illia horenko wilhelm huisinga & einführungsvortrag zum seminar modellierung dynamischer...

17
Illia Horenko Wilhelm Huisinga & Einführungsvortrag zum Seminar Modellierung dynamischer Prozesse in der Zellbiologie Freie Universität Berlin, 17. April 2003

Post on 22-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Illia HorenkoWilhelm Huisinga &

Einführungsvortrag zum Seminar

Modellierung dynamischer Prozesse in der Zellbiologie

Freie Universität Berlin, 17. April 2003

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eBiological processes

signal pathways, metabolism, cell cycle,

membrane transport and pumps, excitability of ion channels

intercellular communication, pheromone response

A few examples:reference for graphics below

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eCommon modelling strategies

detailed description: (1) positional information of every molecule (2) interaction with others molecules

only suitable for (very) small subsystems

most common simplifying assumptions: (1’) well-stired mixture=spatial homogeneity (2’) reaction rates & law of mass action or reaction probabilities & combinatorics

representation of species according to (1’) by (a) concentrations deterministic differential equations (ODEs) (b) number of molecules stochastic simulation algorithm (Markov process)

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eExample

Conversion of substrate to product catalysed by enzymes:

PEES

ESSE

k

k

k

3

1

2

][]][[][ 21 ESkSEkSt

deterministic stochastic

state: concentration [X](t) of species X at time t

state: number of molecules X(t) (random variable) of species S at time t

])([ nextnext ,ttX|τn, TR P

equation of motion: ODE equation of motion: Markov Process

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

e Efficient Modelling of heterogeneity

compartment models (partially heterogeneous): (1) well-stirred within compartment (ODE,MP) & (2) interaction between compartment (consistent coupling)

reaction-diffusion models (fully heterogeneous) (a) concentration in time and space (deterministic PDE) or (b) 3d-molecular positions (random walk and reaction probabilities)

photo: http://genome-www.stanford.edu/Saccharomyces/yeast_images.shtml

Note: the more complex the model, the more parameters it needs!

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eFor example yeast

Saccharomyces cerevisiae

photo: http://genome-www.stanford.edu/Saccharomyces/yeast_images.shtml

„Yeast have many genes with homologs in humans. Has our understanding of these genes helped our understanding of human biology or disease? In his Perspective, Botstein argues "yes„ […]“

Botstein, Chervitz&Cherry, GENETICS: Yeast as a Model Organism

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eSaccharomyces cerevisiae

photo: http://genome-www.stanford.edu/Saccharomyces/yeast_images.shtml

“MAP (Mitogen Activated protein) kinase pathways play key roles in cellular response towards extracellular signals.” van Drogen & Peter Biology of the Cell 93 (2001)

http://mips.gsf.de/proj/yeast/CYGD/db/index.html

model of the MAPK signalling pathways of yeast:

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eSaccharomyces cerevisiae

photo: http://genome-www.stanford.edu/Saccharomyces/yeast_images.shtml

Question: how does yeast adapt to different osmotic conditions?

signalling pathway based on osmosensors

“Yeast cells in their natural habitats must adapt to extremes of osmoticconditions such as the saturating sugar of drying fruits and the nearlypure water of rain” (Posas et al., Cell 86, 1996)

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eyeast’s two osmosensors

de Nadal, Alepus & Posas, EMBO reports 3 (2002)

“Our current knowledge confirms that many principles of osmoadaptationare conserved across eukaryotes, and therefore the use of yeast as basicmodel system has been of great value elucidating the signal transduction mechanisms underlying the response to high osmolarity.”

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

e

)(1 tk

t

1-

0 500-

osmotic shock

Phosphorelay module

Sln1

Ypd1P Ypd1

Ssk1 Ssk1P

Sln1AP

Sln1HP)(11 tkk 22 k

503 k

504 k

3.05 k

M1.0 Sln1APSln1HPSln1 M1.0 Ypd1PYpd1 M1.0 Ssk1PSsk1

l14105.6 volumecell Molecules) 3915M1.0(

in cooperation with Edda Klipp&group

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

e

)(1 tk

t

1-

0 500-

osmotic shock

stochastic Markov process model

Sln1

Ypd1P Ypd1

Ssk1 Ssk1P

Sln1AP

Sln1HP)(11 tkk 22 k

503 k

504 k

3.05 k

in cooperation with Edda Klipp&group

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

e

)(1 tk

t

1-

0 500-

osmotic shock

deterministic ODE model

Sln1

Ypd1P Ypd1

Ssk1 Ssk1P

Sln1AP

Sln1HP)(11 tkk 22 k

503 k

504 k

3.05 k

in cooperation with Edda Klipp&group

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eComparison of results

sto

cha

stic

Mar

kov

Pro

cess

mod

el

det

erm

inis

tic O

DE

mo

del

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

e

),(),(),()(),( tRctRcktRcR

RDR

tRct i

llliiii

Species i is described through concentration and diffusionconstant

Modelling heterogeneity (PDE)

),( tRci

)(RDi

11

11 ),(),(),(

jj

jijijiR RR

tRctRctRc

1.Spatial discretisation 2.Time discretisation

System of ODEs for concentrationsat grid points

Finite differences:

When is large than homogenous modelling is sufficient!

Method of lines

)(RDi

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eModelling heterogeneity (PDE)

Sln1, Sln1AP, Sln1HP are fixed on the membraneYpd1, Ypd1P, Ssk1, Ssk1P diffuse freely in the cytoplasm

minor influence of heterogeneity due to fast diffusion

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eComparison of results

det

erm

inis

tic O

DE

mo

del

det

erm

inis

tic P

DE

mo

del

Mat

h. M

odel

lieru

ng in

der

Zel

lbio

logi

eConclusion

What are the benefits of computational biology?

What are the conclusions to draw?

What are the problems encountered?