independence and chromatic number (and random k-sat): sparse case dimitris achlioptas microsoft

110
Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Post on 15-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Independence and chromatic number (and random k-SAT):

Sparse Case

Dimitris AchlioptasMicrosoft

Page 2: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Random graphs

W.h.p.: withprobability thattendsto 1 asn ! 1 .

Page 3: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let be the moment all vertices have degree 2¿2 ¸

Hamiltonian cycle

Page 4: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let be the moment all vertices have degree 2

W.h.p. has a Hamiltonian cycle

¿2 ¸

G(n;m = ¿2)

Hamiltonian cycle

Page 5: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Hamiltonian cycle

Let be the moment all vertices have degree 2

W.h.p. has a Hamiltonian cycle

W.h.p. it can be found in time

¿2 ¸

G(n;m = ¿2)

O(n3 logn)

[Ajtai, Komlós, Szemerédi 85] [Bollobás, Fenner, Frieze 87]

Page 6: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let be the moment all vertices have degree 2

W.h.p. has a Hamiltonian cycle

W.h.p. it can be found in time

¿2 ¸

G(n;m = ¿2)

O(n3 logn)

[Ajtai, Komlós, Szemerédi 85] [Bollobás, Fenner, Frieze 87]

In Hamiltonicity can be decided in G(n;1=2) O(n)expected time.

[Gurevich, Shelah 84]

Hamiltonian cycle

Page 7: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Cliques in random graphs

The largest clique in has size

[Bollobás, Erdős 75] [Matula 76]

2log2 n ¡ 2log2 log2 n§ 1

G(n;1=2)

Page 8: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The largest clique in has size

No maximal clique of size <

2log2 n ¡ 2log2 log2 n§ 1

G(n;1=2)

log2 n

Cliques in random graphs

[Bollobás, Erdős 75] [Matula 76]

Page 9: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The largest clique in has size

No maximal clique of size <

Can we find a clique of size ?

2log2 n ¡ 2log2 log2 n§ 1

G(n;1=2)

log2 n

(1+ ²) log2 n

[Karp 76]

Cliques in random graphs

[Bollobás, Erdős 75] [Matula 76]

Page 10: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The largest clique in has size

No maximal clique of size <

Can we find a clique of size ?

2log2 n ¡ 2log2 log2 n§ 1

G(n;1=2)

log2 n

(1+ ²) log2 n

What if we “hide” a clique of size ?n1=2¡ ²

Cliques in random graphs

[Bollobás, Erdős 75] [Matula 76]

Page 11: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Two problems for which we know much less.

Chromatic number of sparse random graphs Random k-SAT

Page 12: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Two problems for which we know much less.

Chromatic number of sparse random graphs Random k-SAT

Canonical for random constraint satisfaction:– Binary constraints over k-ary domain

– k-ary constraints over binary domain

Studied in: AI, Math, Optimization, Physics,…

Page 13: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

A factor-graph representationof k-coloring

Each vertex is a variable with domain {1,2,…,k}.

Each edge is a constraint on two variables.

All constraints are “not-equal”.

Random graph = each constraint picks two variables at random.

Vertices

Edges

. . .

. . .

v1

e1

e2

v2

Page 14: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

SAT via factor-graphs(x12 _ x5 _ x9) ^(x34 _ x21 _ x5) ^ ¢¢¢¢¢¢̂ (x21 _ x9 _ x13)

Page 15: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

SAT via factor-graphs

Edge between x and c iff x occurs in clause c.

Edges are labeled +/- to indicate whether the literal is negated.

Constraints are “at least one literal must be satisfied”.

Random k-SAT = constraints pick k literals at random.

Clause nodes

Variable nodes

Clause nodes

. . .

. . .

xc

(x12 _ x5 _ x9) ^(x34 _ x21 _ x5) ^ ¢¢¢¢¢¢̂ (x21 _ x9 _ x13)

Page 16: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Diluted mean-field spin glasses

Variables

Constraints

. . .

. . .

xc

Small, discrete domains: spins

Conflicting, fixed constraints: quenched disorder

Random bipartite graph: lack of geometry, mean field

Sparse: diluted

Hypergraph coloring, random XOR-SAT, error-correcting codes…

Page 17: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Random graph coloring:

Background

Page 18: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

A trivial lower bound

For any graph, the chromatic number is at least:

Number of vertices

Size of maximum independent set

Page 19: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

A trivial lower bound

For any graph, the chromatic number is at least:

Number of vertices

Size of maximum independent set

For random graphs, use upper bound for largest independent set.

µ ¶

µns

¶£ (1¡ p)(

s2) ! 0

Page 20: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

An algorithmic upper bound

RepeatPick a random uncolored vertexAssign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors

Page 21: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

An algorithmic upper bound

RepeatPick a random uncolored vertexAssign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors

No algorithm is known to do better

Page 22: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The lower bound is asymptotically tight

As d grows, can be colored using

independent sets of essentially maximum size

[Bollobás 89]

[Łuczak 91]

G(n;d=n)

Page 23: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The lower bound is asymptotically tight

As d grows, can be colored using

independent sets of essentially maximum size

[Bollobás 89]

[Łuczak 91]

G(n;d=n)

Page 24: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Theorem.For everyd > 0, thereexistsan integerk = k(d) such thatw.h.p.thechromaticnumberofG(n;p= d=n)

Only two possible values

is eitherk or k + 1

[Łuczak 91]

Page 25: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Theorem.For everyd > 0, thereexistsan integerk = k(d) such thatw.h.p.thechromaticnumberofG(n;p= d=n)

“The Values”

is eitherk or k + 1

wherek is thesmallestintegers.t. d < 2k logk.

Page 26: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Examples

If , w.h.p. the chromatic number is or .d = 7 4 5

Page 27: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Examples

If , w.h.p. the chromatic number is or .

If , w.h.p. the chromatic number is

or

d = 7

d = 1060

377145549067226075809014239493833600551612641764765068157

3771455490672260758090142394938336005516126417647650681576

5

4 5

Page 28: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Theorem.If (2k ¡ 1)lnk < d < 2k lnk thenw.h.p.thechromaticnumberof G(n;d=n) is k + 1.

One value

Page 29: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Theorem.If (2k ¡ 1)lnk < d < 2k lnk thenw.h.p.thechromaticnumberof G(n;d=n) is k + 1.

If , then w.h.p. the chromatic number isd = 10100

22306189349652674971022028151567123496495382061668383284446576222083269567040304449938600863080217

One value

Page 30: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Random k-SAT:

Background

Page 31: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Random k-SAT

Fix a set of n variables

Among all possible k-clauses select m

uniformly and independently. Typically .

Example ( ) :

X = f x1;x2; : : : ;xng

2kµ

nk

k = 3

(x12 _ x5 _ x9) ^(x34 _ x21 _ x5) ^ ¢¢¢¢¢¢̂ (x21 _ x9 _ x13)

m = rn

Page 32: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Generating hard 3-SAT instances

[Mitchell,

Selman,

Levesque 92]

Page 33: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Generating hard 3-SAT instances

[Mitchell,

Selman,

Levesque 92]

The critical point appears to be around r ¼4:2

Page 34: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The satisfiability threshold conjecture

For every , there is a constant such that

limn!1

Pr[F k(n;rn) is satis¯able] =½

1 if r = rk ¡ ²0 if r = rk + ²

k ¸ 3 rk

Page 35: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The satisfiability threshold conjecture

For every , there is a constant such that

limn!1

Pr[F k(n;rn) is satis¯able] =½

1 if r = rk ¡ ²0 if r = rk + ²

k ¸ 3 rk

For every , k ¸ 3

2k

k< rk < 2k ln2

Page 36: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Unit-clause propagation

Repeat– Pick a random unset variable and set it to 1– While there are unit-clauses satisfy them– If a 0-clause is generated fail

Page 37: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Unit-clause propagation

Repeat– Pick a random unset variable and set it to 1– While there are unit-clauses satisfy them– If a 0-clause is generated fail

UC finds a satisfying truth assignment if

[Chao, Franco 86]

r <2k

k

Page 38: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The probability of satisfiability it at most

An asymptotic gapµ ¶ · µ ¶ ¸

2nµ

1¡12k

¶m

=·2

µ1¡

12k

¶ r ¸n

! 0 for r ¸ 2k ln2µ ¶ · µ ¶ ¸

2nµ

1¡12k

¶m

=·2

µ1¡

12k

¶ r ¸n

! 0 for r ¸ 2k ln2

Page 39: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

An asymptotic gap

Since mid-80s, no asymptotic progress over

2k

k< rk < 2k ln2

Page 40: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Getting to within a factor of 2

a randomk-CNF formulawith m = rnclausesw.h.p.hasa complementarypairof satisfyingtruthassignments.

r < 2k¡ 1 ln2¡ 1 :

Theorem:For all k ¸ 3 and

Page 41: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The trivial upper bound is the truth!

r · 2k ln2¡ k2 ¡ 1

Theorem:For all k ¸ 3, a randomk-CNF formulawithm = rn clausesis w.h.p.satis¯able if

Page 42: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

k 3 4 5 7 20 21Upper bound 4:51 10:23 21:33 87:88 726;817 1;453;635

Our lower bound 2:68 7:91 18:79 84:82 726;809 1;453;626Algorithmic lower bound 3:52 5:54 9:63 33:23 95;263 181;453

Some explicit bounds for the k-SAT threshold

Page 43: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The second moment method

Pr[X > 0]¸E[X ]2

E[X 2]

otherwise let = 0, so that

For any non-negative r.v. X,

Proof: Let Y = 1 if X > 0, andY = 0 otherwise.By Cauchy-Schwartz,

E[X ]2 = E[X Y ]2 · E[X 2]E[Y 2] = E[X 2]Pr[X > 0] :

Page 44: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Ideal for sums

If X = X 1+X 2+¢¢¢ then

E[X ]2 =X

i;j

E[X i ]E[X j ]

E[X 2] =X

i;j

E[X i X j ]

X X

Page 45: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Ideal for sums

If X = X 1+X 2+¢¢¢ then

E[X ]2 =X

i;j

E[X i ]E[X j ]

E[X 2] =X

i;j

E[X i X j ]

X X

Example:

¡ ¢

The X i correspondto the¡n

q

¢potential q-cliquesin G(n;1=2)

Dominant contribution fromnon-ovelappingcliques

Page 46: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

General observations

Method works well when the Xi are like

“needles in a haystack”

Page 47: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

General observations

Method works well when the Xi are like

“needles in a haystack”

Lack of correlations rapid drop in

influence around solutions

=)

Page 48: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

General observations

Method works well when the Xi are like

“needles in a haystack”

Lack of correlations rapid drop in

influence around solutions

Algorithms get no “hints”

=)

Page 49: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let X be the # of satisfying truth assignments

The second moment method for random k-SAT

Page 50: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let X be the # of satisfying truth assignments£

For everyclause-density r > 0, thereis ¯ = ¯ (r) > 0 such that

E[X ]2

E[X 2]< (1¡ ¯ )n

The second moment method for random k-SAT

Page 51: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let X be the # of satisfying truth assignments

The number of satisfying truth assignments has

huge variance.

£

For everyclause-density r > 0, thereis ¯ = ¯ (r) > 0 such that

E[X ]2

E[X 2]< (1¡ ¯ )n

The second moment method for random k-SAT

Page 52: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¾2 f0;1gn

Let X be the # of satisfying truth assignments

The number of satisfying truth assignments has

huge variance.

£

For everyclause-density r > 0, thereis ¯ = ¯ (r) > 0 such that

E[X ]2

E[X 2]< (1¡ ¯ )n

The satisfying truth assignments do not form a

“uniformly random mist” in

The second moment method for random k-SAT

Page 53: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let be the number of

satisfied literal occurrences in F under σ

H (¾;F )

where satisfies . (1+ °2)k¡ 1(1¡ °2) = 1° < 1

To prove 2k ln2 – k/2 - 1

Page 54: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Let be the number of

satisfied literal occurrences in F under σ

H (¾;F )

Let be defined as

X (F ) =X

¾

1¾j=F °H (¾;F )

=X

¾

Y

c

1¾j=c °H (¾;c)

X = X (F )

where satisfies . (1+ °2)k¡ 1(1¡ °2) = 1° < 1

To prove 2k ln2 – k/2 - 1

Page 55: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

To prove 2k ln2 – k/2 - 1

Let be the number of

satisfied literal occurrences in F under σ

H (¾;F )

Let be defined as

X (F ) =X

¾

1¾j=F °H (¾;F )

=X

¾

Y

c

1¾j=c °H (¾;c)

X = X (F )

where satisfies . (1+ °2)k¡ 1(1¡ °2) = 1° < 1

Page 56: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

General functions

Given any t.a. σ and any k-clause c let

be the values of the literals in c under σ.

v = v(¾;c) 2 f¡ 1;+1gk

Page 57: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

General functions

Given any t.a. σ and any k-clause c let

be the values of the literals in c under σ.

We will study random variables of the form

where is an arbitrary functionf : f¡ 1;+1gk ! R

v = v(¾;c) 2 f¡ 1;+1gk

X =X

¾

Y

c

f (v(¾;c))

Page 58: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

X =X

¾

Y

c

f (v(¾;c))

f (v) = 1 for all v

f (v) =

(0 if v = (¡ 1; ¡ 1; : : : ;¡ 1)

1 otherwise

f (v) =

8><

>:

0 if v = (¡ 1;¡ 1; : : : ;¡ 1) orif v = (+1;+1; : : : ;+1)

1 otherwise

# of satisfying

truth assignments

2n=)

=)

=) # of “Not All Equal”

truth assignments

(NAE)

Page 59: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

X =X

¾

Y

c

f (v(¾;c))

f (v) = 1 for all v

f (v) =

(0 if v = (¡ 1; ¡ 1; : : : ;¡ 1)

1 otherwise

f (v) =

8><

>:

0 if v = (¡ 1;¡ 1; : : : ;¡ 1) orif v = (+1;+1; : : : ;+1)

1 otherwise

# of satisfying

truth assignments

# of satisfying

truth assignments

whose complement

is also satisfying

2n=)

=)

=)

Page 60: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Overlap parameter = distance

Overlap parameter is Hamming distance

Page 61: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Overlap parameter = distance

Overlap parameter is Hamming distance

For any f, if agree on variables¾;¿ z = n=2h i

Ehf (v(¾;c))f (v(¿;c))

i= E

£f (v(¾;c))

¤E

£f (v(¿;c))

¤

Page 62: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Overlap parameter = distance

Overlap parameter is Hamming distance

For any f, if agree on variables¾;¿ z = n=2h i

Ehf (v(¾;c))f (v(¿;c))

i= E

£f (v(¾;c))

¤E

£f (v(¿;c))

¤

For any f , if agree on variables, let¾;¿ z = ®n

Cf (z=n) ´ Ehf (v(¾;c))f (v(¿;c))

i

Page 63: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Independence

Contribution according to distance

Page 64: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Entropy vs. correlation

E[X 2] = 2nnX

z=0

µnz

¶Cf (z=n)m

E[X ]2 = 2nnX

z=0

µnz

¶Cf (1=2)m

For every function f :

Recall: µ

n®n

¶=

µ1

®®(1¡ ®)1¡ ®

¶n

£ poly(n)

Page 65: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Independence

Contribution according to distance

Page 66: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

®=z/n

Page 67: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The importance of being balanced

An analytic condition:

C0f (1=2)= 0 ( )

X

v2f¡ 1;+1gk

f (v)v = 0=) the s.m.m. fails

Page 68: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

®=z/n

Page 69: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

7< r < 11

NAE 5-SAT

Page 70: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

NAE 5-SAT7< r < 11

Page 71: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The importance of being balanced

An analytic condition:

C0f (1=2)= 0 ( )

X

v2f¡ 1;+1gk

f (v)v = 0=) the s.m.m. fails

Page 72: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The importance of being balanced

C0f (1=2)= 0 ( )

X

v2f¡ 1;+1gk

f (v)v = 0

An analytic condition:

C0f (1=2)= 0 ( )

X

v2f¡ 1;+1gk

f (v)v = 0=) the s.m.m. fails

A geometric criterion:

Page 73: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The importance of being balanced

C0f (1=2)= 0 ( )

X

v2f¡ 1;+1gk

f (v)v = 0

(+1,+1,…,+1)(-1,-1,…,-1)

Constant

SAT

Complementary

Page 74: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Balance & Information Theory

Want to balance vectors in “optimal” way

Page 75: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Balance & Information Theory

Want to balance vectors in “optimal” way

Information theory

maximize the entropy of the subject to

=)f (v)

f (¡ 1;¡ 1; : : : ; ¡ 1)= 0andX

v2f¡ 1;+1gk

f (v)v = 0

Page 76: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Balance & Information Theory

Want to balance vectors in “optimal” way

Information theory

maximize the entropy of the subject to

=)f (v)

f (¡ 1;¡ 1; : : : ; ¡ 1)= 0andX

v2f¡ 1;+1gk

f (v)v = 0

Lagrange multipliers the optimal f is

for the unique that satisfies the constraints

f (v) = ° # of +1sin v

°

=)

Page 77: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Balance & Information Theory

Want to balance vectors in “optimal” way

Information theory

maximize the entropy of the subject tof (v)

f (¡ 1;¡ 1; : : : ; ¡ 1)= 0andX

v2f¡ 1;+1gk

f (v)v = 0

(+1,+1,…,+1)(-1,-1,…,-1)

Heroic

=)

Page 78: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Random graph coloring

Page 79: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Threshold formulation

Theorem.A randomgraphwithn verticesandm = cn edgesis w.h.p.k-colorableif

c · k logk ¡ logk ¡ 1 :

c ¸ k logk ¡ 12 logk.

and whp non-k-colorable if

Page 80: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Main points

Non-k-colorability:

k-colorability:

knµ

1¡1k

¶cn

! 0

µ ¶

Proof. Applysecondmomentmethod to thenumber of balanced k-coloringsof G(n;m).

Proof. The¬probability that¬there exists¬any k-coloring¬is at¬most

Page 81: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Setup

Let Xσ be the indicator that the balanced

k-partition σ is a proper k-coloring.

We will prove that if then for all

there is a constant

such that

This implies that is k-colorable w.h.p.

X =P

¾X ¾

Theorem.A randomgraphwithn verticesandm = cn edgesis w.h.p.k-colorableif

c · k logk ¡ logk ¡ 1 :D = D(k) > 0

E[X 2] < D E[X ]2

G(n;cn)

Page 82: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Setup

sum over all of .

For any pair of balanced k-partitions

let aijn be the # of vertices having

color i in σ and color j in τ.

¾;¿ E[X ¾X ¿ ]

¾;¿

E[X 2] =

Pr[¾and¿ areproper] =

0

@1¡2k

+X

ij

a2ij

1

A

cn

Page 83: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Examples

When are uncorrelated, is

the flat matrix

¾;¿

1k

A

Balance is doubly-stochastic.=) A

1=k

Page 84: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Examples

When are uncorrelated, is

the flat matrix

As align,

tends to the

identity matrix

¾;¿

1k

A

Balance is doubly-stochastic.=) A

I

¾;¿

1=kA

Page 85: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

A matrix-valued overlap

So,

X

A 2B k

µ ¶ µ X ¶

E[X 2] =X

A 2B k

µn

An

¶ µ1¡

2k

+1k2

Xa2

ij

¶cn

Page 86: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

A matrix-valued overlap

over doubly-stochastic matrices .k £ k A = (aij )

So,

which is controlled by the maximizer of

X

A 2B k

µ ¶ µ X ¶

E[X 2] =X

A 2B k

µn

An

¶ µ1¡

2k

+1k2

Xa2

ij

¶cn

X µ X ¶

¡X

aij logaij + c logµ

1¡2k

+1k2

Xa2

ij

Page 87: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

X µ X ¶

¡X

aij logaij + c logµ

1¡2k

+1k2

Xa2

ij

A matrix-valued overlap

over doubly-stochastic matrices .k £ k A = (aij )

So,

which is controlled by the maximizer of

X

A 2B k

µ ¶ µ X ¶

E[X 2] =X

A 2B k

µn

An

¶ µ1¡

2k

+1k2

Xa2

ij

¶cn

Page 88: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Entropy decreases away from the flat matrix

– For small , this loss overwhelms the sum of squares gain– But for large enough ,….

The maximizer jumps instantaneously from flat, to a matrix where vertices capture the majority of mass

Proved this happens only for

¡X

i;j

aij logaij + c¢1k

X

i;j

a2ij

1=k

cc

k

c > k logk ¡ logk ¡ 1

2

Page 89: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Entropy decreases away from the flat matrix

– For small , this loss overwhelms the sum of squares gain– But for large enough ,….

The maximizer jumps instantaneously from flat, to a matrix where vertices capture the majority of mass

Proved this happens only for

¡X

i;j

aij logaij + c¢1k

X

i;j

a2ij

1=k

c

k

c > k logk ¡ logk ¡ 1

c

2

Page 90: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Entropy decreases away from the flat matrix

– For small , this loss overwhelms the sum of squares gain– But for large enough ,….

The maximizer jumps instantaneously from flat, to a matrix where vertices capture the majority of mass

Proved this happens only for

¡X

i;j

aij logaij + c¢1k

X

i;j

a2ij

1=k

cc

k

c > k logk ¡ logk ¡ 1

2

Page 91: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Entropy decreases away from the flat matrix

– For small , this loss overwhelms the sum of squares gain– But for large enough ,….

The maximizer jumps instantaneously from flat, to a matrix where entries capture majority of mass

¡X

i;j

aij logaij + c¢1k

X

i;j

a2ij

1=k

k

cc

2

Page 92: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Entropy decreases away from the flat matrix

– For small , this loss overwhelms the sum of squares gain– But for large enough ,….

The maximizer jumps instantaneously from flat, to a matrix where entries capture majority of mass

¡X

i;j

aij logaij + c¢1k

X

i;j

a2ij

1=k

k

c > k logk ¡ logk ¡ 1 This jump happens only after

cc

2

Page 93: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

Page 94: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

Page 95: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

2. Prescribe the L2 norm of each row ρi.

Page 96: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

2. Prescribe the L2 norm of each row ρi.

3. Find max-entropy, f(ρi), of each row given ρi.

Page 97: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

2. Prescribe the L2 norm of each row ρi.

3. Find max-entropy, f(ρi), of each row given ρi.

4. Prove that f’’’ > 0.

Page 98: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

2. Prescribe the L2 norm of each row ρi.

3. Find max-entropy, f(ρi), of each row given ρi.

4. Prove that f’’’ > 0.

5. Use (4) to determine the optimal distribution of the ρi given their total ρ.

Page 99: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

2. Prescribe the L2 norm of each row ρi.

3. Find max-entropy, f(ρi), of each row given ρi.

4. Prove that f’’’ > 0.

5. Use (4) to determine the optimal distribution of the ρi given their total ρ.

6. Optimize over ρ.

Page 100: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Theorem.For everyintegerd > 0, w.h.p.thechromaticnumberof a randomd-regulargraph

is eitherk, k + 1,or k + 2

wherek is thesmallestintegers.t. d < 2k logk.

Random regular graphs

Page 101: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¡kX

i=1

ai logai

kX

i=1

ai = 1

kX

i=1

a2i = ½

Maximize

subject to

for some 1=k< ½< 1

A vector analogue(optimizing a single row)

Page 102: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¡kX

i=1

ai logai

kX

i=1

ai = 1

kX

i=1

a2i = ½

subject to

for some 1=k< ½< 1

k

Maximize

A vector analogue(optimizing a single row)

Page 103: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¡kX

i=1

ai logai

kX

i=1

ai = 1

kX

i=1

a2i = ½

subject to

for some 1=k< ½< 1

For k = 3the maximizer is(x;y;y) wherex > y

Maximize

A vector analogue(optimizing a single row)

Page 104: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¡kX

i=1

ai logai

kX

i=1

ai = 1

kX

i=1

a2i = ½

subject to

for some 1=k< ½< 1

For k = 3the maximizer is(x;y;y) wherex > y

Maximize

A vector analogue(optimizing a single row)

Page 105: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¡kX

i=1

ai logai

kX

i=1

ai = 1

kX

i=1

a2i = ½

subject to

for some 1=k< ½< 1

For k = 3the maximizer is(x;y;y) wherex > y

Maximize

A vector analogue(optimizing a single row)

Page 106: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¡kX

i=1

ai logai

kX

i=1

ai = 1

kX

i=1

a2i = ½

subject to

for some 1=k< ½< 1

For k = 3the maximizer is(x;y;y) wherex > y

Maximize

A vector analogue(optimizing a single row)

Page 107: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

¡kX

i=1

ai logai

kX

i=1

ai = 1

kX

i=1

a2i = ½

subject to

for some 1=k< ½< 1

For k = 3the maximizer is(x;y;y) wherex > y

For the maximizer isk > 3

(x;y;: : : ;y)

Maximize

A vector analogue(optimizing a single row)

Page 108: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Create a composite image of an object that:

– Minimizes “empirical error” Typically, least-squares error over luminance

– Maximizes “plausibility” Typically, maximum entropy

Maximum entropy image restoration

Page 109: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

Structure of maximizer helps detect stars in astronomy

Maximum entropy image restoration

Page 110: Independence and chromatic number (and random k-SAT): Sparse Case Dimitris Achlioptas Microsoft

The End