improved side-channel analysis of finite-field multiplication · introduction side-channel attacks...

32
09-15-2015 1 / 20 Improved Side-Channel Analysis of Finite-Field Multiplication Sonia Belaïd 1 Jean-Sébastien Coron 2 Pierre-Alain Fouque 3 Benoît Gérard 4 Jean-Gabriel Kammerer 5 Emmanuel Prouff 6 1 École normale supérieure and Thales Communications & Security, 2 University of Luxembourg 3 Université de Rennes 1 and Institut Universitaire de France 4 DGA.MI and IRISA 5 DGA.MI and IRMAR 6 ANSSI

Upload: others

Post on 06-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 1 / 20

Improved Side-Channel Analysis ofFinite-Field Multiplication

Sonia Belaïd1 Jean-Sébastien Coron2 Pierre-Alain Fouque3

Benoît Gérard4 Jean-Gabriel Kammerer5 Emmanuel Prouff6

1École normale supérieure and Thales Communications & Security,

2University of Luxembourg

3Université de Rennes 1 and Institut Universitaire de France

4DGA.MI and IRISA

5DGA.MI and IRMAR

6ANSSI

Page 2: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 2 / 20

Outline

IntroductionSide-Channel AttacksClassical Power-Analysis AttacksHidden Multiplier ProblemState of The Art

New AttackMain IdeaFilteringSolving the System with ErrorsExtension to Chosen Inputs

Conclusion

Page 3: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 3 / 20

Outline

IntroductionSide-Channel AttacksClassical Power-Analysis AttacksHidden Multiplier ProblemState of The Art

New AttackMain IdeaFilteringSolving the System with ErrorsExtension to Chosen Inputs

Conclusion

Page 4: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 4 / 20

Ü Black-box cryptanalysisÜ Side-channel analysis

mi

k

c i

Li

Page 5: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 4 / 20

Ü Black-box cryptanalysis: A ← (mi , c i)

Ü Side-Channel Analysis

mi

k

c i

Li

Page 6: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 4 / 20

Ü Black-box cryptanalysisÜ Side-Channel Analysis: A ← (mi , c i ,Li)

mi

k

c i

Li

Page 7: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 4 / 20

Ü Black-box cryptanalysisÜ Side-Channel Analysis: A ← (mi , c i ,Li)

mi

k

c i

Li

Page 8: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 4 / 20

Ü Black-box cryptanalysisÜ Side-Channel Analysis: A ← (mi , c i ,Li)

mi

k

c i

Li

Page 9: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 4 / 20

Ü Black-box cryptanalysisÜ Side-Channel Analysis: A ← (mi , c i ,Li)

mi

k

c i

Li

Page 10: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 4 / 20

Ü Black-box cryptanalysisÜ Side-Channel Analysis: A ← (mi , c i ,Li)

mi

k

c i

Li

Page 11: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 5 / 20

Classical Power-Analysis Attack against AES

128-bit input m

⊕k0

S-box

8-bit v

– 8 bits

Attack on 8 bitsI prediction of the outputs for the

256 possible 8-bit secretI correlation between predictions

and leakageI selection of the best correlation to

find the correct 8-bit secret

Attack on 128 bitsI repetition of the attack on 8 bits

on each S-box

Page 12: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 6 / 20

Power-Analysis Attack against AES-GCMauthentication, multiplication-based fresh re-keying, ...

Ü k is only manipulated in multiplications

128-bit input m 128-bit key k

×8

×8

...

×8

128-bit output v

128-bit input m 128-bit key k

×128

128-bit output v

Page 13: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 6 / 20

Power-Analysis Attack against AES-GCMauthentication, multiplication-based fresh re-keying, ...

Ü k is only manipulated in multiplications

128-bit input m 128-bit key k

×8

×8

...

×8

128-bit output v

128-bit input m 128-bit key k

×128

128-bit output v

Page 14: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 7 / 20

Hidden Multiplier Problem

DefinitionLet k ← GF(2n). Let ` ∈ N.Given a sequence {mi ,Li}1≤i≤`where

I mi ← GF(2n)

I Li = HW(v i)+εi , εi ∼ N (0, σ2)

recover k .

n-bit input m n-bit key k

×n

n-bit output v

Page 15: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 8 / 20

State of The Art

Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard.Side-channel analysis of multiplications in GF(2128) - application to AES-GCM.In Asiacrypt 2014, Proceedings, Part II, pages 306–325.

Ü use Hamming Weights’ LSBÜ solve a system with errors

Signal-to-Noise Ratio = signal variancenoise variance = 32/σ2

Method 3.200 800 200 128

Naive method (Cs, Ct ) (28, 221) (28, 221) (28, 265) (28, 2107)

LPN (LF Algo) (Cs, Ct ) (211, 214) (220, 222) (232, 234) (248, 250)

Linear decoding (Cs, Ct ) (26, 26) (26, 27) (28, 225) (29, 262)

8 specific to multiplication in GF(2128)

8 highly impacted by noise

Page 16: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 8 / 20

State of The Art

Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard.Side-channel analysis of multiplications in GF(2128) - application to AES-GCM.In Asiacrypt 2014, Proceedings, Part II, pages 306–325.

Ü use Hamming Weights’ LSBÜ solve a system with errors

Signal-to-Noise Ratio = signal variancenoise variance = 32/σ2

Method 3.200 800 200 128

Naive method (Cs, Ct ) (28, 221) (28, 221) (28, 265) (28, 2107)

LPN (LF Algo) (Cs, Ct ) (211, 214) (220, 222) (232, 234) (248, 250)

Linear decoding (Cs, Ct ) (26, 26) (26, 27) (28, 225) (29, 262)

8 specific to multiplication in GF(2128)

8 highly impacted by noise

Page 17: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 9 / 20

Outline

IntroductionSide-Channel AttacksClassical Power-Analysis AttacksHidden Multiplier ProblemState of The Art

New AttackMain IdeaFilteringSolving the System with ErrorsExtension to Chosen Inputs

Conclusion

Page 18: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 10 / 20

Contributions

New Attack:Ü filter the multiplication’s outputs leakage to extract high and low

Hamming weightsÜ solve a system with errors

4 less impacted by noise4 more generic

Page 19: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 10 / 20

Contributions

New Attack:Ü filter the multiplication’s outputs leakage to extract high and low

Hamming weightsÜ solve a system with errors

4 less impacted by noise4 more generic

Page 20: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 11 / 20

Main Idea of The Attack

Reminder:L(v) = HW(v) + ε = HW(m · k) + ε

Extreme cases:

HW(v) = 0 Ü v = 0

v0 =⊕

06j<n

( ⊕i∈I(0,j)

mi

)kj = 0

v1 =⊕

06j<n

( ⊕i∈I(1,j)

mi

)kj = 0

......

...

vn−1 =⊕

06j<n

( ⊕i∈I(n−1,j)

mi

)kj = 0

HW(v) = n Ü v = 2n − 1

v0 =⊕

06j<n

( ⊕i∈I(0,j)

mi

)kj = 1

v1 =⊕

06j<n

( ⊕i∈I(1,j)

mi

)kj = 1

......

...

vn−1 =⊕

06j<n

( ⊕i∈I(n−1,j)

mi

)kj = 1

with an error probability p

Page 21: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 11 / 20

Main Idea of The Attack

Reminder:L(v) = HW(v) + ε = HW(m · k) + ε

Usual cases:

L(v) low Ü v ≈ 0

v0 =⊕

06j<n

( ⊕i∈I(0,j)

mi

)kj = 0

v1 =⊕

06j<n

( ⊕i∈I(1,j)

mi

)kj = 0

......

...

vn−1 =⊕

06j<n

( ⊕i∈I(n−1,j)

mi

)kj = 0

L(v) high Ü v ≈ 2n − 1

v0 =⊕

06j<n

( ⊕i∈I(0,j)

mi

)kj = 1

v1 =⊕

06j<n

( ⊕i∈I(1,j)

mi

)kj = 1

......

...

vn−1 =⊕

06j<n

( ⊕i∈I(n−1,j)

mi

)kj = 1

with an error probability p

Page 22: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 12 / 20

Two Steps

1. filter the lowest and highest Hamming weights with a limitednumber of consumption traces to limit the error probability p

Ü obtain a linear system with errors

2. solve the system with the error probability p

Ü recover the secret key k

Page 23: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 13 / 20

Step 1: Filtering

20 40 60 80 100

0.0

2.0

4.0

6.0

·10−2 50 78

B(128,0.5)

HW < n2 − λ

√n

2 HW > n2 + λ

√n

2

SNR = 128n = 128λ ≈ 2.5

filtering: 1 trace over 25

error probability: p ≈ 0.38

Page 24: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 14 / 20

Step 1: Filtering

Proportion of filtered acquisitions:

F (λ, σ) = 1− 2−nn∑

y=0

(ny

) n/2+λs∫n/2−λs

φy,σ(t)dt , with s =√

n/2

Error probability:

p(λ, σ) =1

F (λ, σ)

n∑y=0

(ny

)2n

yn

n/2−λs∫−∞

φy,σ(t)dt

︸ ︷︷ ︸low Hamming weights

+(

1− yn

) +∞∫n/2+λs

φy,σ(t)dt

︸ ︷︷ ︸high Hamming weights

Page 25: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 15 / 20

Step 1: Filtering

log2(1/F (λ)) 30 25 20 15 10 5SNR = 128, σ = 0.5

λ 6.00 5.46 4.85 4.15 3.29 2.16p 0.23 0.25 0.28 0.31 0.34 0.39

p [BFG14] 0.31SNR = 8, σ = 2

λ 6.37 5.79 5.14 4.39 3.48 2.28p 0.25 0.27 0.29 0.32 0.35 0.40

p [BFG14] > 0.49SNR = 2, σ = 4

λ 7.42 6.73 5.97 5.09 4.03 2.64p 0.28 0.30 0.32 0.34 0.37 0.41

p [BFG14] > 0.49SNR = 0.5, σ = 8

λ 10.57 9.58 8.48 7.21 5.71 3.73p 0.34 0.36 0.37 0.39 0.41 0.44

p [BFG14] > 0.49

Page 26: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 16 / 20

Step 2: Solving the System with Errors

Classical LPN problem: recover the secret key from a noisysystem

- limited memory- limited computational power

Specific constraints:- limited number of equations/consumption traces- key size n (e.g., 128)- probability of errors dependent on the filtering and on the noise

Page 27: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 17 / 20

ExperimentsI Filtering on a Virtex 5 (128 bits) : SNR = 8.21, σ = 7.11

1 1.5 2 2.5 3 3.5 4

0.36

0.38

0.4

0.42

0.44

filtering (λ)

erro

rpro

babi

litie

s ptheoreticalpexperimental

I Expected complexities to recover k with 220 traces (p ≈ 0.29)

(time , memory )

(259.31, 227.00)(251.68, 236.00)(250.00, 244.00)

Page 28: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 18 / 20

Extension: Chosen Inputs in GF(2128)

1. Exhibit the noisy system:I MSB(m · k) = 0 Ü HW((2 ·m) · k) = HW(m · k)I MSB(m · k) = 1 Ü

|HW((2 ·m) · k)− HW(m · k)| =

{1 with probability = 3/43 with probability = 1/4

SNR (σ) 128 (0.5) 8 (2) 2 (4) 0.5 (8)p 0.003 0.27 0.39 0.46

2. Solve the noisy system:I only 128 equationsI repetitions to obtain a system with almost no error

Example:Ü SNR of 128 can be achieved from an SNR of 2 and 64 repetitionsÜ 128 × 0.003 = 0.384 errorsÜ solving the system with a single error: 27 key verifications

Page 29: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 18 / 20

Extension: Chosen Inputs in GF(2128)

1. Exhibit the noisy system:I MSB(m · k) = 0 Ü HW((2 ·m) · k) = HW(m · k)I MSB(m · k) = 1 Ü

|HW((2 ·m) · k)− HW(m · k)| =

{1 with probability = 3/43 with probability = 1/4

SNR (σ) 128 (0.5) 8 (2) 2 (4) 0.5 (8)p 0.003 0.27 0.39 0.46

2. Solve the noisy system:I only 128 equationsI repetitions to obtain a system with almost no error

Example:Ü SNR of 128 can be achieved from an SNR of 2 and 64 repetitionsÜ 128 × 0.003 = 0.384 errorsÜ solving the system with a single error: 27 key verifications

Page 30: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 19 / 20

Outline

IntroductionSide-Channel AttacksClassical Power-Analysis AttacksHidden Multiplier ProblemState of The Art

New AttackMain IdeaFilteringSolving the System with ErrorsExtension to Chosen Inputs

Conclusion

Page 31: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 20 / 20

Conclusion

Summary? attack on multiplications without looking inside the multiplication? less noise sensitive than [BFG14]? practical for n = 128

Further Work? application of similar attacks to other primitives? deeper analysis of LPN techniques to improve solving in

side-channel contexts

Thank you for your attention.

Page 32: Improved Side-Channel Analysis of Finite-Field Multiplication · Introduction Side-Channel Attacks Classical Power-Analysis Attacks Hidden Multiplier Problem State of The Art New

09-15-2015 20 / 20

Conclusion

Summary? attack on multiplications without looking inside the multiplication? less noise sensitive than [BFG14]? practical for n = 128

Further Work? application of similar attacks to other primitives? deeper analysis of LPN techniques to improve solving in

side-channel contexts

Thank you for your attention.