impact of deep n-well implantation on substrate noise coupling … · 2002-09-02 · conclusions...

22
Aug’01 14Aug’01 Click to edit Master title style Impact of Deep N-well Implantation on Substrate Noise Coupling and RF Transistor Performance for Systems-on-a- Chip Integration Authors : K. W. Chew, J. Zhang, K. Shao, W. B. Loh and S-. F. Chu Presented by K. W. Chew

Upload: others

Post on 14-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Rev0.8

Aug’01

Rev0.6

14Aug’01

Click to edit Master title style

CHARTERED TECHNOLOGY FORUM 2001

Impact of Deep N-well Implantation on Substrate Noise

Coupling and RF Transistor Performance for Systems-on-a-

Chip Integration

Authors : K. W. Chew, J. Zhang, K. Shao, W. B. Loh and S-. F. Chu

Presented by K. W. Chew

Outline

1. Introduction2.Deep Nwell Process Overview3.Substrate Coupling Test Structures4.S21 Isolation5.Effect on RF Transistor Performance6.Conclusions

Introduction

Source : IEEE Journal of Solid-State Circuits, Vol. 33, No. 3, pp. 314-323, Mar. 1998

Deep N-well Process Overview

STI formation

Deep n-well implant

P-well formation

N-well formation

Channel implants

Gate insulator and gate electrode

Pocket I/I + LDD I/I

Co salicidation

Sidewall spacer and S/D I/I

BEOL

Deep N-well Process Overview

Dop

ing

conc

entr

atio

n (c

m-3

)Deep N-well and P-well SIMS Profiles

CMOS with Deep N-well Technology

P-Well

N+ N+

Deep n-Well

N-Well

N+

N-Well

N+

p-substrate

STI STISTI STIP+P+STI STIP+ P+

P-Well

N+ N+

Deep n-Well

N-Well

N+

N-Well

N+

p-substrate

STI STISTISTI STIP+P+STISTI STISTIP+ P+

Transistor Cross-Sectional View

Deep N-well RF Isolation Test Structures

(a) Typical Layout*

N+

with DNW

P+P+P+ P+

(b) More Complex Layout*

* The authors would like to acknowledge Institute of Microelectronics (Singapore) VLSI department for the test structure layouts

N+

GR

DNW

P+P+P+ P+

N+

DNW

GR

Diode-Type Substrate Coupling Structure in Deep N-well

P+P+

P-Well

Deep n-Well

N-Well

N+

p-substrate

STISTISTI P+STIP+ P+N+ or P+

G P

N-Well

N+STI STI

N GRPNGR

STISTI

S

P+P+

P-Well

Deep n-Well

N-Well

N+

p-substrate

STISTISTI P+STIP+ P+N+ or P+

G P

N-Well

N+STI STI

N GRPNGR

STISTI

S

Effect of Different Body Biasing Techniques on RF Isolation for P+ Noise Generators

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

0.1 1 10

Frequency (GHz)

S21

Isol

atio

n (d

B)

without DNWwith DNW + unbiased P and N + no GRwith DNW + unbiased P and N + grounded GRwith DNW + unbiased P + grounded N and GRwith DNW + unbiased P + grounded N + no GRBackground noise

G to S spacing : 280µmDNW Implant : P1E13/900KeV

Effect of Different Body Biasing Techniques on RF Isolation for N+ Noise Generators

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

0.1 1 10

Frequency (GHz)

S21

Isol

atio

n (d

B)

with DNW + P and N tied to Vdd + grounded GR

with DNW + grounded P + N tied to Vdd + no GR

with DNW + grounded P + unbiased N + grounded GR

G to S spacing : 280µmDNW Implant : P1E13/900KeV

Effect of Different Body Biasing Techniques on RF Isolation for N+ Noise Generators

-90

-80

-70

-60

-50

-40

-30

-20

-10

0.1 1 10

Frequency (GHz)

S21

Isol

atio

n (d

B)

without DNW (P+ to P+)without DNW (N+ to P+)with DNW + unbiased P and N + no GRwith DNW + unbiased P + N tied to Vdd + no GRwith DNW + unbiased P and N + grounded GRwith DNW + unbiased P + N tied to Vdd + grounded GR

G to S spacing : 50µmDNW Implant : P2E13/900KeV

Effect of Deep Nwell Dosage on RF Isolation for P+

Noise Generators

-70

-65

-60

-55

-50

-45

-40

-35

-30

0.1 1 10Frequency (GHz)

S21

Isol

atio

n (d

B)

with DNW P1E13/900KeV

with DNW P2E13/900KeV

with DNW P3E13/900KeV

without DNW

G to S spacing : 280µm

Thin-Gate Oxide MOSFETs in Deep N-well DC Characteristics

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

-1.8 -1.3 -0.8 -0.3 0.2 0.7 1.2 1.7

Vds (V)

Ids (

A/um

)

N-std0V N-s td1.2V N-s td1.8VN-DW0V N-DW1.2V N-DW1.8VP-std0V P-std-1.2V P-std-1.8VP-DW0V P-DW-1.2V P-DW-1.8V

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

-1.8 -1.2 -0.6 0 0.6 1.2 1.8

Vg (V)

Ids

(A/u

m)

P-std P-DWN-std N-DW

Thick-Gate Oxide MOSFETs in Deep N-well DC Characteristics

1.00E-14

1.00E-12

1.00E-10

1.00E-08

1.00E-06

1.00E-04

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Vg (V)

Ids (A

/um)

P-std P-DWN-std N-DW

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Vds (V)

Ids (A

/um)

P-std0V P-s td-2.1V P-s td-3.5V

N-std0V N-std2.1V N-std3.5V

P-DW0V P-DW-2.1V P-DW-3.5V

N-DW0V N-DW2.1V N-DW3.5V

Effect of Deep Nwell on the RF Transistor AC Characteristics Extracted from S-parameters

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 5 10 15 20 25

Frequency (GHz)

Cap

acita

nces

(pF)

w/o DNW

w DNW

Cgd

C gg

C gb

NMOSFET Lgate = 0.25 µmWfinger = 9.58 µmNfinger = 8Vds = 2.5V Vgs = 1.0V

Effect of Deep Nwell on the RF Transistor AC Characteristics Extracted from CV Measurements

N+/P-well Junction CapacitanceArea : 225 µm2

Perimeter : 60 µmFrequency : 100 KHzDot: with Deep NwellLine: without Deep Nwell

Comparison of RF Transistor High Frequency Characteristics with and without Deep N-well

S11 S12Red : without Deep N-well Blue : with Deep N-well

S21

S22 H21 Unilateral Gain

Effect of Deep N-well on RF Transistor Figures-of-Merit

0

10

20

30

40

50

60

70

1.0E-02 1.0E-01 1.0E+00

Ids per unit width (mA/µm)

Freq

uenc

y (G

Hz)

w/o DNW

w DNW

NMOSFET Lgate = 0.25 µmWfinger = 9.58 µmNfinger = 8Vds = 2.5V

f max

f t

Comparison of RF Transistor HF Noise Characteristics with and without Deep N-well

Red : without Deep N-well Blue : with Deep N-well

0.0

0.5

1.0

1.5

2.0

2.5

1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

Frequency (GHz)

NFm

in (d

B)

w/o DNWw DNW

NMOS TransistorLf=0.18µmWf=5µmNf=16Vgs=1.2VVds=0.6V

Triode

0.0

0.5

1.0

1.5

2.0

2.5

1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

Frequency (GHz)

NFm

in (d

B)

w/o DNWw DNW

NMOS TransistorLf=0.18µmWf=5µmNf=16Vgs=1.8VVds=1.8V

Saturation

Comparison of RF Transistor 1/f Noise Characteristics with and without Deep N-well

1.00E-17

1.00E-16

1.00E-15

1.00E-14

1.00E-13

1.00E-12

1 10 100 1000 10000

Frequency (Hz)

S Id (

A2 /Hz)

with DNWw/o DNW

NMOS TransistorsLgate = 0.18µmNfinger = 16Lfinger = 5µmVds = 0.7VVgs = 1.8V

Triode Saturation

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1 10 100 1000 10000

Frequency (Hz)

S Id

(A2 /H

z)

with DNW

w/o DNW

NMOS TransistorsLgate = 0.18µmNfinger = 16Lfinger = 5µmVds = 1.8VVgs = 0.9V

Vertical NPN Bipolar from the 0.18 µm Deep N-well Technology

0

1

2

3

4

5

6

0 1 2 3 4 5

Vc (V)

Ic (m

A)

Ib=50uA Ib=100uAIb=150uA Ib=200uAIb=250uA Ib=300uA

N+

P+

N+

• VA = 22V

• BVCEO = 6V

• BVCBO = 17V

1.0E-131.0E-121.0E-111.0E-101.0E-091.0E-081.0E-071.0E-061.0E-051.0E-041.0E-031.0E-021.0E-011.0E+00

-2.0-1.5-1.0-0.50.0Veb (V)

Ib(1

) , Ic(2

) (A)

(2)

(1)

0

2

4

6

8

10

12

14

16

18

20

1.0E-12 1.0E-10 1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00

Ic (A)

β

AE : 5X5 µm2

Conclusions

1.Deep n-well is effective in isolating substrate coupling for NMOSFET

2.Maximum of 35 dB isolation at 100 MHz obtained with deep n-well plus grounded nwelland p+ guard ring, using deep n-well dose and implant energy of P1E13 @ 900 KeV

3.Deep n-well process with optimum dosage and energy will not impact the dc, ac, rf, and noise performance

4.Vertical NPN bipolar with beta of 14 can be obtained from the deep n-well technology