imaging in tyto alba: a toolkit for investigating the ...canary are diluted 1:1 with sample buffer....

20
© Stephanie Pollitt 2015. Originally published in Explorations: The UC Davis Undergraduate Research Journal, Vol. 17 (2015). http://Explorations.UCDavis.edu © e Regents of the University of California. Imaging In Tyto Alba: A Toolkit for Investigating the Auditory Localization Pathway Stephanie L Pollitt, William DeBello Abstract: The barn owl auditory localization circuit undergoes learning through changes in the strength and pattern of synapses, but how these processes occur on a circuit level is unknown. Two new methods have been developed that can be used to study those processes. Array tomography uses antibodies raised against synaptic and neuronal proteins to visualize their distribution in ultrathin brain sections. CLARITY, in contrast, visualizes intact circuits in translucent brains. However, use of these techniques in barn owls requires development of an antibody toolkit that works in avians. Antibodies were vetted using Western blots, immunohistochemistry and array tomography, and assembled into a searchable database called ADAPT. By using this toolkit in conjunction with array tomography and CLARITY, we hope to measure the remodeling of axonal projections and to develop a 3D map to aid microelectrode navigation in vivo. Key Words: Barn Owl, Auditory Localization, Antibodies, CLARITY, Array Tomography Introduction: The barn owl is a predatory species that relies heavily on auditory information to hunt. It has a highly complex auditory map in the Inferior Colliculus External nucleus (ICX) of the tectal lobe that incorporates both Interaural Level Difference (ILD) and Interaural Time Difference (ITD) information from the Inferior Colliculus Core (ICC) lateral shell to localize and catch prey (Figure 1). This map projects onto the visual map, located in the optic tectum (OT), to form a multimodal map of space. Thus, when visual perception is shifted using prisms surgically attached in front of the eyes, there is a mismatch between the visual and auditory perceptions of location. Within hours, the owl will learn to coordinate reaching behavior with its new visual perception of space; this is believed to occur at the level of the Figure 1: Slice of barn owl tectal lobe, stained with SV2a, labeled to show different anatomical structures. Abbreviations: ICC: Inferior Colliculus Core nucleus; ICCls: Inferior Colliculus Core lateral shell; ICX: Inferior Colliculus External nucleus; OT: Optic Tectum.

Upload: others

Post on 01-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

© Stephanie Pollitt 2015. Originally published in Explorations: The UC Davis Undergraduate Research Journal, Vol. 17 (2015). http://Explorations.UCDavis.edu © The Regents of the University of California.

Imaging  In  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway  Stephanie  L  Pollitt,  William  DeBello  

 Abstract:  

The  barn  owl  auditory  localization  circuit  undergoes  learning  through  changes  in  the  strength  and  pattern  of  synapses,  but  how  these  processes  occur  on  a  circuit  level  is  unknown.  Two  new  methods  have  been  developed  that  can  be  used  to  study  those  processes.  Array  tomography  uses  antibodies  raised  against  synaptic  and  neuronal  proteins  to  visualize  their  distribution  in  ultra-­‐thin  brain  sections.  CLARITY,  in  contrast,  visualizes  intact  circuits  in  translucent  brains.  However,  use  of  these  techniques  in  barn  owls  requires  development  of  an  antibody  toolkit  that  works  in  avians.  Antibodies  were  vetted  using  Western  blots,  immunohistochemistry  and  array  tomography,  and  assembled  into  a  searchable  database  called  ADAPT.  By  using  this  toolkit  in  conjunction  with  array  tomography  and  CLARITY,  we  hope  to  measure  the  remodeling  of  axonal  projections  and  to  develop  a  3D  map  to  aid  microelectrode  navigation  in  vivo.    Key  Words:  Barn  Owl,  Auditory  Localization,  Antibodies,  CLARITY,  Array  Tomography    Introduction:    

 The  barn  owl  is  a  predatory  species  that  relies  heavily  on  auditory  information  to  

hunt.  It  has  a  highly  complex  auditory  map  in  the  Inferior  Colliculus  External  nucleus  (ICX)  

of  the  tectal  lobe  that  incorporates  both  Interaural  Level  Difference  (ILD)  and  Interaural  

Time  Difference  (ITD)  information  from  

the  Inferior  Colliculus  Core  (ICC)  lateral  

shell  to  localize  and  catch  prey  (Figure  1).  

This  map  projects  onto  the  visual  map,  

located  in  the  optic  tectum  (OT),  to  form  a  

multimodal  map  of  space.  Thus,  when  

visual  perception  is  shifted  using  prisms  

surgically  attached  in  front  of  the  eyes,  

there  is  a  mismatch  between  the  

visual  and  auditory  perceptions  of  

location.  Within  hours,  the  owl  will  

learn  to  coordinate  reaching  

behavior  with  its  new  visual  perception  of  space;  this  is  believed  to  occur  at  the  level  of  the  

Figure  1:  Slice  of  barn  owl  tectal  lobe,  stained  with  SV2-­‐a,  labeled  to  show  different  anatomical  structures.  Abbreviations:  ICC:  Inferior  Colliculus  Core  nucleus;  ICCls:  Inferior  Colliculus  Core  lateral  shell;  ICX:  Inferior  Colliculus  External  nucleus;  OT:  Optic  Tectum.    

Page 2: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.2

2   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    cerebellum.  However,  when  the  barn  owl  hunts  using  purely  auditory  cues,  the  visual  

adaptation  causes  overcorrected  reaching  behavior.  In  a  matter  of  weeks,  the  ICX  circuit  

will  adapt  to  re-­‐align  the  auditory  and  visual  maps.  At  this  point,  the  owl  will  correctly  

reach  to  visual  and  auditory  stimuli.  Wild  barn  owls  use  this  ability  to  adapt  to  changing  

auditory  cues  as  their  heads  grow,  which  is  consistent  with  the  observation  that  the  

plasticity  in  the  circuit  is  significantly  reduced  in  mature  owls.  This  new  circuit  represents  

a  form  of  learning,  and  there  are  still  questions  regarding  the  synaptic  clustering,  the  

integration  of  excitatory  and  inhibitory  synapses,  and  exactly  how  the  circuit  

reorganization  starts.    

Current  imaging  techniques  like  immunohistochemistry  that  might  be  used  to  

reconstruct  these  circuits  are  insufficient  due  to  low  quality  images  from  thick  slices  of  

tissue,  low  antibody  penetration,  and  the  limited  number  of  antibodies  that  can  be  used  on  

each  slice.  Therefore,  in  order  to  investigate  these  phenomena,  the  laboratory  is  beginning  

to  apply  emerging  tools  for  connectome  reconstruction  including  high-­‐throughput  electron  

microscopy,  cellular/molecular  phenotyping,  array  tomography  and  CLARITY.  The  latter  

two  are  the  focus  of  my  thesis  project.  Array  tomography  encases  blocks  of  brain  tissue  in  a  

resin  then  prepares  a  library  of  antibodies  in  high  resolution.  CLARITY  (Clear  Lipid-­‐

exchanged  Anatomically  Rigid  Imaging/immunostaining-­‐compatible  Tissue  hYdrogel)  is  a  

technique  that  entails  perfusion  with  a  hydrogel,  which  fixes  the  hydrophilic  components  of  

the  brain  in  place.  The  lipids  are  then  removed  via  electrophoresis,  leaving  a  translucent  

brain  that  can  be  stained  with  antibody  and  imaged  intact.  Like  array  tomography,  clarified  

tissue  can  be  subjected  to  elution  and  restaining  with  antibodies.  Both  techniques  can  also  

be  used  to  visualize  tracer  injections.  These  properties  make  both  array  tomography  and  

CLARITY  ideal  for  visualizing  proteins  associated  with  adaptation.  

One  necessary  component  in  both  of  these  techniques  is  a  set  of  antibodies  that  

work  well  in  avian  tissue  across  many  types  of  fixation.  Antibodies  are  generally  against  

proteins  or  peptide  sequences  derived  from  mammals,  so  immunohistochemistry  in  barn  

owls  can  be  a  guessing  game  as  to  whether  or  not  a  particular  antibody  will  bind  its  avian  

counterpart  protein.  This  is  because  amino  acid  sequences  diverge  across  species,  

including  between  mammals  and  aves.  For  example,  the  protein  synapsin,  commonly  used  

to  visualize  synapses  in  mammals,  is  not  present  in  the  avian  genome.  Also,  antibodies  that  

Page 3: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.3

3  

 

work  well  on  one  type  of  fixed  tissue  might  not  work  as  well  on  tissue  fixed  even  slightly  

differently.  Therefore,  having  a  well-­‐vetted  set  of  antibodies  is  integral  to  investigating  the  

barn  owl  learned  circuit.  This  paper  demonstrates  the  efficacy  of  a  selection  of  antibodies  

in  western  blots,  standard  immunohistochemistry,  and  array  tomography,  as  well  as  the    

CLARITY  technique.  

Antibody   Immunogen   Company   Host  Species  

Clonality   Product  Number  

Concentration  (IHC)  

Concentration  (Western  Blot)  

Concentration    (AT)  

CaMKIIα-­‐a   Rat  Calmodulin  Kinase  IIα  6G9  clone  

Genetex   Mouse   IgG1  Monoclonal  

GTX41976    

1:500   1:1500   1:100  

CaMKIIα-­‐b   Recombinant  Rat  Calmodulin  Kinase  IIα  6G9  clone  

Caymen   Mouse   IgG1  Monoclonal  

10011437    

1:500   1:1500   N/A  

CaMKIIα-­‐d   Rat  Calmodulin  Kinase  IIα  6G9  clone  

Enzo  Life  Sciences    

Mouse   IgG1  Monoclonal  

ADI-­‐KAM-­‐CA002-­‐D  

1:500   1:1500   N/A  

GABA-­‐b   Synthetic  human  GABA  Receptor  α1    

Abcam   Rabbit     IgG  Polyclonal    

ab33299   1:500   1:1000   N/A  

GAD-­‐a   Synthetic  rat  GAD  65  and  GAD  67  

Millipore   Rabbit   Polyclonal   ab1511   1:600   N/A   1:100  

GAD-­‐b   Synthetic  Human  GAD  65  and  GAD  67  

Abcam   Rabbit   Polyclonal   ab11070   1:600   N/A   N/A  

GluR1-­‐a   Rat  Glutamate  Receptor  1  (extracellular  domain)  

Millipore   Rabbit   Polyclonal   PC246-­‐100UG  

1:5  (serum  concentration  is  0.1µg/µL)  

N/A   N/A  

GluR2/3-­‐a   Rat  Glutamate  Receptor  2  

Millipore   Rabbit   Polyclonal   07-­‐598   1:500   1:1000   1:100  

SV2-­‐a   Synaptic  vesicles  from  Ommata  

DSHB   Mouse   IgG1  Monoclonal  

SV2   1:200   1:1000   1:500  

Syntag-­‐a   Synthetic  human  Synaptotagmin  1  (amino  acids  276-­‐325  internal  region)  

Sigma   Rabbit   Polyclonal   SAB4502907   1:200   1:600   1:100  

Syntag-­‐b   Rat  synaptotagmin  1    

Millipore   Mouse   IgG2a  Monoclonal  

MAB5200   1:500   N/A   N/A  

Syntag-­‐c   Recombinant  protein  of  rat  synaptotagmin  1  (aa  80  -­‐  421),  which  contains  the  C-­‐terminus  

Synaptic  Systems  (SySy)  

Mouse   IgG2a  Monoclonal  

105011   1:500   N/A   N/A  

Syntag-­‐d   Synthetic  human  Synaptotagmin  1  (amino  acids  176-­‐225  internal  region)  

Sigma   Rabbit   Polyclonal   SAB4502908   1:200   1:600   1:100  

Table  1:  List  of  antibodies  used  in  this  paper,  in  alphabetical  order.  Antibody  ID  was  derived  from  the  antigen  and  a  letter  code  to  segregate  it  from  other  antibodies  from  different  sources  with  the  same  antigen.  Concentrations  refer  to  amount  of  serum  :  amount  of  antibody  solution.  

Page 4: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.4

4

4   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    

 

 

 

 

 

 

 

Methods:    

Immunohistochemistry:    

Barn  owls  are  perfused  with  paraformaldehyde  and  their  brains  are  removed.  The  

tectal  lobes  are  blocked  off  of  the  brain  and  sliced  with  a  microtome  in  40-­‐micron  sections.  

The  sections  are  then  washed  in  0.1M  phosphate  buffer  for  five  minutes  and  blocked  for  an  

hour  in  normal  serum,  bovine  serum  albumin  (BSA),  and  Triton-­‐X  in  phosphate  buffer.  The  

species  of  the  normal  serum  is  matched  to  the  species  used  to  produce  the  secondary  

antibodies.  The  primary  antibodies  are  then  applied  at  antibody-­‐specific  concentrations  

(Table  1)  in  a  mixture  of  normal  goat  serum,  Triton-­‐X,  BSA,  and  phosphate  buffer.    

The  antibodies  used  are  from  separate  species  to  ensure  specific  secondary  binding.  

The  slices  are  allowed  to  incubate  overnight  at  4  degrees  Celsius.  The  next  day,  the  slices  

are  removed  from  the  primary  antibody  solution  and  washed  twice  in  Triton-­‐X,  BSA  in  

phosphate  buffer  for  five  minutes.  The  secondary  solution  is  then  applied,  which  is  

composed  of  BSA,  Triton-­‐X,  and  phosphate  buffer  with  AlexaFluor  secondary  antibodies  at  

a  1:200  concentration.  The  slices  incubate  at  ambient  temperature  out  of  the  light  for  two  

hours.  After  that  time,  the  slices  are  rinsed  five  times  for  two  minutes  each  in  BSA  

phosphate  buffer,  then  twice  for  five  minutes  each  in  phosphate  buffer.  The  slices  are  then  

mounted  and  coverslipped  before  imaging  at  63x  with  a  fluorescent  confocal  microscope.  

Western  Blotting:    

A  precast  gel  is  inserted  into  the  PAGE  set  up,  which  is  then  filled  with  a  running  

buffer  composed  of  Tris  base,  glycine,  SDS,  and  water.  Brain  homogenate  from  rat,  mouse,  

owl,  zebra  finch,  and  canary  are  diluted  1:1  with  sample  buffer.  The  sample  buffer  is  

composed  of  Tris  HCl,  glycerol,  SDS,  bromophenol  blue,  and  2-­‐  mercaptoethanol  in  water.  

Five  µL  of  fluorescent  molecular  marker  and  ten  µL  of  each  mixture  are  then  injected  into  

Page 5: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.5

5  

 

consecutive  wells  of  the  gel.  Electricity  is  then  applied  to  the  set  up  at  80  volts  for  a  half  an  

hour,  then  100  volts  for  the  remainder  of  the  time  until  the  lightest  bands  of  protein  reach  

the  bottom  of  the  gel.    

Once  the  electrophoresis  is  finished,  the  gel  is  placed  with  a  nitrocellulose  

membrane,  two  filter  papers,  and  two  fiber  pads  in  a  tub  of  transfer  buffer  to  soak.  The  gel  

is  then  removed  from  its  cassette  and  placed  in  a  sandwich  set  up  with  a  nitrocellulose  

membrane  and  two  presoaked  filter  papers  and  fiber  pads  on  each  side.  This  sandwich  is  

then  put  in  the  transfer  set  up  so  that  the  membrane  is  between  the  gel  and  the  red  side  of  

the  holder.  The  transfer  buffer,  composed  of  Tris  base,  glycine,  methanol,  and  water  that  

was  used  for  soaking  is  then  poured  into  the  transfer  chamber.  The  whole  set  up  is  then  

run  at  90mA  (using  a  ThermoEC  power  source,  model  EC250)  overnight  at  4  degrees  

Celsius.    

The  next  day,  the  membrane  is  removed  from  the  transfer  set  up  and  rinsed  for  five  

minutes  in  Odyssey  blocking  

buffer  and  phosphate  buffer  

saline.  It  is  then  blocked  at  room  

temperature  for  an  hour  in  the  

same  solution.  The  membrane  is  

then  placed  in  a  primary  

antibody  solution  composed  of  

Odyssey  buffer  and  primary  

antibody  at  antibody-­‐specific  

concentrations.  This  is  allowed  

to  sit  for  four  hours  at  4  degrees  

Celsius  on  a  shaker.    

After  the  membranes  are  

removed  from  the  primary  antibody  solution,  they  are  rinsed  four  times  for  five  minutes  

each  in  a  Tween-­‐20  and  phosphate  buffer  saline  solution.  The  secondary  antibodies  are  

then  diluted  1:10,000  in  Odyssey  blocking  buffer,  and  applied  to  the  membranes  for  one  

hour  at  room  temperature  on  the  bellydancer  shaker.  After  an  hour  the  membranes  are  

Figure  2:  Diagram  of  CLARITY  electrophoresis  setup.  Components  include  a  water  heater/circulator  (1),  a  filter  (2),  and  two  chambers  running  in  parallel,  fitted  with  platinum  wire  to  receive  current  (3).  

Page 6: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.6

6   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    rinsed  four  times  for  five  minutes  in  the  Tween-­‐20  and  phosphate  buffer  saline  solution  

before  imaging.    

Array  Tomography:    

All  array  tomography  

staining  and  imaging  was  

done  at  Aratome  Inc.  in  Palo  

Alto.  A  small  block  of  

perfused  tissue  from  the  owl  

tectum  was  sliced  into  70  nm  

serial  sections  and  placed  on  

a  slide.  The  sections  were  

then  encased  in  LR  White  

resin.  Multiple  rounds  of  

immunohistochemistry  and  

imaging  at  63x  were  then  

performed  on  the  tissue,  with  

the  antibodies  removed  after  

each  round.  Each  antibody  was  imaged  and  stitched  together  into  a  3x3  panel.  

CLARITY:    

This  technique  was  performed  as  described  in  Chung  et  al,  with  slight  modifications  

to  reduce  the  cost  of  the  equipment.  The  animal  (rat  embryo  or  owl)  is  perfused  

transcardially  with  an  acrylamide,  bis-­‐acrylamide,  paraformaldehyde,  and  photoinitiator  in  

phosphate  buffered  saline,  a  solution  called  hydrogel,  which  is  chilled  to  4  degrees  Celsius.  

The  brain  is  removed  and  then  placed  in  50mL  of  hydrogel  solution  and  kept  at  4  degrees  

Celsius  for  two  to  three  days.    

After  sitting  in  the  hydrogel,  the  tissue  is  “degassed”  using  nitrogen,  a  process  that  

promotes  polymerization  of  the  gel  by  removing  the  oxygen.  This  is  done  by  placing  the  

sample  in  a  dessicator  and  alternating  vacuum  and  nitrogen  gas  application.  After  all  of  the  

oxygen  has  been  displaced  from  the  sample,  it  is  placed  in  a  37-­‐degree  water  bath  until  the  

gel  has  solidified.    

Figure  3:  CaMKIIα  immunohistochemistry  images.  a)  From  left  to  right:  CaMKIIα-­‐a,  CaMKIIα-­‐b,  and  CaMKIIα-­‐d.  b)  Large  scale  images  of  where  in  the  tectal  lobe  each  image  was  taken.  Green  circles  indicate  the  exact  spot  targeted  by  confocal  microscopy.    

Page 7: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.7

7

 

 

The  solid  gel  is  removed  

from  the  incubating  bath  and  the  

brain  is  separated  from  the  rest  

of  the  gel.  It  is  then  placed  in  an  

SDS,  boric  acid,  and  sodium  

hydroxide  solution  called  

clearing  solution,  which  is  

incubated  in  the  37-­‐degree  water  

bath  for  three  days.  The  solution  

is  changed  each  day  to  allow  

extra  paraformaldehyde  and  

photoinitiator  to  wash  out.    

After  washing  the  sample,  it  is  placed  in  the  electrophoresis  clearing  set  up  (Figure  

2).  This  consists  of  a  water  circulator/temperature  regulator  (MGW  Lauda  model  MS),  a  

water  filter  (standard  house  filter  from  Home  Depot),  an  electrophoretic  chamber  with  

platinum  electrodes,  and  a  solution  reservoir.  Unlike  in  the  original  paper,  we  chose  to  

place  the  brain  between  two  cell  filters  to  prevent  excessive  movement  while  the  solution  

was  flowing  through  the  electrophoretic  chamber,  where  it  is  subjected  to  both  electricity  

(using  above  power  source  for  western  blots,  which  only  delivered  75  watts  compared  to  

the  300  watt  source  used  in  the  original  paper)  and  water  flow  to  push  the  lipids  out  of  the  

tissue.  After  a  period  of  weeks,  the  brain  is  completely  cleared  and  can  be  stained  with  

multiple  rounds  of  antibodies  and  imaged  intact  with  a  long  focal  distance  40x  objective.  

For  the  purposes  of  this  experiment,  it  was  determined  that  proof-­‐of-­‐principle  would  be  a  

more  achievable  goal  than  trying  to  test  antibodies  with  clarified  tissue,  so  rat  embryo  

brains  were  used  instead  of  owl  tectal  lobes.  

 

Results  

Immunohistochemistry  and  Western  Blots:  

Figure  4:  CaMKIIα  Western  blots,  target  between  50  and  60  kDa.  From  left  to  right:  CaMKIIα-­‐a,  CaMKIIα-­‐b,  and  CaMKIIα-­‐d.  Abbreviations:  “Ms”  is  mouse,  “ZF”  is  zebra  finch,  “Can”  is  canary.  Molecular  weights  to  left.    

Page 8: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.8

8   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    Each  antibody  was  first  screened  with  immunohistochemistry  to  see  if  a  signal  could  be  

observed,  then  used  in  Western  blots  and  array  tomography  if  successful.  Three  CaMKIIα  

antibodies  were  screened,  all  

of  which  are  6G9  clones  

(Table  1).  

Immunohistochemistry  

stains  show  a  Golgi-­‐like  

complete  cell  fill,  including  

distal  dendrites  and  spines  

(Rodriguez-­‐Contreras,  Liu  

and  DeBello,  2005).  CaMKIIα-­‐

a  produced  the  best  signal  

with  the  smallest  amount  of  

noise  of  all  three  antibodies  

(Figure  3a,  left).  This  is  

evident  from  the  complete  cell-­‐fills  and  evident  processes,  as  well  as  the  especially  strong  

signal  in  the  ICX  (Figure  3b,  left).  CaMKIIα-­‐d  produced  the  second  best  signal,  with  a  

slightly  higher  background  than  CaMKIIα-­‐a  but  a  similar  cell-­‐fill  pattern  (Figure  3a,  right).  

The  least  characteristic  antibody  was  CaMKIIα-­‐b,  which  produced  a  weak  signal  and  an  

unusually  high  background  (Figure  3a,  center).  One  possible  explanation  for  this  is  that  the  

image  field  was  inadvertently  located  just  outside  of  ICX,  in  the  superficial  nucleus  of  the  

inferior  colliculus  where  CaMKII  expression  is  known  to  be  low.  To  mitigate  this  possibility,  

multiple  locations  across  the  slice  were  imaged,  which  resulted  in  similar  results  

throughout  the  slice  (Figure  3b,  center).    

Figure  5:  Immunohistochemistry  confocal  images  for  Synaptotagmin.  a)  From  left  to  right:  Syntag-­‐a,  Syntag-­‐b,  Syntag-­‐c,  and  Syntag-­‐d  b)  Large  scale  images  of  where  in  the  tectal  lobe  each  image  was  taken.  Green  circles  indicate  the  exact  spot  targeted  by  confocal  microscopy.    

Page 9: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.9

9

 

 

All  three  were  also  used  for  

Western  blot  (Figure  4).  CaMKIIα-­‐a  is  

the  most  characteristic  pattern  with  a  

single  band  for  each,  but  it  lacks  a  

band  in  the  owl  lane,  and  the  bands  in  

the  zebra  finch  and  canary  lanes  didn’t  

drop  from  the  well.  Because  the  owl  

protein  didn’t  function  well  in  any  of  

the  gels,  it  is  most  likely  that  the  

homogenate  was  damaged  when  the  

lab  freezer  broke  down.  Also,  the  rat  

and  mouse  signals  might  be  the  

strongest  because  they  are  the  

freshest  homogenates,  and  have  been  stored  in  a  proper  freezer.  Although  the  precise  

weight  cannot  be  determined,  the  presence  of  signal,  however  dispersed,  indicates  that  the  

antibody  is  binding  to  a  protein.  With  that  in  mind,  the  CaMKIIα-­‐b  blot  has  more  functional  

owl  forebrain  homogenate  instead  of  the  tectal  lobe  homogenate  like  in  the  CaMKIIα-­‐a  blot.  

However,  all  three  avian  homogenate  lanes  are  still  smeared  and  weak  compared  to  the  

fresher  rat  and  mouse  homogenates.  The  third  blot,  CaMKIIα-­‐d,  is  smeared  for  all  

homogenates  except  the  mouse,  indicating  that  there  might  have  been  other  factors  

contributing  to  the  smearing,  such  as  improper  sample  heating  or  inexperience.  Across  all  

three  blots,  the  bands  that  are  present  are  in  the  correct  position  (between  50  and  60  kDa),  

and  the  ladder  ran  clearly.  

Figure  6:  Synaptotagmin,  molecular  weight  65  kDa,  Western  blots.  From  left  to  right:  Syntag-­‐a  and  Syntag-­‐d.  Abbreviations:  “Ms”  is  mouse,  “ZF”  is  zebra  finch,  “Can”  is  canary.  Molecular  weights  to  left.      

Page 10: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.10

10   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    

Four  different  

synaptotagmin  antibodies  

were  tested  (Table  1).  The  

staining  pattern  for  

synaptotagmin  is  generally  

punctate  grouped  into  

clusters.  Syntag-­‐a  is  the  best  

example  of  this,  with  clear  

points  of  signal,  with  low  

background  staining  (Figure  

5a,  left).  Syntag-­‐d  is  the  

second  best,  with  a  weaker  

signal  and  higher  background  

than  Syntag-­‐a  (Figure  5a,  right).  Syntag-­‐b  and  Syntag-­‐c  are  both  not  quite  correct,  as  they  

seem  to  also  stain  connected  processes  (Figure  5,  center  right  and  center  left).  They  were  

all  imaged  in  similar  regions  of  the  tectal  lobe,  so  the  staining  patterns  should  not  have  

been  affected  by  site  selection  (Figure  5b).  As  the  best  two  examples,  Syntag-­‐a  and  Syntag-­‐d  

were  used  for  a  Western  blot  

(Figure  6).  Syntag-­‐a  (Figure  6  

left)  shows  the  best  staining,  with  

bands  across  the  mammalian  and  

avian  samples,  though  the  owl  

sample  shows  little  staining,  

Figure  7:  GABA-­‐b,  52  kDa.  a)  Confocal  immunohistochemistry  image.  b)  Larger  scale  immunohistochemistry  image.  Green  circle  indicates  the  location  of  the  above  confocal  image.  c)  Western  blot.  Abbreviations:  “Ms”  is  mouse,  “ZF”  is  zebra  finch,  “Can”  is  canary.  Molecular  weights  to  left.    

Figure  8:  GAD  65/67  a)  Confocal  immunohistochemistry  images.  From  left  to  right:  GAD-­‐a  and  GAD-­‐b.  b)  Larger  scale  immunohistochemistry  images.  Green  circle  indicates  the  location  of  the  above  confocal  image.    

Page 11: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.11

11  

 

most  likely  due  again  

to  damaged  

homogenate.  Also,  the  

bands  are  consistent  

across  the  samples,  

and  are  observed  at  

the  expected  

molecular  weight  of  

65  kDa.  It  should  also  

be  noted  that  the  

Syntag-­‐a  and  Syntag  –

d  antibody  binding  is  

weaker  than  most,  

requiring  a  concentration  of  1:200  for  immunohistochemistry  and  1:600  for  Western  blots  

(Table  1).  This  is  considerably  higher  than  most  antibodies  like  CaMKIIα,  which  requires  

1:500  for  immunohistochemistry  and  1:1500  for  Western  blots  (Table  1).  GABARα1  and  

GluR2/3  require  only  1:1000  

for  Western  blots  (Table  1).  

GABA-­‐b  receptor  

immunohistochemistry  

staining  (Figure  7a)  exhibits  a  

clear  signal  with  low  

background  staining,  and  is  

highly  characteristic  of  GABA  

receptor  staining  of  inhibitor  

synapses  (Rodriguez-­‐

Contreras  and  DeBello,  SFN  

poster  2003.).  The  Western  

blot  shows  only  staining  in  the  

mammalian  samples  and  not  

Figure  9:  GluR1-­‐a.  a)  Confocal  immunohistochemistry  image.  b)  Larger  scale  immunohistochemistry  image.  Green  circle  indicates  the  location  of  the  confocal  image.    

Figure  10:  GluR2/3-­‐a,  108  kDa  a)  Confocal  immunohistochemistry  image.  b)  Larger  scale  immunohistochemistry  image.  Green  circle  indicates  the  location  of  the  confocal  image.  c)  Western  blot.  Abbreviations:  “Ms”  is  mouse,  “ZF”  is  zebra  finch,  “Can”  is  canary.  Molecular  weights  to  left.    

Page 12: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.12

12   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    the  avian  ones  (Figure  7c).  Considering  that  the  immunohistochemistry  signal  in  the  tectal  

slice  was  so  clear,  it  is  probable  that  the  avian  homogenates  were  nonfunctional.  The  

mammalian  bands  are  at  the  

correct  weight,  about  52  kDa.  

Two  GAD  65/67  antibodies  

were  tested.  GAD-­‐a  has  an  

unusually  low  signal  and  a  high  

background  staining  (Figure  8a  

left).  GAD-­‐b  was  much  more  

successful,  with  clear  cell  bodies  

that  don’t  overlap  with  those  of  

CaMKIIα  (Figure  8a  right).  

However,  the  GAD-­‐b  background  

staining  is  still  high,  and  there  is  

what  appears  to  be  an  air  bubble  

obscuring  the  staining  close  to  the  

center  of  the  image.  Both  antibodies  were  imaged  in  similar  areas  of  the  slice,  though  the  

slice  is  inverted  on  one  of  the  slides  (Figure  8b).    

GluR1-­‐a  staining  is  ubiquitous,  but  the  signal  is  not  strong  compared  to  the  

background  (Figure  9a).  Several  imaging  locations  were  selected,  but  all  showed  similar  

levels  of  signal  (Figure  9b).  

GluR2/3  immunohistochemistry  staining  shows  clear  structures  and  low  

background  staining  (Figure  10a).  It  was  stained  at  488nm,  the  opposite  channel  to  SV2-­‐a,  

568nm  (Figure  11a).  Qualitatively,  there  is  good  overlap  between  the  staining  patterns.  

One  possible  explanation  is  bleed  through  from  SV2  channel,  where  the  signal  is  strong.  

However,  there  are  several  bright  structures  in  the  SV2  image  that  are  barely,  if  at  all,  

visible  in  the  GluR1  image.  This  argues  against  bleed  through.  In  combination  with  the  fact  

that  GluR2  western  blot  is  strong  and  clean,  the  simplest  interpretation  is  that  the  staining  

patterns  are  highly  complementary,  as  would  be  expected  from  a  pair  of  pre-­‐  and  post-­‐

synaptic  markers.  The  GluR2/3  Western  blot  shows  clear  staining  across  all  channels  with  

Figure  11:  SV2-­‐a  (95  kDa)a)  Confocal  immunohistochemistry  image.  b)  Larger  scale  immunohistochemistry  image.  Green  circle  indicates  the  location  of  the  confocal  image.  c)  Western  blot.  Abbreviations:  “Ms”  is  mouse,  “ZF”  is  zebra  finch,  “Can”  is  canary.  Molecular  weights  to  left.  

Page 13: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.13

13  

 

some  smearing  in  the  

zebra  finch  and  canary  

lanes  (Figure  10c).  The  

bands  are  all  at  the  

correct  weight  of  108  

kDa,  and  the  signal  is  

strong.  

The  SV2-­‐a  

immunohistochemistry  

image  shows  clear  and  

precise  staining  of  

processes  (Figure  11a).  

The  antibody  binding  is  

good,  but  it  has  trouble  penetrating  the  slice,  which  results  in  staining  at  upper  and  lower  

confocal  slices,  but  not  in  the  middle.  For  this  reason,  the  concentration  was  increased  from  

1:500  to  1:200  (Table  1).  Western  blots  are  difficult  with  vesicle  proteins  because  they  are  

difficult  to  separate  from  their  vesicles,  which  vary  in  size.  This  results  in  smearing  across  

the  lane,  with  a  slightly  stronger  band  at  approximately  the  correct  weight  of  (95  kDa).  For  

that  reason,  it  is  unusual  that  the  rat  and  mouse  bands  turned  out  so  clearly  (Figure  11c).  

The  owl  band  is  faint,  most  likely  due  to  the  issues  with  the  homogenate,  and  it  is  smeared  

like  the  zebra  finch  and  canary  lanes.  However,  all  five  samples  have  bands  at  the  correct  

weight.  

Array  Tomography:  

  Due  to  the  expense  of  the  array  tomography  procedure  and  the  difficulty  of  

outsourcing  the  tissue,  only  the  best  antibodies  were  chosen  for  use  in  array  tomography  

on  owl  tectal  lobe  tissue.  Among  those  chosen  were  CaMKIIα-­‐a,  GAD-­‐a,  GluR2/3-­‐a,  SV2-­‐a,  

Syntag-­‐a,  and  Syntag-­‐d  (Figure  12).  The  best  staining  was  unsurprisingly  observed  with  

SV2-­‐a  (Figure  12d),  which  shows  some  processes  and  low  background.  Syntag-­‐a  (Figure  12  

e)  staining  was  good,  with  clear  punctae  and  low  background,  unlike  Syntag-­‐d  (Figure  12f).  

This  is  consistent  with  the  preliminary  immunohistochemistry  testing  (Figure  5).  GluR2/3  

Figure  12:  Array  tomography  images.  Scale  bars  are  10  µm.  a)  CaMKIIα-­‐a;  b)  GAD-­‐a;  c)  GluR2/3-­‐a;  d)  SV2-­‐a;  e)  Syntag-­‐a;  f)  Syntag-­‐d.  

Page 14: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.14

1414   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    (Figure  12c)  doesn’t  show  the  same  processes  that  were  evident  from  the  

immunohistochemistry  images  (Figure  9a).  There  appear  to  be  groups  of  signal  that  are  

hard  to  decipher  from  the  background.  GAD-­‐a  (Figure  12b)  staining  looks  similar  to  the  

immunohistochemistry  testing  performed  previously  (Figure  8a  left).  Unfortunately,  GAD-­‐b  

was  not  tested  in  time  for  it  to  be  used  in  the  array  tomography  round.    The  most  

disappointing  staining  was  CaMKIIα-­‐a  (Figure  12a),  which  showed  none  of  the  

characteristic  cell-­‐fill  staining  that  was  observed  in  the  regular  immunohistochemistry  

(Figure  3a  left).  The  drastic  differences  in  staining  between  normal  immunohistochemistry  

and  array  tomography  are  hypothesized  to  stem  from  the  resin  affecting  the  antibody  

binding  on-­‐off  time  ratio  (conversation  with  Professor  William  DeBello).  All  antibody  data  

from  immunohistochemistry,  Western  blots,  and  array  tomography  were  published  on  a  

Filemaker  database  called  ADAPT  (Antibody  Database  for  Avian  Protein  Targets),  which  

shall  hopefully  be  web  accessible  in  

the  near  future.  

CLARITY:  

  The  CLARITY  procedure  was  

difficult  to  replicate  without  the  

cooling  water  circulator  and  a  

stronger  power  supply  (Figure  2).  

However,  with  the  supplies  used  

the  rat  embryo  brain  ended  up  

fairly  clear,  with  little  yellowing  

(Figure  13).  The  most  problematic  

step  was  the  electrophoretic  

clearing.  The  greatest  change  was  

observed  during  the  incubation  in  clearing  solution  between  days  19  and  36.  The  changes  

due  to  electrophoretic  clearing  between  days  3  and  19  are  almost  unobservable.  Therefore,  

it  is  possible  that  without  the  proper  equipment,  it  is  best  to  leave  the  brain  in  a  vial  of  

clearing  solution  for  a  longer  period  of  time  rather  than  use  substitute  equipment.  One  side  

Figure  13:  Diagram  of  CLARITY  procedure  after  perfusion.  Images  were  taken  by  iPad  camera  every  day,  but  only  a  selection  are  shown  for  simplification  purposes.      

Page 15: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.15

15  

 

effect  of  the  incubation  is  that  the  brain  swells,  as  is  evident  in  the  picture  for  day  36.  

However,  this  decreases  during  incubation  in  the  80%  glycerol  solution.  

Discussion:  

  I  performed  Western  blots  on  protein  homogenates  derived  from  rat,  mouse,  

chicken,  barn  owl,  zebra  finch  and  canary  brain.  Antibodies  that  produced  expected  

banding  patterns  across  mammals  and  birds  were  used  as  probes  for  

immunohistochemistry  and  array  tomography  in  tissue  from  owl  ICX.  Successive  imaging  

of  stained,  stripped  and  re-­‐stained  arrays  produced  high-­‐resolution,  seven-­‐color  image  

volumes  of  ~100,000  cubic  microns.  Antibodies  to  synaptic  proteins  SV2  and  GAD,  as  well  

as  vGlut1/2,  VGAT,  Homer  1,  tubulin  and  myelin  basic  protein  (not  tested  in  this  paper)  

labeled  synapses  and  neuropil  similar  to  that  observed  in  mammalian  tissue.  Other  

antibodies  tested  yielded  equivocal  results  or  failed  entirely.  However,  further  study  with  

more  varied  antibody  concentrations  and  different  perfusion  methods  can  add  to  this  

toolkit,  as  well  as  testing  in  other  species  of  aves.  This  would  result  in  a  more  complete  list  

of  antibodies  and  their  ideal  binding  conditions.  

One  advantage  to  array  tomography  that  is  currently  being  explored  is  the  ability  to  

co-­‐localize  proteins  tagged  by  vetted  antibodies  through  quantitative  image  analysis.  These  

co-­‐localizations  are  being  assessed  quantitatively  using  a  pixel-­‐based  analysis  called  the  

Van  Steensel  method,  which  relies  on  a  Pearson’s  correlation  to  quantify  how  much  two  

antibody  signals  overlap  and  was  used  to  develop  the  FIJI  plugin  Colocalization  Test,  which  

is  being  used  by  a  graduate  student  in  the  lab.  This  is  done  by  taking  the  difference  between  

two  Pearson’s  correlation  coefficients:  one  measured  between  the  two  signals  and  the  

other  measured  against  a  randomized  image.  This  reduces  the  possibility  that  any  

correlation  observed  is  the  result  of  random  chance.  The  result  of  the  statistics  gives  a  

positive  correlation  if  the  two  signals  are  co-­‐localized.  The  next  step  will  be  to  apply  an  

object-­‐based  co-­‐localization  analysis  to  ultimately  to  identify  individual  synapses  based  on  

the  co-­‐localization  of  pre-­‐  and  postsynaptic  proteins  with  spatial  relationships  expected  

based  on  EM  studies.  As  previously  mentioned,  this  is  only  possible  if  a  set  of  antibodies  

like  that  described  in  this  paper  has  been  vetted  for  use  with  this  technique.  

  Some  disadvantages  to  array  tomography,  besides  the  difficulty  with  antibodies,  

include  that  slicing  tissue  distorts  it,  and  that  reconstruction  introduces  error  in  

Page 16: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.16

1616   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    localization.  This  requires  careful  application  of  morphing  algorithims  to  properly  align  

and  register  the  image  stacks  to  produce  a  3-­‐D  volume.  Fortunately,  this  problem  has  been  

mitigated  through  the  use  of  statistical  colocalization  programs,  but  intact  imaging  

methods  such  as  CLARITY  do  not  require  such  reconstruction.  (Micheva  KD,  Busse  B,  

Weiler  NC,  O'Rourke  N,  Smith  SJ;  2010).  

Although  this  paper  does  not  cover  antibody  binding  in  clarified  tissue,  CLARITY  has  

the  benefit  an  isometric  procedure,  which  means  it  doesn’t  change  shape  during  imaging.  

This  reduces  the  distortion  and  the  error  in  image  reconstruction.  Both  procedures  allow  

the  elution  and  restaining  of  the  tissue  with  antibodies,  which  results  in  a  library  of  

identified  proteins  that  can  be  co-­‐localized  without  needing  tissue  from  multiple  

individuals,  as  would  be  necessary  for  normal  immunohistochemistry.  However,  though  

CLARITY  has  been  used  successfully  in  rodents,  animals  such  as  barn  owls  with  larger  

brains  would  be  difficult  to  apply  the  procedure  to.  The  size  of  the  electrophoresis  chamber  

would  need  to  be  expanded  to  encompass  a  whole  owl  brain,  though  it  seems  that  a  single  

tectal  lobe  will  fit  adequately.  Also,  there  seems  to  be  a  relationship  between  the  surface  

area  to  volume  ratio  of  the  brain  and  the  ease  of  removing  the  lipids,  as  evidenced  by  the  

relative  speed  of  lipid  removal  from  different  layers  of  the  brain  (Figure  13).  This  may  

make  it  more  difficult  to  clarify  larger  brains  without  cutting  them  up.  Hopefully  these  

methods,  along  with  a  publically-­‐accessible  version  of  ADAPT,  can  eventually  contribute  to  

the  study  of  barn  owl  connectomics  and  learning  in  the  auditory  localization  pathway.  

Acknowledgements:  

  The  authors  would  like  to  thank  Janet  Keiter  and  Dr.  Stephen  Noctor  of  the  MIND  

institute  for  their  contribution  of  supplies  and  tissue  for  the  CLARITY  project,  as  well  as  

Janet  Keiter’s  invaluable  advice  and  assistance.  Without  them  this  project  would  not  have  

been  possible.  

Page 17: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.17

17  

 

Works  Cited  

1. Adolphs  R.  Acetylcholinesterase  staining  differentiates  functionally  distinct  auditory  

pathways  in  the  barn  owl.  Journal  of  Computational  Neurology.  March  15th,  1993.  

329(3):365-­‐77.  7681456  

2. Buckley  K,  Kelly  RB.  Identification  of  a  transmembrane  glycoprotein  specific  for  

secretory  vesicles  of  neural  and  endocrine  cells.  Journal  of  Cell  Biology.  April,  1985.  

100(4):1284-­‐94.  2579958  

3. Busse  B,  Smith  S.  Automated  analysis  of  a  diverse  synapse  population.  PLoS  

Computational  Biology.  March  28th  2013.  2013;9(3):e1002976.  23555213  

4. Carr  CE,  Fujita  I,  Konishi  M.  Distribution  of  GABAergic  neurons  and  terminals  in  the  

auditory  system  of  the  barn  owl.  Journal  of  Computational  Neurology.  August  8th,  

1989.  286(2):190-­‐207.  2794115  

5. Chung  K,  Wallace  J,  Kim  SY,  Kalyanasundaram  S,  Andalman  AS,  Davidson  TJ,  

Mirzabekov  JJ,  Zalocusky  KA,  Mattis  J,  Denisin  AK,  Pak  S,  Bernstein  H,  Ramakrishnan  

C,  Grosenick  L,  Gradinaru  V,  Deisseroth  K.  Structural  and  molecular  interrogation  of  

intact  biological  systems.  Nature.  May  16th,  2013.  497(7449):332-­‐7.  23575631  

6. DeFelipe  J.  From  the  connectome  to  the  synaptome:  an  epic  love  story.  November  

26th,  2010.  330(6008):1198-­‐201.21109663  

7. Durstewitz  D1,  Kröner  S,  Hemmings  HC  Jr,  Güntürkün  O.  The  dopaminergic  

innervation  of  the  pigeon  telencephalon:  distribution  of  DARPP-­‐32  and  co-­‐

occurrence  with  glutamate  decarboxylase  and  tyrosine  hydroxylase.  Neuroscience.  

April,  1998.  83(3):763-­‐79.  9483560  

8. Hemmings  HC  Jr,  Greengard  P.  DARPP-­‐32,  a  dopamine-­‐  and  adenosine  3':5'-­‐

monophosphate-­‐regulated  phosphoprotein:  regional,  tissue,  and  phylogenetic  

distribution.  Journal  of  Neuroscience.  May,  1986.  6(5):1469-­‐81.  3711991  

9. Hemmings  HC  Jr,  Walaas  SI,  Ouimet  CC,  Greengard  P.  Dopaminergic  regulation  of  

protein  phosphorylation  in  the  striatum  DARPP  32.  Trends  in  Neurosciences.  1987.  

10(9):337-­‐83.  N/A  

10. Jande  SS,  Maler  L,  Lawson  DE.  Immunohistochemical  mapping  of  vitamin  D-­‐

dependent  calcium-­‐binding  protein  in  brain.  Nature.  December  24th,  1981.  

294(5843):765-­‐7.  7033797  

Page 18: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.18

1818   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    

11. Koffie  RM,  Hashimoto  T,  Tai  HC,  Kay  KR,  Serrano-­‐Pozo  A,  Joyner  D,  Hou  S,  Kopeikina  

KJ,  Frosch  MP,  Lee  VM,  Holtzman  DM,  Hyman  BT,  Spires-­‐Jones  TL.  Apolipoprotein  

E4  effects  in  Alzheimer's  disease  are  mediated  by  synaptotoxic  oligomeric  amyloid-­‐

β.  Brain:  a  journal  of  neurology.  July  2012.  135(Pt  7):2155-­‐68.  22637583  

12. Koffie  RM,  Meyer-­‐Luehmann  M,  Hashimoto  T,  Adams  KW,  Mielke  ML,  Garcia-­‐Alloza  

M,  Micheva  KD,  Smith  SJ,  Kim  ML,  Lee  VM,  Hyman  BT,  Spires-­‐Jones  TL.  Oligomeric  

amyloid  beta  associates  with  postsynaptic  densities  and  correlates  with  excitatory  

synapse  loss  near  senile  plaques.  Proceedings  of  the  National  Acadamy  of  Sciences  

in  the  United  States  of  America.  March  10th,  2009.  106(10):4012-­‐7.  19228947  

13. Kopeikina  KJ,  Polydoro  M,  Tai  HC,  Yaeger  E,  Carlson  GA,  Pitstick  R,  Hyman  BT,  

Spires-­‐Jones  TL.  Synaptic  alterations  in  the  rTg4510  mouse  model  of  tauopathy.  

Journal  of  Comparative  Neurology.  Apr  15,  2013.  521(6):1334-­‐53.  23047530  

14. Kubke  MF,  Carr  CE.  Development  of  AMPA-­‐selective  glutamate  receptors  in  the  

auditory  brainstem  of  the  barn  owl.  Microscopy  Research  and  Technique.  May  1st,  

1998.  41(3):176-­‐86.  9605336  

15. Kubke  MF1,  Gauger  B,  Basu  L,  Wagner  H,  Carr  CE.  Development  of  calretinin  

immunoreactivity  in  the  brainstem  auditory  nuclei  of  the  barn  owl  (Tyto  alba).  

December  13th,  1999.  415(2):189-­‐203.  10545159  

16. Lacey  CJ,  Bryant  A,  Brill  J,  Huguenard  JR.  Enhanced  NMDA  receptor-­‐dependent  

thalamic  excitation  and  network  oscillations  in  stargazer  mice.  Journal  of  

neuroscience:  the  official  journal  of  the  Society  for  Neuroscience.  Aug  8th,  2012.  

32(32):11067-­‐81.  22875939  

17. Levin  MD,  Kubke  MF,  Schneider  M,  Wenthold  R,  Carr  CE.  Localization  of  AMPA-­‐

selective  glutamate  receptors  in  the  auditory  brainstem  of  the  barn  owl.  Journal  of  

Computational  Neurology.  February  10th,  1997.  378(2):239-­‐53.  9120063  

18. Micheva  KD,  Busse  B,  Weiler  NC,  O'Rourke  N,  Smith  SJ.  Single-­‐synapse  analysis  of  a  

diverse  synapse  population:  proteomic  imaging  methods  and  markers.  Neuron.  

November  18th,  2010.  68(4):639-­‐53.  21092855  

19. Micheva  KD,  O'Rourke  N,  Busse  B,  Smith  SJ.  Array  tomography:  rodent  brain  fixation  

and  embedding.  Cold  Spring  Harbor  Protocols.  November  1st,  2010.  2010(11).  

21041396  

Page 19: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.19

19  

 

20. Micheva  KD,  O'Rourke  N,  Busse  B,  Smith  SJ.  Array  tomography:  production  of  arrays.  

Cold  Spring  Harbor  Protocols.  November  1st,  2010.  2010(11).  21041397  

21. Micheva  KD,  O'Rourke  N,  Busse  B,  Smith  SJ.  Array  tomography:  immunostaining  and  

antibody  elution.  Cold  Spring  Harbor  Protocols.  November  1st,  2010.  2010(11).  

21041398  

22. Micheva  KD,  O'Rourke  N,  Busse  B,  Smith  SJ.  Array  tomography:  imaging  stained  

arrays.  Cold  Spring  Harbor  Protocols.  November  1st,  2010.  2010(11).    21041399  

23. Micheva  KD,  O'Rourke  N,  Busse  B,  Smith  SJ.  Array  tomography:  semiautomated  

image  alignment.  Cold  Spring  Harbor  Protocols.  November  1st,  2010.  2010(11).    

21041400  

24. Micheva  KD,  Smith  SJ.  Array  tomography:  a  new  tool  for  imaging  the  molecular  

architecture  and  ultrastructure  of  neural  circuits.  Neuron.  July  5th,  2007.  55(1):25-­‐

36.  17610815  

25. Nichols  GS,  DeBello  WM.  Bidirectional  regulation  of  the  cAMP  response  element  

binding  protein  encodes  spatial  map  alignment  in  prism-­‐adapting  barn  owls.  Journal  

of  Neuroscience.  October  1st,  2008.  8(40):9898-­‐909.  18829948  

26. Oberti  D,  Kirschmann  MA,  Hahnloser  RH.  Projection  neuron  circuits  resolved  using  

correlative  array  tomography.  April  12th,  2011.  5:50.  21519397  

27. Oertel  WH,  Schmechel  DE,  Tappaz  ML,  Kopin  IJ.  Production  of  a  specific  antiserum  to  

rat  brain  glutamic  acid  decarboxylase  by  injection  of  an  antigen-­‐antibody  complex.  

Neuroscience.  1981.  6(12):2689-­‐700.  7322358  

28. Maczko  KA1,  Knudsen  PF,  Knudsen  EI.  Auditory  and  visual  space  maps  in  the  

cholinergic  nucleus  isthmi  pars  parvocellularis  of  the  barn  owl.  Journal  of  

Neuroscience.  December  6th,  2006.  26(49):12799-­‐806.  17151283  

29. Parameshwaran-­‐Iyer  S1,  Carr  CE,  Perney  TM.  Localization  of  KCNC1  (Kv3.1)  

potassium  channel  subunits  in  the  avian  auditory  nucleus  magnocellularis  and  

nucleus  laminaris  during  development.  Journal  of  Neurobiology.  May,  2003.  

55(2):165-­‐78.  12672015  

30. Parameshwaran  S,  Carr  CE,  Perney  TM.  Expression  of  the  Kv3.1  potassium  channel  

in  the  avian  auditory  brainstem.  Journal  of  Neuroscience.  January  15th,  2001.  

21(2):485-­‐94.  11160428  

Page 20: Imaging In Tyto Alba: A Toolkit for Investigating the ...canary are diluted 1:1 with sample buffer. The sample buffer is composed of Tris HCl, glycerol, SDS, bromophenol blue, and

UC Davis | EXPLORATIONS: THE UNDERGRADUATE RESEARCH JOURNALVol. 17 (2015) S. Pollitt p.20

2020   Imaging  in  Tyto  Alba:  A  Toolkit  for  Investigating  the  Auditory  Localization  Pathway    

31. Pena  JL,  DeBello  WM.  Auditory  processing,  plasticity,  and  learning  in  the  barn  owl.  

National  Research  Council,  Institute  of  Laboratory  Research  Animal  Resources  

Journal.  2010.  51(4):338-­‐52.  21131711  

32. Perney  TM,  Kaczmarek  LK.  Localization  of  a  high  threshold  potassium  channel  in  the  

rat  cochlear  nucleus.  Journal  of  Computational  Neurology.  September  22nd,  1997.  

386(2):178-­‐202.  9295146  

33. Rodriguez-­‐Contreras  and  DeBello.  SFN  poster  2003.  

34. Rodriguez-­‐Contreras  A,  Liu  XB,  DeBello  WM.  Axodendritic  contacts  onto  

calcium/calmodulin-­‐dependent  protein  kinase  type  II-­‐expressing  neurons  in  the  

barn  owl  auditory  space  map.  Journal  of  Neuroscience.  June  8th,  2005.  25(23):5611-­‐

22.  15944389  

35. Takahashi  TT,  Carr  CE,  Brecha  N,  Konishi  M.  Calcium  binding  protein-­‐like  

immunoreactivity  labels  the  terminal  field  of  nucleus  laminaris  of  the  barn  owl.  

Journal  of  Neuroscience.  June  1987.  7(6):1843-­‐56.  2439666  

36. van  Steensel  B,  van  Binnendijk  EP,  Hornsby  CD,  van  der  Voort  HT,  Krozowski  ZS,  de  

Kloet  ER,  van  Driel  R.  Partial  colocalization  of  glucocorticoid  and  mineralocorticoid  

receptors  in  discrete  compartments  in  nuclei  of  rat  hippocampus  neurons.  Journal  of  

Cell  Science.  April,  1996.  109  (Pt  4):787-­‐92.  8718670  

37. Wagner  H1,  Güntürkün  O,  Nieder  B.  Anatomical  markers  for  the  subdivisions  of  the  

barn  owl's  inferior-­‐collicular  complex  and  adjacent  peri-­‐  and  subventricular  

structures.  Journal  of  Computational  Neurology.  October  6th  2003.  465(1):145-­‐59.  

12926022  

38. Wenthold  RJ,  Yokotani  N,  Doi  K,  Wada  K.  Immunochemical  characterization  of  the  

non-­‐NMDA  glutamate  receptor  using  subunit-­‐specific  antibodies.  Evidence  for  a  

hetero-­‐oligomeric  structure  in  rat  brain.  Journal  of  Biological  Chemistry.  January  5th,  

1992.  267(1):501-­‐7.  1309749  

39. Wenthold  RJ,  Zempel  JM,  Parakkal  MH,  Reeks  KA,  Altschuler  RA.  

Immunocytochemical  localization  of  GABA  in  the  cochlear  nucleus  of  the  guinea  pig.  

August  13th,  1986.  380(1):7-­‐18.  3530371