface(Suction surface) (Pressure surface)

xy y

0. 0. 0.0.0124 0.0016 -0.00160.0250 0.0018 -0.00180.0500 0.0026 -0.00260.0750 0.0033 -0.00330.1000 0.0041 -0.00410.1500 0.0053 -0.00530.2000 0.0062 -0.00620.2500 0.0079 -0.00790.3000 0.0101 -0.01010.3500 0.0103 -0.01030.4000 0.0111 -0.01110.4500 0.0119 -0.01190.5000 0.0124 -0.01240.5500 0.0128 -0.01280.6000 0.0133 -0.01 530.6500 0.0135 -0.01350.7000 0.0135 -0.01350.7500 0.0128 -0.01280.8000 0.0116 -0.01160.850 0.0098 -0.00980.9000 0.0076 -0.00760.9500 0.0048 -0.00481.00 )0 0. 0.

r;I iIC, II r d I w;tH

l al)lf' 5',- 1 f r ft I iilr~ ( n)rlfi(I 1nnt (H: )ir uir I i tnt ,, /\(1 l "oriliratt ,';

Page 97: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

'd Iult !cmillt irI aeterC r h,_ IIM J e RCV C Iot It 10rWit, t r

\ f C LC

t P c1

Ful I e p4

-5 0.1 SAt ce 1 1 4

30 P

125 1 an1 saftn in o

30 (). Ss ()oc 000

Table~ ~ ~ ~~~~~5 5..-1 1 th udr o igm n 2 ~em ne eols

7-A

Page 98: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

xx

P2

P ~Ya

ROnELASTICITY IN TLJHBOMICHINE-CRSCAOES. jSTflNDARD CONFIGURTION NUJMBER 5

P2

hx

h

cr

~ d

-10. -F- -+---- H

0. .5

FIG. 3.5-2l: FIFTH STRNDPRO CONFIGURlTION4:

TIME RVERPGEO BLRAJE S5URFH(

OIST1 9IBUTION FOR MI-l r-i~

Page 99: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

A0D-A141 004 TWO-DIMENSIONAL AND QUASI 1IUEEDIMENSIUMLtEAPERINNIAL STANDAD COSUIO.IUI I COE POLITICHNIOUEFEDERALE DE LAUSANNE IMIIZERLI LAB K..

UNCLASSIFIED T FEANSON E1 At. 30 SEP 03 F/ 204 ML

* .111.lomm""

'Oiiinlllon ME,,a __ /,

Page 100: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

-

IlllhI,.o1~ 36 lii.-

II~lI IIN IIII *,

MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANOARDS - 1963 A

.4F

! ; •

Page 101: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

96

7 x T7'

xxP2ml/ 4 M 2 x :

Y ,

x m

hX

h :T

+1. - __ __:.

k =

XXXX xx m x~ X' I'__ ____ 8 I

0. U_ d-

0. .5

'-

FIG. 3.5-28: FIFTH STANDARD CONFIGURATION:TIME AVERAGED BLADE SURFACE PRESSUREDISTRIBUTION FOR MI=O.5 AND INCIDENCE=4 DEG.

A

Page 102: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y : 97

x

P2mM 2 X, :

pi

REROELRSTICITY IN TURBOMRCHINE-CRSCROES.STANDARD CONFIGURATION NUMBER 5

M2

h :x

h

. Ca :

k

5 :

X Xxxx d

-0 . - -H

0. .5 1.X

t 2

~ FIG. 3.5-2C: FIFTH STANDARD CONFIGURATION:TIME AVERAGED BLADE SURFACE PRESSURE

SDISTRIBUTION FOR M=0.5 AND INCIDENCE=6 DEG.

Page 103: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

98

T 19 E 2 xc :

REROELRSTIC[TT IN TUR8IOMRCHINE-CRSCRDES. #5TPNDRR CONFIGUIRTION NUMBER9 2 5

M2

h :x

hy

+1. ' -

k

XXXXXXx x d:

p J

m

0FIG. 3.5-2: FIFTH STANDARD CONFIGURATION:

TIME AVERAGED BLADE SURFACE PRESSURE

DISTRIBUTION FOR M1=0.5 AND INCIDENCE=8 DEG.

Page 104: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

72 x

x

REROELRSTZCITY IN TURBOMRCHlNE-CRSCROES. :

STRNORRO CONF1GURRTItON NUMBER :5

M2 ,

x

+1. __ __:.

k :

- oc

Nmm--1, I

xx

0. ,5 1.

Xh

1

kk

,0. .5

FIG. 3.5-2E: FIFTH STANDARD CONFIGURATION:

TIME AVERAGED BLADE SURFACE PRESSUREDISTRIBUTION FOR MI=0.5 AND INCIDENCE=lO DEG.

Page 105: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Cy

100 r

xP2

Yx

h

k

M_ _ _ _ _ __ _ _ M:

xxxxxxxxx~xxm

C3 d

L.

0.IN- D r

0. .5 1

FIG. 3.5-2F: FIFTH STANDARD CONFIGURATION:

TIME AVERAGED BLADE SURFACE PRESSUREDISTRIBUTION FOR M1=0.5 AND INCIDENCE=12 DEG.

Page 106: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

101

i ;7 ,

xx

REROELRSTICITY IN TURBOMRCHINE-CRSCRDES. 2STANORD CONFIGURATION NUMBER 5

M2

hx

hY

+1. ___ __:a

k

cp 0. m

XX

0. .5 1

tx

!-

FIG. 3.5-2G: FIFTH STANDARD CONFIGURATION:

TIME AVERAGED BLADE SURFACE PRESSUREDISTRIBUTION FOR MI=0.6 AND INCIDENCE=IO DEG.

Page 107: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

102 X c ,

102 2XX P2m 2

AEROELASTICITY IN TURBOMACHINE-CASCRDES. p1STANDARD CONFIGURATION NUMBER 5

2

M2

hx

hr

*1. - C :

k8 :

Xxxxxxxxx~mxmm 2'

c m

0. .5 1.xX 4

FIG. 3.5-2H: FIFTH STANDARD CONFIGURATION:TIME AVERAGED BLADE SURFACE PRESSURE

DISTRIBUTION FOR MI=O.7 AND INCIDENCE=1O DEG.

113 __ N

Page 108: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y 103

MI 9 m M2 xcc :IT

77 M

pYc :

P1

REROELASTICITY IN TURBOMRCHINE-CRSCAOES.STANDARD CONFIGURATION NUMBER 5

M2

p2 '

hx

hr

+l. Ca :

kx !" Xxxxxxxx' mm x

In d

0. .5 1.

FIG. 3.5-21: FIFTH STANDARD CONFIGURATION:TIME AVERAGED SLADE SURFACE PRESSUREDISTRIBUTION FOR MI=0.8 AND INCIDENCE=1O DEG.

Page 109: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

yC104 2

7 2

_ 19M 2 x = :

X-

PEROELSTICITY IN TURSOMRCHINE-LASCROES. ISTANDARD CONFIGURATION NUMBER 5

M2

hx

h

+1. - ____C.

k

8.

. - D, o I

FIO..-t: IT .TNDR COFGRAIN

TIME AVERAGED BLADE SURFACE PRESSURE

DISTRIBUTION FOR MI=0.9 AND INCIDENCE=10 DEG.

Page 110: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

7 x~

ERERCELRSTICITY IN TURBOMCHINE-CRSCROES.STNOPI9O CONFIGUR TI N NUMBER 5 M

P2hx

hr

k

x a

Jo0.

FIG. 3.5-2L: FIFTH STANDARD CONFIGURATION:TIME AVERAGED BLADE SURFACE PRESSURE ~IDISTRIBUTION FOR M1=1.0 AND INCIDENCE=10 DEG.

Page 111: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

106

01 . 9 0 000C r-X~~~ a., 7* ~ ~ C Ct.n te O-0NC -rfl,-

C. In W) 0n I 7,70

C CDC0C 0 0CC0QCCCCC C C

C D -

-C ... ....... . . . . .CCOCOO 00000 CC CC C CC C

r- to C1 00000 0000 00 0 OOC1 O ' 00 C CCC w ,Cf C .7 .0 0 0 0 CD 0 C DI

.0 Z-C- C C )C- ~ ~ ~ ~ ~ " m Ln m w n-~.r..7 fr.~.

InC C-C; QC .0 .7 C)C-' C; 0 C, C

C7 C O 0 C 0 C CCCC 0C C C C C

~~~~~C w C, C .4IW~~.7000 4 J I .

IC~~~~ ~~ .7 . ..- . .C. .4 ... '.7 qC7.0a

-~~ ~ -0 a, 'n 100. CIJo7f~f~--.- C0 C7,--r-r-,-.

0 C CDCC CCC0 CD m Q C

r- .7'I-..70I---,.D.

-~I - N,)I 0C C C 4 'otD - - - - - - - -.

CD C C:: a-

~ .CCC CCCC C C C, C 0 0 C C CCCC

0.07 1 I I.0 09 I'9 071 1.1 .- 19 .7 .. 19 .

0 C CD0 00 C C D 0 0 CD 7. CD C> C 1C 0 C C C

C, V, w C1 C, CD w~C0 0 OC O O0 CO13 >.. in Cn"0 CC).** .~ . -C)

- C

'n -tr LnCIQ- 1 I 0 0 m 10 1

C C; C C C; C C C= CD C C CC D C 0 CCC ( CD C, CD1 mI C

ft C 00 D c? 0 0 0 C 4m

0 a00 0 00 0 C

C~~ ~~~ - - .7~f. 9t/0 ... 1) 9.7 140 9c;1 7C; 47 104 ;.- C). IC 0 C 0Im C -C; I

C , 'o0 .D S 7I~ttt.77f14. Z.- M w ( 0, 0 F

.147.C) .. 7 .IOC. 0.7QQ7 z Cm0 0 CD ID CCDCQ J

- -- C~ -'. - -7C a C) C, 8 CD m

"I~~ ~ ~ N IO a m I0 In In %0' v- 0I n "1- O 4

0M 0 m0 oC -0wWC 0C cc w-C tC-.7 C7o7 . CtO 10Im *0.7N 0 m10cIn-~ ~~ ~~~~~~ - .- . .~ttrC 71.tt. .7 .7700000411. .

~0. 0 0 0 0 ; 0 0= 0 0n 0Q 0 0) 0 m 0D 0 0D 00

* U ) 104 In w -W0 0i~ . . .In Q LMttf 0 r- 744.11 m. W)07 Q.0to "no IS.00 )S. 'S 4.00 tn 10 In C 'n

Table 3.5-3 (continuation on next page)

Page 112: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1017

Aeroe!a ,c xty in Turbanachine-Cascades

Fifth Standard Configuration

Time Averaged Blade Surface Pressure Distributions

M j 0.80 0.91 0.90 1.00

1 (o) 10.0 10.0 10.0

Ptl( ill) 140'350 200'110 140'070 199'950 199'900

p (.,/n) 92'040 131'740 82'150 118'250 105760

x P/Ptl Cp P/Ptl Cp P/Ptl Cp P/Ptl Cp P/Ptl Cp

UpperSurface

0.0333 0.4837 -0.5000 0.4911 -0.4895 0.2041 -0.9248 0.3793 -0.5191 0.1979 -0.70320.1000 0.4944 -0.4689 0.4991 -0.4661 0.2719 -0.7608 0.4102 -0.4435 0.239 -0.61400.1667 0.5334 -0.3556 0.5351 -0.3607 0.4750 -0.2696 0.4616 -0.3177 0.2638 -0.56330.2333 0.5725 -0.2420 0.5618 -0.2826 0.5715 -0.0363 0.4882 -0.2526 0.4129 -0.24670.3000 0.6118 -0.1278 0.5920 -0.1942 0.6230 0.0883 0.5210 -0.1723 0.4690 -0.12750.3667 0.6442 -0.0337 0.6208 -0.1099 0.6383 0.1253 0.5532 -0.0935 0.5147 -0.03050.4333 0.6699 0.0410 0.6464 -0.0349 0.6443 0.1398 0.5817 -0.0237 0.5671 0.08080.5000 0.6886 0.0953 0.6667 0.0245 0.6500 0.1536 0.6052 0.0338 0.5979 0.14620.5667 0.7042 0.1406 0.6836 0.0739 0.6565 0.1693 0.6251 0.0825 0.6109 0.17380.6333 0.7163 0.1758 0.6976 0.1149 0.6653 0.1906 0.6415 0.1226 0.6176 0.18800.7000 0.7269 0.2066 0.7091 0.1486 0.6745 0.2128 0.6546 0.1547 0.6216 0.19650.7667 0.7356 0.2319 0.7189 0.1773 0.6820 0.2310 0.6652 0.1806 0.6296 0.21350.8333 0.7434 0.2545 0.7272 0.2016 0.6903 0.251 0.6747 0.2039 0.6339 0.22260.9000 0.7487 0.2699 0.7298 0.2092 0.6998 0.2740 0 6823 0.2225 0.6418 0.23940.9667 0.7078 0.1511 0.6106 -0.1397 0.6982 0.2701 0.6893 0.2396 0.6556 0.2687

LowerSurface

0.0333 0.8398 0.5346 0.8337 0.S133 0.7983 0.S122 0.8014 0.5140 0.7508 0.47080.1000 0.8010 0.4219 0.8002 0.4152 0.7481 0.3908 0.7585 0.4090 0.7024 0.36810.1667 0.7772 0.3527 0.7751 0.3417 0.7201 0.3231 0.7285 0.3355 0.6701 0.29950.2333 0.7665 0.3216 0.7640 0.3093 0.7087 0.2955 0.7150 0.3025 0.6573 0.27230.3000 0.7593 0.3007 0.7568 0.2882 0.7021 0.2796 0.7074 0.2839 0.6506 0.25810.3667 0.7549 0.2879 0.7525 0.2756 0.6963 0.2656 0.7021 0.2709 0.6449 0.24600.4333 0.7500 0.2737 0.7487 0.2645 0.6919 0.2549 0.6977 0.2602 0.6406 0.23680.5000 0.7480 0.2679 0.7469 0.2592 0.6904 0.2513 0.6964 0.2570 0.6394 0.23430.5667 0.7480 0.2679 0.7469 0.2592 0.6907 0.2520 0.7003 0.2665 0.6406 0.23680.6333 0.7475 0.2664 0.7461 0.2569 0.6904 0.2513 0.7003 0.2665 0.6411 0.23790.7000 0.7455 0.2606 0.7439 0.2504 0.6881 0.2457 0.6963 0.2567 0.6389 0.23320.7667 0.7442 0.2569 0.7412 0.2425 0.6872 0.2435 0.6926 0.2477 0.6363 0.22770.8333 0.7440 0.2563 0.7394 0.2373 0.6879 0.2452 0.6897 0.2406 0.6355 0.22600.9000 0.7459 0.2618 0.7382 0.2337 0.6926 0.2566 0.6856 0.2305 0.636-4 0.22790.9667 0.7514 0.2778 0.7394 0.2337 0.7031 0.2820 0.6861 0.2318 0.6434 0.2428

lable $.5- fifth Standard Configuration: Time Averaged Blade Surface

Pressure O)istributions for the 27 Recommended Aeroelastic Cases

Page 113: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

10]8

Aeroelasticity in Turbomachine-Cascades.

Fifth Standard Configuration.

Aeroelastic test case N o

= O • p2/Ptl= e .* M 21=- 0 02 . 0 k-

-(-2) = (-1 )= - (0). - (+1). - (+2) .__L_ -0 = a 0 aLC = 0 a = * (rads)

0(-2)= 0 (-1)= 00 a(0)= 0(+1). 9 (+2). _ (o)

a) Global Aeroelastic Coefficients

cI= • =. @ CW= *..()

, ., = o 0 L= 0 (o)

b) Local Time Dependant Blade Surface Pressure Coefficients

X ( - c ( Sp )P(I s ) ( ) C ( u s ) ( _ ( u s ) ( o 0 ' - p ( ) A

Table 3.5-4 1 ifth Standard configuration: Table for Presentation of

the 27 Peconm-fnded Aeroelastic 'ases

Page 114: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

109

7 P2

m= Mt :7a:

REROELRST[CITY IN TURBOMRCHINE-CRSCROES. I 2STANDARD CONFIGURATION NUMBER : 5I

20. M2P2

hx

h

cp 10.

k

0.0 d : i

+360 -360

P 0. STABLE

+180 -180. UNSTABLEM

(us)~ O. LS)l

a. P

•STABLE x

-1BO +180

UNSTABLE

-360 '+--' - ' 360

.0 .5 1.x

FIG. 3.5-3R: FIFTH STANDARD CONFIGURATION:MAGNITUDE AND PHASE LEAD OF BLADE SURFACEPRESSURE COEFFICIENT.(w:JN PITCH MODE.NOTRTION VALID UPSTREAM OF PITCH AXIS)

Page 115: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

110

P2IY,

x

AEROELPSTICITY IN TURBOMRCHINE-CRSCnOES.STANDARD CONFIGURATION NUMBER 5

20.P2

h-X

hg

Ac P 10.Wp a

k

.

*360 -

STABLE

+180

UNSTABLE

0.

N

STABLE

UNSTABLE

-360 -

0. .5 1.x

FIG. 3.5-3B: FIFTH STANDARD CONFIGURATION:MAGNITUDE AND PHASE LEAD OF BLADE SURFACEPRESSURE DIFFERENCE COEFFICIENT.Iw:IN PITCH MODE.NOTRTICN VALID UPSTREAM OF PITCH RXIS) L

Page 116: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y i

Ix

M1 2J M2 xo :,!~~ P2P2 I

Y,:

REROELFSTICITY IN TURBOMRCHINE-CRSCRDES. I :STRNDARD CONFIGURATION NUMBER 5

2.0

P2

hx

hT

c

--CM 1 .0 C',

k___5 :

or

STABLE

+180 UNSTABLE

Mi

STABLE

ii -180

UNSTABLE

-360 - -L - -i--0. 0.5 1.

k

FIG. 3.5-3C: FIFTH STANDARD CONFIGURATION:AEROOTNAMIC MOMENT COEFFICIENT AND PHASE LEADIN DEPENDANCE OF REDUCED FREOUENCY.

Page 117: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C r

112

xxT / P2T,

l [ P2 x :2J 2 Ya:

Pt7

AEROELASTICITT IN TURBOMACHINE-CRSCROES. jSTANOPRO CONFIGURRTION NUMBER 5

2.P2

h

xh

:S 1

M " ):

k

D. 0

*360 -___

+360 STABLE

*180

UNSTABLE

M 0.

STABLE

-180

UNSTABLE

-360 -

0. 0.75 1

FIG. 3.5-30: FIFTH STANDARD CONFIGURATION:AERODTNRMIC MOMENT COEFFICIENT AND PHASE LEAD

IN DEPENDANCE OF INLET MACH NUMBER.

L -A..

Page 118: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C i113

x

xx

AERCELASTICITY IN TURBOMRCHINE-CASCADES.STANORRO CONFIGURRTION NUMBER ~ 5

20. _____

P2

hy

M 10. Co

k

II

STABLE

+180

UNSTABLE

4) M 0.

M t :

STABLE

-180

UNSTABLE

0. 10. 20.

FIG. 3.5-3E: FIFTH STANDARD CONFIGURATION:AERODYNAMIC MOMENT COEFFICIENT AND PHASE LEADIN DEPENDANCE OF INCIDENCE ANGLE.

h :/

Page 119: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C114

xr7 / 7/

N 1 ~ mP 1

x :

REROELRSTICITY IN TURBOMRCHINE-CRSCnOES.STANDARD CONFIGURATION NUMBER : 5'

20. M2P2

hX

hr

C 10

k8:

360 - --I

STABLE

+180

UNSTABLE

0. 051

ST.BLE

~UNSTABLE

-360

0. 0.5 I

CC

FIG. 3.5-3F: FIFTH STANDARD CONFIGURATION:

AERODTNAMIC MOMENT COEFFICIENT AND PHASE LEAD

IN DEPENDANCE OF PITCHING AXIS POSITION.,) ,

Page 120: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

|C

y 115

7 xX7xj P2P2

REROELRSTIcITT IN TURBOMRCHINE-CRSC

OES.

STRNRRO CONFIGURATION NUMBER : 5

""v M

2

x

X

P,

P2

qh

h

Ca)

-2. k

d

C 0. -- +... +... .+.-..+-.B UNSTABLE

W STABLE

+2.

0. 0.5 1.k

FIG. 3.5-3G: FIFTH STANDARD CONFIGURATION:

AERODYNAMIC WORK RND DAMPING COEFFICIENTS '

IN DEPENDANCE OF REDUCED FREQUENCY.

Page 121: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1 16 "

n M2 x c

p~t Yc

REROELASTICIT IN TURB(OMRCHINE-CASCAOES. Ii .STANDARD CONFIGURATION NUMBER 5

M2

-14. P2 :

h

h

-2. kS.

d

c 0. UNSTABLEW OSTABLE

+2.

JO 4

0.5 0.75 1.

FIG. 3.5-3H: FIFTH STANDARD CONFIGURATION:AERODTNAMIC WORK AND DAMPING COEFFICIENTSIN DEPENDANCE OF INLET MACH NUMBER.

' I I I

Page 122: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C!

Y /117

7x 7

2P2

STAND RD CONFIGURTION NUMBER 5

P2

hx

h

-2. k5:

d

c 2 Ij UNSTABLE

+2.

0. 10. 20.

FIG. 3.5-31: FIFTH STANDARD CONFIGURATION:AERODYNAMIC WORK AND DAMPING COEFFICIENTSIN DEPENDANCE OF INCIDENCE ANGLE.

Page 123: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

IC

y118 =

x

7 P2

M M2 x-X

xI :

REROELASTICITY IN TURBOMACHINE-CASCROE5. I 1STPNDARD CONFIGURPTION NUMBER I5

M~2,

-4. P2

hx

h

my

-2. k8:

d

.0 -±- - - 1 UNSTABLE

W STRBLE

___________________+2.

SCC

0. 0.5 1.

FIG. 3.5-3K: FIFTH STANDARD CONFIGURATION:AEROOTNAMIC WORK AND DAMPING COEFFICIENTS

IN DEPENDANCE OF PITCHING AXIS POSITION.

-- - - - - - - - --I - -p.

Page 124: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

119

3.6 Sixth Standard Configuration

This configuration is directed towards investigations of turbine rotor

blade tip sections in the transonic flow regime.

Experiments have been performed, in air, in the annular cascade test

facility at the Lausanne Institute of Technology by D. Schlifli.

The cascade configuration consists of twenty vibrating low camber prisma-

tic turbine blades. Each blade has a constant spanwise chord of c7-.0528 m

and a span of 0.040 m, with 140 camber and a maximum thickness-to-

chord ratio of 0.0526. The stagger angle for the experiments presented

here is 16.60, and the gap-to-chord ratio is:

0.952 (hub)

1.071 (midspan)

1.190 (tip)

The hub-tip ratio in the annular test facility is 0.80.

The cascade geometry is given in Figure 3.6-1 and the profile coordinates

in Table 3.6-1.

Experiments have been performed with variable inlet flow velocity inci-

dence angle, expansion ratio, vibration mode shape, oscillation frequency

and interblade phase angle.

Both the time averaged and time dependent instrumentation on this cas-

cade is complete, and a large number of well documented data have been

obtained.

However, due to the very thin profiles, only a limited number of pressure

transducers are built into the blades, wherefore no integrations of the

time dependant pressure signals to obtain global unsteady forces are per-

formed. Instead, the self excited flutter limits of the cascade have been

established for several parameters.

From the results obtained during these tests, 26 aeroelastic cases are

recommended for off-design calculations. They are contained in Table

3.6-2 together with the proposal for representation of the results.

The vibration mode for all these cases is bending (G =43.20), and the para-

meters varied are inlet flow angle, expansion ratio and interblade phase

angle.

The 26 aeroelastic cases correspond to 12 different time averaged set-

tings of the cascade (see Table 3.6-2), for each of which the steady blade

* surface pressure distribution is given in Figures 3.6-2 and Table 3.6-3.

\ * _ _ _

.1,

Page 125: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

120

A1 eperiments presented here ha, e been performed with const ant span-

wise upst ream flow elocit ies and flow angles.

It is recommended to present the results as In F inUres '.6-S and Tablet 6-4.

I

a , 4I I I I II I I I I - I I- -

Page 126: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

12 1

cascade leadi:.gedge plane

0. 1 upper surface

prpressur surfacee)

Y' 0.0 .....

0 0.2 0.4- x 0.6 0.8 1.0

C = 0.0528 m y = 16.6 0

span = 0.040 m camber = a4T = 0.952 (hub) thickness-

1.071 (midspan) chord = 0.05261.190 (tip) hub/tip =0.8

Fiqiire 5.6-1 Sixth Standard Configuration: Cascade Geornetr'.

Page 127: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

122

C 0 0.05277 N

UPPER SURFACE LOWER SURFACE

8 y X y y Y x V

0.0000 0.0000 .5033 .0191 0.0000 0.0000 .4930 -.015.0078 .0063 .5135 .0189 .0008 -.0097 .5032 -.0148.0176 .0090 .5236 .0187 .0085 -.0161 .5133 -.0145.0275 .0109 .5338 .0185 .0178 -.0202 .5234 -.0142.0375 .0127 .5439 .0183 .0275 -.0232 .5336 -.0138

.0475 0143 .5540 .0181 .0373 -.0256 .5437 -.0135

.0575 .0157 .5642 .0179 .0473 -.0274 .5538 -.0132

.0676 .0171 .5743 .0177 .0573 -.0288 .5640 -.0130

.0777 .0184 .5845 .0175 .0674 -.0298 .5741 -.0127

.0877 .0195 .5946 .0173 .0775 -.0305 .5843 -.0124

.0978 .0204 .6047 .0171 .0877 -.0309 .5944 -.0121

.1079 .0213 .6149 .0169 .0978 -.0311 .6045 -.0119

.1181 .0221 .6250 .0167 .1080 -.0310 .6147 -.0116

.1282 .0225 .6352 .0165 .1181 -.0307 .6248 -.0113

.1383 .0230 .6453 .0162 .1282 -.0303 .6349 -.0111

.1484 .0235 .6554 .0160 .1384 -.0298 .6451 -.01081586 .0239 .6656 .0158 .1485 -.0294 .6552 -.01061.R7 .0242 .6757 .0156 .1586 -.0289 .654 -.0104

.1/19 .0243 .6859 .0153 .1688 -.0284 .6755 -.0101,1890 .0243 .6960 .0151 .1799 -.0278 .6856 -.0099

.1991 .0243 .7061 .0149 .1890 -.0274 .6958 -.009721183 .0242 .7163 .0147 .1991 -.0269 .7059 -.0095.,'194 .0240 .7264 .0144 .2093 -.0264 .7161 -.00932296 .0239 .7366 .0142 .2194 -.0259 .7262 -.0091.2397 .0237 .7467 .0140 .2295 -.0254 .7363 -.0089

.2498 .0236 .7568 .0137 .2397 -.0250 .7465 -.0087

.2600 .0235 .7670 .0135 .2498 -.0245 .7566 -.0085

.2701 .0235 .7771 .0133 .2599 -.0240 .7668 -.00832803 .0234 .7873 .0130 .2701 -.0236 .7769 -.0082

.2904 .0233 .7974 .0128 .2802 -.0232 .7870 -.0080

.3006 .0232 .8075 .0125 .2903 -.0227 .7972 -.0078.3107 .0231 .8177 .0123 .3005 -.0223 .8073 -.0077.3208 .0229 .8278 .0120 .3106 -.0219 .8175 -.0075.3110 .0227 .8380 .0118 .3207 -.0214 .8276 -.0074

.3411 .0225 .8481 .0115 .3309 -.0210 .8377 -.0072

.3513 .0223 .8582 .0112 .3410 -.0206 .8479 -.0071

.1614 .0220 .8684 .0110 .3511 -.0202 .8580 -.0070

.1?15 .0218 .8785 .0107 .3613 -.0198 .8682 -.0068

.3817 .0215 .8886 .0104 .3714 -.0194 .8783 -.0067

.3918 .0213 .8988 .0102 .3815 ..0190 .8884 -'006

.4019 .0211 .S089 .009 .397 -.0186 .8986 -.0065

.4121 .0210 .9191 .0096 .4018 -.0183 .9087 -.OOb4

.4222 .0208 .9292 .0093 .4119 -.0179 .9189 -.0063

.4324 .0206 .9393 .0090 .4221 -.0175 .9290 -.0062

.4425 .0204 .9495 .0088 .43e2 -.017? .9392 -.0061

.4526 .0202 .9596 .0085 .4423 -.0168 .9493 -.0060

.4628 .0200 .9697 .0082 .4525 -.C164 .9594 -.0060

.4?29 .0198 .9799 .0079 .4626 -.0161 9696 -.0059

.4831 .0195 .9900 .0076 .4727 -.0158 .9797 -.0058

.4932 .0193 1.0002 .0073 .4829 -.0154 1.0000 -.0057

Table 3.6-1 Sixth Standard Configuration: Dimensionless Airfoil Coordina-

tes (identical over the whole span)

Page 128: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

123

Aeroelasticity in Turboachine-CascadesSixth Standard Configuration

Time Averaged Parameters Time Dependant Parameters Recomended representat ion@1ia 0a-

o 0

M l'Is 61 P,/pl M2,is h 0 I k a 6 c p ,c p CF(.) (o) (-) (-) H ft ) -- ) . [))

10..0 30 6 0 008 0 43.2 1 2 9

Z :45(9a 1 2

4 -135S -180 1

I -135-- 90 III

8 -459 0 10.0 0.50 1. 0 0.096 -90 1 2 4 1010 [.$. 20.0 0. 0 1.14 0.097

1! 0 2 13. 0.02 1.02 0.1081. U.S2 19.8 0.o, 0.98 0.113 0 1 2 3 6 91 3 :4514 -90

10 013S

,- 180 I -

I-7 1 , -13518 :90 219 -4

20 03 4 0 .2b 1 .60 0.009 90 - 8 1121 0.39 27.4 0.26 1.061 0.06b . 7,8 10,11

U.39 27.2 0.35 1.40 0.079 --

0.39 27.2 0.37 1.37 0.08002.0 0.9s 0.11t

0.37 27.5 0.85 3.85 0.13 4b 0.30 27.9 0.89 0.57 0. 1 93

MOIS: a) Isentropc Mach timbers

1) cp as a function of x 6) as a function of a

2) t p x 7) M ' is3) cy .. 8) C, 8.. . B4) L-12 is 9) a ....

3) l .. .. M6,) s

111 E ... " B

Table 3.6-2 Sixth Standard Configuration: 26 Recommended Aeroelastic

Cases

Page 129: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Y l :

124 T

T P2T,Ei-, M2 x : :

__ _ xM1

AEROELASTICITY IN TURBOMACHINE-CRSCROES. IuSTANDARO CONFIGURATION NUMBER 6

P2hx

hy

k8 :

d :X X x X x N 5 X x x

C_ . _ _ _ _ _

0. .5 1.x

-, i

FIG. 3.6-2A: SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURECOEFFICIENT FOR B1=20 DEG AND M2(15)=1.63

Page 130: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Mt :

At3ELPSTICTr IN TUR8OMRCHINECASCPOES.

STPNOPAO CONFIGUFRTION NUMBEI : 6

M2

hX

hx

Li. _ _ _C :

k_8:

El w Uj L, J L! L! J ] [

X . x x XX X X d

-12.

0. .5 1.

FIG. 3.6-2B: SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURE

COEFFICIENT FOR B1=20 DEG AND M2UIS)=1.20 j.

Page 131: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

|C

126

7 x

P1 o 2

FEADELASTICITY IN TURBOMACHINE-CRSCROES.STANOARD CONFIGURATION NUMBER 6

P2

hx

h

4r

k

M~E l M x

-12.

0. .5 1x

FIG. 3.6-2C: SIXTH STANDARD CONFIGURATION.

TIME AVERAGED BLADE SURFACE PRESSURECOEFFICIENT FOR Bl=20 DEG AND M2(IS)=I.1LI

Page 132: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

IC

y 127

P2

M 1 xcc :

P i 2 Y a :

REROELRST[C[TY IN TURBOMACHINE-CRSCROES. 1.2STANDARD CONFIGURAT[ON NUMBER 6

m 2 ,

P32 "

xh

I. -

k

o ;< x > x x x ir

- x d

-12. ---0. .5 1.

x

FIG. 3.6-20: SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURECOEFFICIENT FOR 81=20 DEG AND M2115)=1.02

1\-

Page 133: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c128 Y

x

TNOPRO CE NFIS URII TIaN NUM8ER -C6

M2 ,

p2 "

xh'V

k:

0x >

-12. ---- -- - -0. .5

x

FIG. 3.6-2E: SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURECOEFFICIENT FOR 81=20 DEG AND M2(IS)=0.98

</

Page 134: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1 29

9Y

PEROELPSTICITY IN TUReOMACfiINE-C1ASCAoES.STPNOARO CONFI1GURPTION NUMBER 6

L

m 2

P2

hx

hy

-12 " a')

1 •01

k

d

xx AX x

0. .5

FIG. 3.6-2Ft SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURE

COEFFICIENT FOR B1=25 DEG AND M2(IS)=I.60

- .-- I I_ _IIII_

Page 135: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

4I I IN I.

7' T

_ _ _ _ x

p 1 o r/M

REOB L RSIIIT IrUR O R H nE.....[ PMESx

M2

c 2

x

-12a I

0. 5

FIG. 3.6-2G: SIXTH STANDARD CONFIGURATICN.TIME AVERAGED BLADE SURFACE PRESSURECOEFFICIENT FO3R BI=27 DEG AND M2(15)=1.61

Page 136: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y C

/ x

: P2

PEROELPSTVCITT IN TURBOMCHINE-C SCROES.STPND AD CONFIGURPTION NUMBER 6

p2

x

h

k

8 :L] J

13:

P x x xX X

xx

-12. ,

0. .5 1.x

FIG. 3.6-2H: SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURE ,

COEFFICIENT FOR B1=27 DEG AND M2(IS):=I.O

Page 137: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

132

x

III i2

m P2 i

M- 2 xY :

x // 1 MI

AEROELASTICITT IN TURBOMACHINE-CR5CAOES.STANDARD CONFIGURATION NUMBER 6

M2

hx

hr

cW

k

-j U

0. .5C -

FIG. 3.6-21: SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURECOEFFICIENT FOR Bl=27 DEG AND M2(IS)=1.37T

Page 138: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

yCX 1

P1 E1

2

AEROELASTIC T IN TURBOMACHINE-C

ASC POES.

1

STRN0RRQ CONFGURRTION NUMBER 5

P2

m 1 4P2 P2

h

x x

h

k :[]

d :

xx

4

GX

-12. - '

0. .5 1.x

FIG. 3.6-2K: SIXTH STANDARD CONFIGURATION.

TIME AVERAGED BLADE SURFACE PRESSURE

COEFFICIENT FOR B1=28 DEG AND M2([S)=0.95.....

. = ... - ' - -- ; - -.... --... .. . .

Page 139: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C!7

P2 1

M 2 x

REROELASTICITY IN TURBOMRCHINE-CASLRDES. I .5TANDARD CONFIGURATION NUMBER 6

M2

P2

h

hy

Lll

4.

k

a.

C _x x x d

x

-12. - -

0. .5 1.x

FIG. 3.6-2L: SIXTH STANDARD CONFIGURATION.TIME AVERAGED BLADE SURFACE PRESSURE

COEFFICIENT FOR B1=28 DEG AND M2(15)=0.85

Page 140: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

P,Yc

I I

m

AEROELP$TLCI Y IN TURBOMACHINE-CRSCROES.

STANDARC CONF15URPTION NUM1BER 6

P2h

x

hY

4.Ci

k

X d

P/

x

0. .5 1

FIG. 3.6-2M: SIXTH STANOAR CONFIGURATION.TIME AVERRGEO BLAOE SURFACE PRESSURECOEFFICIENT FOR B1=28 DEG AND M2(15)=0.57

Page 141: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

" V- - .t0 dtC4..r ..,,-r

--: - C_ S - -T T T 2 - , , , ,',- 't

:z __z.. . . . . . -. . . . .

- . . .. . . . . . . . ,' . . . . . .

_ -P, =- -. - - 4"fl ? . . 9 7 5 , .. . . . .. .. , , , , ,

, 7 77 77 77 77

.1 . . . . . . . .

.0~u . .. . .tC . .~u .l~ Z

IllSI

TC C C C .T Cr-.

- -S C ~f-c w.ft ~~i ,~Ji~~lZ - Z

C A fC C.4fq~lJ C- - ~~t-~

C -- ' C CA C ClC7C

-, 7 ~ ~r~lC~r'J. C~ ~ itC J~i l 0

.71 ~ . C '~ ~ ,-,r.r- .-. fl.,rr.,, .1.2

Table~ ~ 3.6- Sixth Sadr Cofqrto:Tm Ir dM d ufc

Pre-,S~rpDitri~tIrl orthe26 ec mme dedAprulsti C-se

Page 142: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

MX P 2 xc :

P , M a :

AEROELPSTICITT IN TURBOMRCHINE-CASCROES. l aSTANDARD CONFICURATION NUMBER 6

20. M2P2

h X

hY

C 10.

cp Wa

k

0. -. +-

+360 -360 STABLE

+180 -180

UNSTABLE

$p 'j 0*. $P ISTABLE

-180 "+-180

UNSTABLE

-360 "- - ' +360

.0 .5 1.

FIG. 3.6-3A: SIXTH STANDARD CONFIGURATION.MAGNITUDE AND PHASE LEAD OF UNSTEADY BLADE

SURFACE PRESSURE COEFFICIENT.(x:IN PITCH MOOE.NOTRTION VALIO UPSTREAM OF PITCH AXIS)

Page 143: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

2x

m

Z//- P,

AER3ELASTICITY IN TURBOMPCHINE-CASCPOES I5TPN[)qRD CONFIGURATION NUMBER ES. I

20. M2P2

h

0C O.W

k

8 :

0 . - I - - - + - ,I- - - - - H -

+360

STABLE

+180K

UNSTABLE

O0.&P

STABLE

-180

UNSTABLE

-3600. 5 1.

xFIG. 3.6-3B: SIXTH STANDARD CONFIGURATION.

MAGNITUDE AND PHASE LEAD OF UNSTEADT BLADE

SURFACE PRESSURE DIFFERENCE COEFFICIENT. K(-:IN PITCH MOOE,NOTATION VRL]I UPSTREAM OF PITCH RXIS)

Page 144: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y 1 59

II

M 2a

X P1AEROELRSTICITT IN TURBOMRCT 'INE-CASCAES.

STANORRD CONFIGURATION NUMBER 6

P2

xh

cF ca

k

' I , I I I a

360 STABLE

+180

UNSTABLE

F 0.

STABLE

a,, -180

UNSTABLE

-360 "- --- --180 0 180

FIG. 3.6-3C: SIXTH STANDARD CONFIGURATION.

AERODTNAMIC FORCE COEFFICIENT AND PHASE LEADIN DEPENDRNCE OF INTERBLADE PHASE ANGLE.

Page 145: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

JC

140 y

xT7P2 T7P

/ 2

PEROELRSTICITT IN TURBOMPCHINE-CRSCOE5. 1,2 :STANDARD CONFIGURATION NUMBER 6

- -P2

h-X

h

F

k

+360 I 4

STABLE

+180I UNSTABLE

DF 0.

STABLE

a, -lO

UNSTABLE

-360 "i

0. l 1 1.6m 2

FIG. 3.6-3D: SIXTH STANDARD CONFIGURATION.AERODTNAMIC FORCE COEFFICIENT AND PHASE LEADIN DEPENDANCE OF OUTLET 1SENTROPIC VELOCITY M2115).,

Page 146: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y 141

x

0(1 M x<X1

2

/ ×

REROELASTICITt IN TURBOMRCHINE-CASCROES.STANOARD CONFIGURTION NUMBER 6

P2

hX

hI:r

k5:

d:

+360

STABLE

+180

UNSTABLE

F 0.

STABLE

-180

UNSTABLE

.. , -360

15. 25. 35.

FIG. 3.6-3E: SIXTH STANDARD CONFIGURATION.AERODYNAMIC FORCE COEFFICIENT AND PHASE LEAD

IN DEPENDANCE OF INLET FLOW ANGLE BETRI.

Page 147: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

142

Mi P2 M x= :

_IIx m

RERCELASTICITT IN TURBOMRCHINE-CASCROES. IzSTANOARD CONFIGURRTION NUMBER 6

p 2

h

T

M c

k

+360-

STABLE

+160 UNSTRBLE

M 0.STABLE

-180

UNSTABLE

-360

-180 0 180if

FIG. 3.6-3F: SIXTH STANDARD CONFIGURATION.AERODTNAMIC MOMENT COEFFICIENT AND PHASE LEAD

IN DEPENDRNCE OF INTERBLRDE PHASE ANGLE. .9

Page 148: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C 143

xT~ :

M2 Xa:

P1 El Yc :

Mx m

P1

REROELASTICITY IN TURBOMRCHINE-CPSCROES. 1STANDARD CONFIGURATION NUMBER 6

P2

h

xh

M (J

k

5:

+360

STABLE

+180

0. UNSTABLE

~0. -M

STABLE

-180

UNSTABLE

-360 ' ' - - -0. 1. 1.6

M2

FIG. 3.6-3G: SIXTH STANDARD CONFIGURATION.AERODYNAMIC MOMENT COEFFICIENT AND PHASE LEADIN DEPENDANCE OF OUTLET ISENTROPIC VELOCITY M2(IS).

W Now J

Page 149: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

|C

y

x

m P2 Xo:1] --- " 7/ 4 M 2 X,

x m I

AEROELRSTICITT IN TURBOMACHINE-CRSCROES. j5TRNOARD CONFIGURAPTION NUMBER 6

P2

hxh

M Ca :

k

8 :

+360S1 .. ST ABLE

+180 "

UNSTABLE

0.*MSTABLE

-180

UNSTABLE

-360 - I-

15. 25. 35.

FIG. 3.6-3H: SIXTH STANDARD CONFIGURATION.AERODTNAMIC MOMENT COEFFICIENT AND PHASE LEADIN DEPENDANCE OF INLET FLOW ANGLE BETAI.

* S

Page 150: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

7 x7

PERIOELPST1C1TY IN TURBOMPCHINE-CASCROES. ISTPNDPRD CONFIGURATION NUMBEI9 6 6

_P2'

pip2

xh

k

d

'-H a _ UNSTABLE

-180 0 180

FIG. 3.6-31: SIXTH STANDARD CONFIGURATION.AERODYNAMIC WORK AND DAMPING COEFFICIENTSIN DEPENDANCE OF INTERBLADE PHASE ANGLE.

Page 151: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

1-46

X MI I

AEROELASTICITY IN TURBOMACHINE-CRSCADES. j 1,.5TANDARD CONFIGURATION NUMBER 6

M2

hxh

ck:

d :

C+ - - , ; UNSTABLEW ' STABLE

I i

0.L 1 1.6M2

FIG. 3.6-3K: SIXTH STANDARD CONFIGURATION.

AERODYNAMIC WORK AND DAMPING COEFFICIENTSIN DEPENDANCE OF OUTLET ISENTROPIC VELOCITY M2(]S)

Page 152: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

I I I I I I M

2c

7 7P,

REROELRST[CITY IN TURBOMACHINE-CASCAOES. I 1STANOR90 CONFIGURATION NUMBER 6

P2

hx

h

k

d:

~ 2 UNSTABLE

15. 25. 35.

FIG. 3.6-3L: SIXTH STANDARD CONFIGURATION.AERODTNAMIC WORK AND DAMPING COEFFICIENTSIN DEPENDANCE OF INLET FLOW ANGLE BETRI.

Page 153: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

148

\Wroelasticity in Turbomachine-Cascades.

Sixth Standard Configuration.

Aeroelastic test case No:

1 pK/Ptl= _ * 2= •_ 1 2

-(-2)= • ;(-1)= __ _ -* 0) __-_1)= ___ _ S ( = 9 (rads)

(-2) (-1) (0) 0(+1)= 0(*2)= 0)

a) Global eroelastic Coefficients

,.,______ _ _- • (o)

b) Local Time Dependant Blade Surface Pressure Coefficients

(Is) I S) 0 (s( 0p p p p p

,- -

Table 5.6-4 S)ixth St andard Uonfiquration: Table for Present at on of

the 26 fIecommenrded Aeroelast ic Uases

Page 154: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1|-|

3.7 Seventh Standard Confiquration

The seventh standard configuration has been tested in the DL,oit Diesel

Allison rectilinear air test facility, and the results are included herein

by courtesy of the sponsoring agent, D.F. Boldman at NASA Lewis Re-

search Center. The configuration is representative for tip sections of

fan stages of turboreactors (multiple circular arc transonic profiles'.

Each blade has a chord of c-0.0762 m and a span of 0.01762 m, with a

-1. 100 net camber and a maximum thickness-to-chord ratio of 0.054.

The gap-to-chord ratio is 0.855 and the stagger angle 28.450.

The cascade geometry is given in Figure 3.7-1 and the profile coordinates

in Table 3.7-1.

The airfoils oscillates in pitching mode about a pivot axis at (0.50, 0.00),

with a frequency in the range between 710 Hz and 730 Hz. The pitching

amplitude of the reference blade lies between 0.060 and 0.20, depending

upon the test conditions, with some scatter in the motion amplitudes

between neighbouring blades.

Both the time averaged and time dependant instrumentation on this cas-

cade is extensive, and data have been obtained for different interblade

phase an les and axial velocity ratios.

From the tests, 44 aeroelastic cases are selected as recommended test

cases. They are contained in Table 3.7-2, together with a proposal for

representation of the results.

The 4 4 aeroelastic cases correspond to four different time averaged set-

tings of the cascade. The time averaged blade surface pressure distribu-

tions for these nominal settings are qiven in Table 3.7-3 and Figures

3.7-2.

The recommended representations of the results from the seventh standard

configuration allows detailed comparison of the local time dependant

blade surface pressures and trends of global effects, such as moment

coefficient and aerodynamic damping coefficient, in dependance of inter-

blade phase angle and axial velocity ratio. If possible, the results shouldbe represented as in Figures 3.7-3 and Table 3.7-4.

Page 155: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Cascade leadingedge plane

2upper surface

M / Suction surface

B1=26.040 Pressure surface"

/ \Ot ifi

Leading pressure surface Traiingedgeedge

c = ).0762 m T = 0.855span = 0.0762 m (x ,y ) = (0.5,0.)camber = -1.30 thickness : 0.034y = 28.45 o chord

F i(qure 5.7-1 seer!h ')t inrdard Configuration: (iasuade Coeomrtry

\I

Page 156: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

= 0.0'62 n (3.00 in)

Upper surface Lower surface

(SJCTION S RFACE) - PRESSURE SURFACE)

x Y X -Y

0 -0.0029 0 0.0029

0.0026 -0.0004 0.0027 0.00S6

0.02'8 0.0015 0.0279 0.0066

0.0655 0.0041 0.0657 0.0019

0.1032 0.0065 0.1035 0.0092

0.1410 0.0087 0.1412 0.0103

0.1788 0.0107 0.1190 0.0113

0.2165 0.0124 0.2168 0.0123

0.2543 0.0139 0.2546 0.0131

0.2921 0.0152 0.2923 0.0138

0.3299 0.0162 0.3301 0.0144

0.3551 0.0168 0.3552 0.0148

0.3929 0.0175 0.3930 0.0152

0.4307 0.0179 0.4308 0.0155

0.468S 0.0181 0.4685 0.0158

0.5063 0.0181 0.5063 0.0159

0.5441 0.0179 0.5440 0.0159

0.5820 0.0174 0.5818 0.0158

0.6198 0.0167 0.6195 0.0156

0.6576 0.0158 0.6573 0.0153

0.6828 0.01SO 0.6824 0.0151

0.720S 0.0137 0.7202 0.0146

0.7583 0.0122 0.7580 0.0140

0.7961 0.0105 0.7958 0.0133

0.8338 0.008" 0.8336 0.0124

0.8716 0.0067 0.8714 0.0112

0.9093 0.0047 0.9092 0.0098

0.9471 0.0026 0,9470 0.0082

0.9848 0.0003 0.9848 0.0063

0.9974 -0.0005 0.9974 0.0057

1.0000 -0.0029 1.0000 0.0029

L.E. RADIUS/C- 0.0027At A T.E. RADIUS/C- 0.0027

Table 5.7-1 Seventh Standard Configuration: Dimensionless Airfoil Coordi-

nates

Page 157: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

152

- --- - - - ------

z x *4 z z ------

- -------------- --------

-7-

------- ----- --- ------ ------ --------

-- - - - - - ------------

------- ........... . --------

Table 3.7-2 Seventh Standard Configuration: 44 Recommended Aeroe-

lastic Test Cases

Page 158: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Aeroelasticity in Turbomachine - Cascades

Seventh Standard Configuration

Time Averaged Blade Surface Pressure Distributions

M(-) 1.315 1.315 1.315 1.315

1 (0) 26.0 26.0 26.0 26.0

(-) 1.04 1.20 1.35 1.45

?t2/ tl - 0.958 0.9S6 0.956 0.957

M, (-1 1.25 1.14 1.05 0.99

08, ( 27.2 26.6 26.7 26.4

lInper surface -

0.0SOO 0.365 0.016 0.373 0.028 0.362 0.011 0.0482 0.374 0.0290.1SO0 0.377 0.034 0.380 0.039 0.364 0.014 0.1481 0.40, 0.0 S0.2500 0.382 0.042 0.378 0.036 0.362 0.011 0.2486 0.330 0.C300.3250 0.37S 0.031 0.381 0.040 0.366 0.017 0.3242 0.377 0.034n.490n 0.354 -n.002 0.352 -0.005 0.336 -0.029 0.3995 0.34- -0.01-O.52n 0.31? -n.056 0.317 - 009 0.302 -0.082 0.5201 0.310 -0.0-o0.600 0. 301 -0.084 0.292 -0.098 0.277 -0.121 0.5099 0.303 -o.081n. 7590 0.315 -0.06' 0.31" -0.059 0.327 -0.043 0.7503 0.339 -0.02S0.9553 0.353 -0.003 0.330 -0.039 0.345 -0.016 0.850 0.454 0.1530.9615 0.367 0.010 0.382 0.042 0.457 0.1S 0 .9604 0.531 0.23

Lower surface

r.90 0.412 0.088 0.407 0.081 0.408 0.082 1.0414 0.530 (.271n.1500 ).345 -0.016 0.338 -0.026 0.338 -0.026 0.1404 0.548 0.20 )0.200 0.320 -0.054 0.315 -0.062 0.313 -0.065 0.1963 0.518 0.2S30.250n 0.301 -0.084 0.298 --0.088 0.279 -0.118 0.2465 0.490 0.2090.3250 0.364 0.014 0.371 0.025 0.381 0.040 0.3221 o.519 0.2540.40n 9.373 0.02 0.381 0.040 0.415 0.093 0.3961 n. S01 0.22t0.4800 0.384 0.04$ 0.3-2 0.026 0.514 0.24" 0.4-0 0.49t, 0 .210.6000 0.299 -0.087 0.361 ((.009 . 9 0.192 0.5984 0.439 0.l~'0.7500 0.313 -0.065 0.373 0.028 0.445 0.140 0.-483 ).453 OIS!0.8500 0.208 -0.088 0.408 0.082 9.461 1()9 0.8491 0.4t" o 1 t,6

Compare figure 372 329 372C

Table 5.7-3 Sesenth 5tandard 'onfiquration: Tire o \ r ikidu ', r ; f,

Pressure [)ist ribut ion for the 4j Recorinrede,\d { ;i,\,

Page 159: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

y

154

xx

X2

M xcc

77 Y ' 7

x 1

AERCELRSTICITY IN TURBOMACHINE-CASCROES.STRNOPRO CONFIGURATION NUMBER 7

P2

Xx

hy

0.5 -

k

0 X d

xx

-0.5 ,,

0. .5 1.x

.0.

FIG. 3.7-2A: SEVENTH STANDARD CONFIGURATION:

TIME AVERAGED BLADE SURFACE PRESSURE

DISTRIBUTION FOR OUTLET VELOCITT M2=I.25 .

Page 160: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

C

/1 55

SM2 Ec :

PEROELRST[CITT [N TURBOM'1CHINE-CASCAOES. jSTPNDARD CONF[GURATION NUMBER :7

M2Y,x x

h :

0.5 -:

k

8 :

ox x d

P x x [] [ 12

0. .5 1.

FIG. 3.7-2B: SEVENTH STANDARD CONFIGURATION:TIME AVERAGED BLADE SURFACE PRESSUREDISTRIBUTION FOR OUTLET VELOCITY M2=1.14

Page 161: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

156 TI

7 / 2 TI,

xx

P2.

oc M2 x= :

AERELASTICITT IN TURBOMACHINE-CASCRDES.

STANDARD CONFIGURATION NUMBER 7

P2

hx

h

0.5 _: k :

x o

X X

p__ x x1

-0.5 "0. .5 I

x

FIG. 3.7-2C: SEVENTH STANDARD CONFIGURATION:

TIME AVERAGED BLADE SURFACE PRESSURE

DISTRIBUTION FOR OUTLET VELOCITY M2=1.05

J

Page 162: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

x

P2

Xc

REROELRSTICTr IN TURBBMRCh 'E-CRSCPDE5.

STRNOR CONFICURPT[ON NUMBER :7

M2

m 2

xh

0.5 __ _ (6

Xk8:

x ,-cP cc

0.5

0. .5 1.

xk

aNo,

FIG. 3.7-20: SEVENTH STANDARD CONFIGURATION:TIME AVERAGED BLADE SURFRCE PRESSURE

DISTRIBUTION FOR OUTLET VELOCITY M2=0.99 . ,.

Page 163: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1 %8

Aeroelasticity in Turbomachine-Cascades.

Seventh Standard Configuration:

Aeroelastic test case No :_

•0 0

II. p2/tl- ___ -_• 81= B 2- 0 k-

-(-2) -(-1) -(0)= (+1) (+2) (rads)

a(-2) = a(-l)= * (0)= 0 (+1) = (+2)= o

a) Global Aeroelastic Coefficients

M___ OL___ C )

b) Local Time Dependant Blade Surface Pressure Coefficients

X(-) C( 1S) ( s) (0) C(US) 4 ,(US) (0) A C (-) % (0)

a~i i

Table 3.7-4 Seventh Standard Configuration: Table for Presentation of

the 44 Recommended Aeoelastic Test Cases

• mf In • m m m Ii IiJ

Page 164: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

AC

159

M X :

S,, Y, :

x mAEROELASTICITY IN TURBOMRCHINE-CPSCROES. 1STANORRD CONFIGURATION NUMBER 7

P2

h

h TY

k

0 ,. - -H -I

+360 -360N

STABLE

+180 -180 N

UNSTABLE(US) L)(s)STABLE

-180 +180

UNSTABLE

-360 + 360

.0 .5 1.x

FIG. 3.7-3A: SEVENTH STANDARD CONFIGURATION:MAGNITUDE AND PHASE LEAD OF BLADE SURFACEPRESSURE COEFFICIENT.

Page 165: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1 too

M2 x

PERO[LPSTICITT IN TURBOMPCHINE-CASCPES.5TANDPRD CONFIGURPTION NUMBER 7

20M 2P2

hx

h

p 10

k

:

~+360

*360STABLE

+180

UNSTABLE

AP 0

STABLE

-180UNSTABLE

-360 - - -

0. .5 1.x

FIG. 3.7-3B: SEVENTH STANDARD CONFIGURATION:MAGNITUDE AND PHASE LEAD OF BLADE SURFACE

PRESSURE DIFFERENCE COEFFICIENT.(W IN PITCH MOnF.NOIAT;:'N VPLIO UPSTRFQM OF PITCH PY5si

Page 166: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

2 Xci

xM

AEROELAST[CITY IN TURBOMRCHINE-CASCADE5. I

STANE~qD CONFI, URAT[ON NUMBER 7 [2. m2

P2h :x

h y

c Mi

M :

k

0.:

0. 1- -I-- -H-- -,- --- d

+360

STABLE

+180

UNSTABLE

0M 0

STABLE

-180

UNSTABLE

-360 - ' + - --180 0. 180

FIG. 3.7-3C: SEVENTH STANDARD CONFIGURATION:AERODYNAMIC MOMENT COEFFICIENT AND PHASE LEADIN DEPENDANCE OF INTERBLADE PHASE ANGLE.

Page 167: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

iY1 / y :

E ERE PSTICITf IN TURBOMP-HINE-CSCADES.

5 T N D 9 C C N !% ,R q A I O N N u M H R 7 j2. M2

p2h

hy

Icc

k

80:

+360

STABLE

+180

UNSTABLE

M 0.

STABLE

-180

UNSTABLE

-360 I

0.5 1. 1.5m 2

FIG. 3.7-3D: SEVENTH STANDARD CONFIGURATION:RERODTNAMIC MOMENT COEFFICIENT AND PHASE LEAD

IN DEPENDANCE OF OUTLET MACH NUMBER.

Page 168: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/ I

×c

/xcx

7p P2

m x

0 Y~x

h

x xx

RERCELA5TICITI IN TUR80MPC,!NE-CA5CA0ES. :

STANDARO C"NF IGuRATION NUGER : 7

10.

F "

" k :

a:

+360 "

. STRBLE

+180 4

. UNSTABLE

FSTABLE

-180 i.. UNSTABLE

-360 1 ----180 0. 180

FIG. 3.7-3E: SEVENTH STANOARD CONFIGURATION:

AERODYNAMIC FORCE COEFFICIENT AND PHASE LEADIN DEPENDANCE OF INTERBLAOE PHASE ANGLE. B

• 1 80

Page 169: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

S/ c

/

FErjE7 ST IZITT IN TuRBOMC!-INE-CPSCPIJES. i¢ NTh2 ijDNF i R I ON NULOBE : 7

10. M2p2

x

k

,CN ; LR IO UM E

10. m--

+360- ___

S

+180

UN

F "ok

S-180

UN!

-360 - -I- .0.5 1. 1.5

M2

FIG. 3.7-3F: SEVENTH STANDARO CONFIGURATION:

RERODTNRMIC FORCE COEFFICIENT RND PHASE LEIIN DEPENORNCE OF OUTLET MACH NUMBER.

Page 170: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

JC

y

xx7 __ P2

RERDELASTICITr [N TURBOMACHINE-CRSC OES. I iSTANDARD CONFIGURAT:N NUMBER 7

-2. P2

hx

h

k

8

d

W • TI

+1.

1 1 +2.

-180 0. 180U

FIG. 3.7-3G: SEVENTH STANDARD CONFIGURATION:AERODTNAMIC WORK AND DAMPING COEFFICIENTS

IN DEPENDRNCE OF INTERBLADE PHASE ANGLE.

Page 171: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

166 'r

7 / P2

A. ~xc

REROE ASTICITY IN TURBOMACHINE-CRSCROES. I 2.STAN5ARD CONFIGURPTION NUMBER 7 I

-2. P2

hx

h :y

k"8 :

d

c UNSTABLEW STABLE

+2.

- I- -f- -'-- '- +2.

0.5 1. 1.5M2

FIG. 3.7-3H: SEVENTH STANDARD CONFIGURATION:

AEROOTNAMIC WORK AND DAMPING COEFFICIENTS

IN DEPENDRNCE OF OUTLET MACH NUMBER.

Page 172: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

3.8 L. iqhth Standard ( onfiquirat iou

The eighth arid raritih stwdaiitirtF i rit i t rt' dirt( tt't ird w [ii 1 ,

investigation of has i-c w roel ist 1 rt ,,, t ,, i ii ri I i 1t Ii i fr t' tf , i.,

effects on numerical cale u itlioiurs'. f-; ( i 1 i,, rhw 1 r,;

Configuration nuRhper eniitt ui ,rt,i at 1wr -([I-ttl rll I w < t

flat plates. ttrJuir(,t w al aa I ,,; ot 'rh I i I it

been performed for riitrI \eai, li uw, tit ihe ira(t'htl I I

interest, mainly due to the following fa-tr.;:

o In modern compressors, operat tog i the t rios int -ic anTii snlrt'r I W) II

flow regimes, the actual blades are rather thin arid ha e a low caIitwit.

They can thus mostly be fairly well approxmated as flat plates.

o Supersonic two-dimensional flat plate prediction models are oft eri

one of the main aeroelastic tools used bv the designer of large turboreac-

tors.

o In the incompressible flow domain, anak tical flat plate soltitons

are available.

o It is possible to establish, with different theories and for the purpose

of the present comparative work, the aeroelastic response of a flat plate

cascade over the whole Mach number range from incompressible to superso-

nic flow conditions.

0 The strip theory assumption should be validated, in the transonic

flow domain, in a fairly simple case. This requires validation not onil,

of theoretical results, but also of two dimensioral and quasi three-dimen-

sional experimental data on thin airfoils.

In this chapter, the main emphasize will be laid upon the change in the

aeroelastic behaviour of the cascade in dependance of inlet flow velocity.

pressure ratio through the cascade, stagger angle and solidity. The unsteady

blade surface pressure distributions will thus only be compared in detaii

for a few aeroelastic cases.

It is assumed that the two-dimensional airfoils oscillates in pitch about

mid chord (0.5, 0.), with an amplitude of 20 (0.0349 rad.

As the main interest for this configuration lies in the ariation of the

time averaged parameters the calculations should be performed. at zero

mean incidence, with a constant interblade phase angle of 900 and with

a fairly high reduced frequency, k-1.0.

The cascade configuration is given in Figure 3.8-1 and a recommendation

Page 173: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

for ') aeroelastic cases to be calculated is given in Table 3.8-1. If possi-

ble, the results should be represented as in Figures and Tables 3.8-2.

The 35 aeroelastic cases are situated in different velocity domains, where-

fore it is not expected that one single program can calculate all cases.

However, it would be of interest for the comparisons if all participants

could calculate the cases their program(s) can handle.

cascade leadingedge plane

Y l~upper surface

M

411wersurface I

Flat platesc = 0.1 m a = 2.0° (0.0349 rad)

camber = 0° a = 900

(xa,yc ) z (0.5,0.) k = 1.0

i = 00

Fiqure 3.8-1 Fighth Standard Configuration: Cascade Geometry

Page 174: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1 () 9

Recommended Fepresentation

M_ Normal C ,'C CM

shock ?

0m 0- I (-Io-(1 ( )

I Inlcompressible 3 30 0 .75 1 2 3,6 7

3 604 90

5 0.5 30 4 76 0.6 X7 0.78 0.8 12 3, ,5 6, ,89 0.9

I1 0.95

1I 3.3 45 3 612 6013 i 90

30 3. 8

S 1 0.75 - 4 7

17 at L.E. -1" at T.E.

.t L.E. -

t TE.

1 3 1 2 ,5

2t L.E. 3, ,5 6.

a - t T . .

* at LE.7 Tit T.E.

,9 ± at L.E.3:) at T.E.

32 1,3 at L.E. 0.534 11.035 45 0. 75

Notes 1) c as a function of x 5) CM as a function of

2)6) S

3) CM ' 7) M

4) C M1 8)M

Table 5.8-1 Fighth Standard Configuration: 35 Recommended Aeroelastic

(ases

Page 175: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

170

P2p Yc :

x m,

/

M1

AEROELRSTICITT IN TURBOMACHINE-CASCRAES. iP

5TANDARD CONFIGURATION NUMBER 8

P2

-X

h

[p ' h

k

L

8:

a :

III , I Id

:

+360 -360

STRBLE

+180 -180

UNSTABLE

STABLE

-180 +180

UNSTABLE

-360

-1- 360

.0.5.x

FIG. 3.8-2A: EIGHTH STANDARD CONFIGURATION.

MAGNITUDE AND PHASE LEAD OF UNSTEROT BLADE SURFACEPRESSURE DISTRIBUTION.

(w:IN PITCH MODE.NOTATION VALID UPSTREAM OF PITCH AXIS)

Page 176: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

171

2 X :

x I

REROELASTICITT IN TURBOMRCHINE-CRSCRES5TNOQPRO CONFIGURATION NUMBER S J

P2

h

AcP CA)

k

+360

STABLE M

+l80UNSTABLEM

0 0.as

STABLE

-180

UNSTABLE

-360 ' ' - - --0. .5 1.

x

FIG. 3.8-2B: EIGHTH STANDARD CONFIGURATION.MRGNITUDE AND PHASE LERD OF UNSTERDT BLADE SURFACEPRESSURE DIFFERENCE DISTRIBUTION.

(w:IN PITCH MODE.NOT TION VRLIO UPSTREAM OF PITCH A[IS)

Page 177: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

c

172

X P2M ~ X-

m m 2

REROELRSTICITT IN TURBOMACHINE-CASCAOES. ISTANDARD CONFIGU PTION NUMBEM M8

P2

hx

hy

M (a

k

r:

I i I

+360

STABLE

+180

UNSTABLE

M

STABLE

-180

UNSTABLE

-360 l

0 50 1007

FIG. 3.8-2C: EIGHTH STANDARD CONFIGURATION.AERODTNAMIC MOMENT COEFFICIENT AND PHASE LEAD

IN DEPENDANCE OF STAGGER ANGLE.

Page 178: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

xxP

P2

P , Y a :

M mp×

REROELP5STIC[TY IN TURBUM;CH[NE-CRSCRDES. I ,

STANDARO CONFIGURATION NUMBER 8

P 2

hxh

M

STABLE

+180

UNSTABLE

-180 -UNSTABLE

-360 -

.0 1. 2.

FIG. 3.8-20: EIGHTH STANDARD CONFIGURATION.

AERODTNAMIC MOMENT COEFFICIENT AND PHASE LEAD

IN DEPENDANCE OF INLET MACH NUMBER.

Page 179: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

/// C

/ X

x

PLREA -ST ,: TT IN IuROMP'HiNE CfSCK4JES.

hx

hm -Wk

+360

STABLE

+180

UNSTABLE

0.M

STABLE

-180

UNSTABLE

-360 - -,

0. 1. 2.

FIG. 3.8-2E: EIGHTH STANDARP CONFIGURATION.RERO2TNRMIC MO,,NT COEFFICIENT AND PHASE LEAD

IN DEPEr4DANCE OF SOLIDITY.

Page 180: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

I 1 I o

7 P2

Al m D

pC Yx

M1

x1REAOELASTICITY IN TURBOMACHINE-CSCA ES. I 7..STPNDPRO CONFIGurPTION NUMBER 8 I

M2

hx

h

k

5 :

a

d

UNSTABLE

- -40 50 100

7

FIG. 3.8-2F: EIGHTH STANDARD CONFIGURATION.

AERODTNAMIC WORK AND DAMPING COEFFICIENTSIN DEPENDANCE OF STAGGER ANGLE.

Page 181: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

yL _ / /d

M3 /

/

2

c

k :

r8:•

d :

xS

0. 1. 2.M7

FIG. 3.8-2G: EIGHTH STANDARD CONFIGUATION.

RERODTNAMIC WORN AND DAMPING COEFFICIENTSIN DEPENDANCE OF INLET MACH NUMBER. ,

Page 182: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

pI[ 2 x7xx

P 2

p 2a

AEROELRSTICITT IN TURBIMRCHNE-CRSCADES. 1 2STANOAR CONFIruRIPT]N NUBER 8 M

P 2

hx

k :h

UNSTRBLEW STABLE

0. 1. 2.

FIG. 3.8-2H: EIGHTH STANDARD CONFIGURATION.AERODYNAMIC WORK AND DAMPING COEFFICIENTS

IN DEPENDANCE OF SOLIDITY.

Page 183: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

1 -. : it vs .It in~ I urt .Ik, id v-ca5Cadc5

]it plaites at :crkc i1 Ii. )IL

N I ii' i-49 rad. - L .

Ihc hp

Page 184: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

Acroclasticity in Turbomachine-Cascades.Eighth Standard Configuration.

Aeroelastic test case No:

Flat plates at zero mean incidence.

(xa,y)=(0.5,0.). 0-0.0349 rad. o=90 ° k=.0.

MI= _. Shock at _ .Y= 0. _=

a) Global Aeroelastic Coefficients

C: >CL= - CW=-- oL =

,1 = l L= 0 o

b) Local Time Dependant Blade Surface Pressure Coefficients

( _ ( IS _ (s ) ( o 0 ( S ( ( u s ) ( ) 0 - _-

Table 3.8-2 h Li ihth Stardard C'orfiquration: Table for Representati

of thn 5') Rcono nwrided Aeroelast i' ( ases

Page 185: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

3.9 Ninth Standard L;onfiquration

The ninth standard configuration is selected to be a continuat icr of the

flat plate in estration. The emphasize is now placed upon blade thirkness

influence. especialI% in the high subsonic flow region, on the runierical

results from the different prediction models.

To this end. a s~rmmetric circular-arc profile. with thickness/chord ranging

from .P 1 to 0.10., is defined ,see Figure 3.9-1.

Apart iom the profile thickness, the influence cf inlet Mach number

on the aeroelastic response of the cascade will be investigated.

For this configuration, the same \ibration mode, reduced frequr, nc\ and

interblade phase angle as in the eighth configuration 1.11 and 9 00 resp.,

are choosen. The stagger angle has been defined to te 30', mainl, to

allow for realistic conditions at high \elocities. This stagger angle na

in some computations introduce influence of distorted calculation grids.

wherefore it is of importance to gie indications about the computational

scheme together with the numerical results.

In the confiriuration, 24 aeroelastic cases are defined for comparison

,see table 3.9-1). The incidence in the subsonic cases is 01. For the super-

sonic cases, the unique incidence is calculated with a program based

upon the method of characteristics. The 11 supersonic cases are defined

as to ha\e attached leading edge shock waves, and they should be calcula-

ted with supersonic throughflow. The results should be represented as

in Figures 3.9-2 and in Table 3.9-2.

As for the eighth configuration, it is here not the purpose to calculate

all the cases with the same prediction model. It is instead proposed that

the participants calculate the cases their programs can handle, whereafter

the different results will be compared and anal'sied.

Page 186: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

y

Symmetric Circular Arc Profiles.

Maximum Thickness at x = 0.5.

Vibration in pitch around (x ,y,) (0.5,0.)a

u. = 2.00 (0.0349 rad)

c = 0.1 m i = 00

= 0.75 camber 0

d thickness 0.01 . 0.1 y = 30 ochord

k = 1.0

i h t " ." 7 ,[ r t + :r : ' + J r , :, ! ' : l , : : ! ! : , , ,, l l 'l ;

Page 187: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

rI,' C'

I I II I II ' I I

Ii I II I

S I~ ; j' '~ ' I I

__ _____ I ~ '~

~~iIi II

I: I I I. . Ii i,~ j

ii .. ; -.- ~-. ~ -. 1 ~ -ii..

V. -~* II I I I

4' LLiIiI I _ U .i.~ ~LLiisLe .. TI z~. . ~,' ~. fT... t:i H ~ liultQ viti, 'he r:ethii.J of I

~1 Ill

Page 188: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

I v -

A e ) c I \s t i ls tj c o °

__ oil o , eC ., , ()

pe 10, 1 e 11,n t d Sur fa c','- Pressurc Coefficion ts

X_____ C_____ -1_____)_

!s A

__ __ , A.....j xi

_______ V) 2

o f _ H f__ _ __ _ _ __ __ _ _ __ _ _ __ _ ___ __ _ . . ,__ __ _ 1

[,__ _ I _ _ _ _ _ _ _ _ _ , ,,_ _ _ _- _

____ ___ __ ____ _ 4 ___ ___ ___ ___ _ _ ____ __ ___ ___

t I . I

Page 189: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

-h

(l IS1..0(LS

-0 .

P . -B L

.0 .5~

F I G 36 N I i

- L- E- L- i

PF360SJP r ---JF------ I-CIL,!

Page 190: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

x I

h h

± k

+360.

STIOBL E

+ 180 - -. r

0. - - iUNSTRBLE

-180

0. .5 1.

FIGC. 3.9-5 NI NTH STAN'LA fl -F6LiTIOmRC n c UFJ tIN PIAS LruD, LAID OF UNSTEAIDY BLf1BIE

SUHFACE FFRE'.)fwJVE B IFiV[13El--JCc COEFF IL11[T. '

Page 191: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

-C' -Y

I

t' T h r! ..1 - I x

Page 192: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

I I

x ,

GO0 . ..

J4.

.. .0 ..

FIG.

A E 0 j I P i ' ;

I I ci

+300 -r ...... .

I_

+I -N p L T L

FiG 3. J [ !i ST<FKD KIG3

• -3IO F ' 'K Ff . [.~ 1 IiIf" i I A

Page 193: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

[~1

ii

C.)

I I(3

I Cr _ _ __

__ ___ _ ____ .... - ....- ~ LIN I 3''

.1* l*~'-I..

I I

t I

__ __ ~ ------- :..--,-- I

I I

1.

I

~i- - - -

Page 194: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

P:I-

I h

I k

. I

I I

S I

.1..1

I-.

. -~ ~ _ IC'.

~1

r I

.1 (.I~ . -

r:,, . - . ,

1 . -,.~ .

Page 195: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

!,Iitt id . Iii~ I iI Ift j iitn I

ti W Ii i ' c l :fIt Lj' I I it 1% c i f w Ic I:, I c 1 i t I

rI cI i ic I\ I Ii , t ' I c kcc ccr i I 1 t c i it 1 i fi sit i ~ ic s t ci if i

hir fu iiit I I' Ir'l~ rI~i IcC .I I cI I ti'~ Ii e ic crcts L i

h !; I I I i Ii is II t(f It, (I;, t- I.cs [ w III I I " IS cSO c ic t af S I f p'\] 1c; IT If (i Ii

Ii ci )I.ii I cc it lcat c I, f ccc'; II ( I ccc al ;' 5pe thiet I im' 1, Ice c i I !i ccca I f~ i,' I !: ic ct

o kti pt t ci:f~ e t C al t 1wc I Nicc~ I ( r ic i ll I cc' "Ae of' It SiI :i ic c' ii'I t ii ;I1 , 'i t

fic if c i ll whc' I I s I l rc' s f t ' aec l Id tI(. r !Il I . l i

e\ii if iccIi dI , ( rcc :i III -c ciri turn' t cci I ow t huovel ccii cc! al lth crcfsIc 11 cc1I-,

inn a'I if ' Ii \ ci . ! i i t ri rlul~ ticic ' i Isc I tIc vI ll C t In r li ci ici'

tocw '\ c, 1t t if tc 'SciIT t1 o fc> it iccic ci'/ s.i' u I tc cc 5cc i

cIr i I csIf u c t cI I ''I t Ii a r I Ic c' s'ic c ci!. 1)( ii a i I c Iw I i' I !f 1 s. It I t; Ic ccI c In o Ia-

ti'rneics cii I'Vt 11cc c rCIccic' ci'icc Sci ii'CAUi c it i Wc- i l tc f fl ic cccictc

ccr'cd ic T , if h i'~n ( ciccccc'i. h ia ( o t ( c ll l l e o t ( [T 1L 1i

twvm & pehtin m dl ndI \n m ns

l-Ao f'\ [-, it IT' WSLltS l[L no wihdi wn, the wi~ be com~ we l t

Page 196: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

,-ow

Page 197: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

AD-A141 004 IWO.OIUMENSICNAL AMl QUASI lNItE.DIENSIISAL3II IPERIIIENIAL STANDARD CSIIU. UP [COLE POLVICIUIOUII PDERALI DE LAUSANE ISUITZISLAIUII LAS Of.

UNCLASSIF IED T FRANSION ET AL. 30 SEP 53 F/d 20/4 Nt*flfllflfllfl4

Page 198: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

112- 12.2

11-.6

11111 E~ 1 112.58i1g1,J_, __ 2

JIfJI25 JJJ1. 4 11111J.6

MICROCOPY RESOLUTION TEST CHART INATIONAL BUREAU OF STANOAROS- 93- A

A,'

Page 199: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

9/

Aeroelast icity in lurborvichine-Cascades

Farticilants -ith ex;crin rtad data larticipanth with predicition iaodcls

Country / Institution Nmae Country / lnstitution Name

USA USAUnited Techno]ogies Researcb Center F.O. Carta Physical Sciences Inc. N.H. Kamp

NSA Lewis Research Center D.R. Boldman United Technologies Research Center J.%. Verdon/J.R. Caspar

Westinghouse Z. KovaLz NSA Levis Research Center M.E. Goldstoin/W.H. braun/F.B. Mblls

Hassachussetts Institute of Techn 1. Crawley University of btre Dame ii. Atassi

Stevens Institute of Technology .i. Sisto University of Tennesse Space J. Caruthers/MI. Kurosaka

Detroit Diesel Allison R.L. Jay Massachussetts Institute of Techn. E.F. Crawley

Naval Postgraduate School M.P. Platzet/K. Vogelet

Nielsen Engineering andResearch Inc. [. Nixon

General Electric R. Jutras

University of California P. Friedimann

Princeton University 0. Bendiksen

Jln

Japan

lokyo University S. Kaji/H. Tanaka/Y.Tan Tok3v University H. Shoji/S. Kji/il. Tanaka/

loshiba 1. Araki Y "

Tanida

Mitsubishi S. lakahara/M. Honjo Kuyushu University M. Namba

Isnikawajima-lHarLma Heay Industries S. Nagana itsubishi S. Takahara

\ational Aerospace Lab. i. hobay&hi

United bingcs United Kingdom

Cambridge Univcsity D.S. khitehead/R.J. Grant Cambridge University U.S. hlitehcad/S.N. SmithM1. Davies Imperial College . Graham

Roils - Royce D.G. erallieClll

Vrance France

ONI A J.Girault/E.Szechenyi OR A P. Salab

hist Germany West Germany

DIIA'l P. Bblitz/H. Triebstein DFVLR V. Carstens

ltchnische lbchschule Aachen H.E. Gallus/K. Vogeler/ Technische lkchschule Aachen H.E. Ga3lus/K. VogelerK.D. Broichhausen

EU D. ohn

Swit zer land S.'itzerland

Rrw1 B'eri A. Kirschner Lausanne Institute of Toc rology A. Wbicsil.1%. Fransson

Lausanne Institute of Technology A. lWlcs/M. Degen/D. Schlfli

"Il~taly

Florence University F. Martel I i

Table 4.1-1 Present Participation in the Project "Aeroelasticity in Turbo-

machine-Cascades"-f

Page 200: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

193

& :j

f TC

C; r . 4,w Vu0CS

C-- -

-A

-

.c .-

S ~~A -- A-*'C

0C-4,4, .- r

0 ! C C04 ' -04, ' 1 1- 1 t

-- 4. t4.4: 4

t- t LILL I-- -- * 0.~.iC

__ > ~ > ~ V7iI________ ±21 LIK~I4 ~ 4C*.i(CtOS~~1 1 9 @ * 9 @~.~ A

4~0[0* *-'ooeee *, *e 0 0, 0 0 B

Table 4.1-2 ClsiiainofPeetPricpto in__ 7t7I71i7r 4 ntalPart o the rojec

Page 201: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

194

4. t C K ' 4 Ej - 4

FO_________ I-- - --I X x x x -

i va1 uIS .44 -7 Kxx x x x x K x x x x

.4 x .1 tvT~-- --.-- ZY--

T - -7-- - -- - - r--i: 't l V- K K 4 4 K I K 4 I 4t .x I x4 x I xIK 4

z)Tu77S(Trr m -. r: XI T j x 4 K I4

___ ___ ___ ___I x

x K4 x x

x K K K _._ K K K

tX--

00

4,. . 4, 4'. -0

C~~ 'A .. >

7 4 -4-4 -

Tabl 4.1- b- Clsiicto of 44~ 0rsn Patcpto4- h hoeia

Part of the Project

Page 202: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

195

Acknowledgement

This research project is sponsored in part by the United States Air Force

under Grants AFDSR 81-0251, AFOSR 83-0063 with Dr. Anthony Amos

as program inanager. and in part by the Lausarane Institute of Technology,

The authors express their thatiks to all the research collegues who ari-

participating in the project. It is needless to say that withbout their undcer-r

standing, patience and good will, these standard configurations would

ne\ er ha'.e been compiled.

Page 203: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

196

| c r, erenl(c 5

Il "A6roC1asticit6 dans 1(,s turbcmachihes"

Proceeding.s of the Symposium held in Paris,

France, 1976

Revue M6caniqie Frarit'aise, Numn6ro sp6cial

1976

121 P. 5u1 er "Aeroelasticity in Turbomachines"

(Editor) Proceedings of the Symposium held in Lausanne,

Sept. 8-12, 1980.

Co, Imunicat ion di I aboratoire de Thernique

Appiiqu6e NO 10, Lausanne Institute of Technolo-

gy, Switzerland

131 F.O. Carta "Unsteady Gapwise Periodicil y of Oscillating

Cascaded Airfoils"

ASME Paper 82-GT-286, 1982

141 J.lM. Verdun "Development of a linear Unsteady Aerodynamic

J.R. Caspar Analysis for Finite-Defiection Subsonic Cascades"

AIAA Paper 81-1290, 1981

151 Y.C. Fung "An introduction to the Theory of Aeroelasticity"

Dover Publications, Inc., New-York, 1969,

page 82

161 H. Ashley "Princip -s of Aeroelasticity"

R.L. Bisplinghoff Dover iblications, Inc., New-York, 1969, page

202

171 F.O. Carta "Coupled Blade-Disk-Shroud Flutter Instabilities

in Turbojet Engine Motors"

Journal of Engineering for Power, July 1967,

p.p. 419-426

181 S.R. Bland "AGARD Two-Dimensional Aeroelastic Configura-

(Coordinator) tions"

AGARD Advisory Report NO 156, 1979

.. .. . . , .. , I - "

Page 204: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

197

191 J.1A. Verdon "Unst eady Supersonic Cascade in SubsonicJ.F . Mv Cune Axial H OW"

AlAA JOUrnal Vol. 13, NO 2, 1975, pp. 193-201

1101 S. Fleeter "Aeroelast icity Research for Turbornachine

Appl icat ions".

.Journal of Aircraft, Vol.16, NO 5, 1979

tv

Page 205: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

i t

199

Appendix: Aerovlasticily in Ttrhorachirie-Cascades

To be returned to

Mr. Torsten FranssonLaboratoire de Thermique Appliqu6eflcole Pol)technique I 6dr6'ale de LausanneCH- 1015 LA.J SANNESwit zerland

Are you interested in participating in the project on Aeroe-

lasticity in Turbomachine-Cascades and will you perform

calculations upon some of the standard configurations?

Vhich configuratiion(s) and aeroelastic cases will you calcu-

fote'?

Would you like to obtain the profile coordinates on cards

for these configurations?

Are >ou interested in receiving the aeroelastic test cases for

standard configuration number 4 when they are available? _

Name _

Affiliation

Address _ ___,

Telephone : _ _ _.___,

Telex __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

.-

Page 206: III'.II MEu onll* -- IMM2.2 Unsteady Two-Dimensional Cascade Nomenclature 17 2.3 Precise Reporting Formats 28 3. Standard Configurations 35 3.1 First Standard Configuration 59 1.2

AT