index [application.wiley-vch.de] symbols 1/f noise,101 2dsi, 73 ... – of neon, 542...

9
599 Index Symbols 1/f noise, 101 2DSI, 73 2PE, 444 N-methylacetamide – electron hole migration, 410 A ABCU – from 2 μm NIR radiation, 408 Above-threshold ionization, 426 Above-threshold ionization (ATI), 121, 191 AD, 47 Adiabaticity parameter – in Kr, 340 Alignment of molecules, 413 Amplified self-emission, 138 Amplified spontaneous emission, 55 Angular dispersion (AD), 47 Angular distribution – measurement, 297 – measurement by velocity map imaging, 472 APS, 439 ARAIGNEE, 71 Argon – autoionization, 386 – Fano resonance, 386 – multiple ionization, 486 ASE, 138 ATI, 121, 191, 426 Attosecond nanophotonics, 421 Attosecond nanoplasmonic streaking, 439 – collective electron dynamics, 442 Attosecond nanoscope, 444 Attosecond pulse train – Attosecond pulses, 331, 421 – autocorelation, 398 attosecond pulses – from nanoparticles, 452 Attosecond streaking technique, 439 Auger cascade, 543 Auger decay, 380 – cascaded Auger decay, 391 – Krypton, 388 – xenon, 391 Auger ionization – of neon, 542 Autocorrelation, 75 – field autocorrelation, 53 – intensity autocorrelation, 54 – interferometric autocorrelation, 53 – second-order autocorrelation, 53 Autoionization – argon, 386 – autoionization times in helium, 373 – helium, 371 – krypton, 388 – xenon, 391 Azabicyclo[3.3.3]undecane – electron dynamics, 408 B Basis functions, 260 Born approximation, 561 Born–Oppenheimer approximation, 287 Broadband frequency conversion, 23 C Carbon dioxide – electron hole migration, 409 – pump–probe experiment, 398 Carrier envelope offset (CEO), 44 Carrier envelope phase – control of electron emission, 425 – control of hydrogen dissociation, 399 Attosecond and XUV Physics, First Edition. Edited by Thomas Schultz and Marc Vrakking. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2014 by WILEY-VCH Verlag GmbH & Co. KGaA.

Upload: hoangmien

Post on 21-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 599 — le-tex

599

Index

Symbols1/f noise, 1012DSI, 732PE, 444N-methylacetamide

– electron hole migration, 410

AABCU

– from 2 µm NIR radiation, 408Above-threshold ionization, 426Above-threshold ionization (ATI), 121, 191AD, 47Adiabaticity parameter

– in Kr, 340Alignment of molecules, 413Amplified self-emission, 138Amplified spontaneous emission, 55Angular dispersion (AD), 47Angular distribution

– measurement, 297– measurement by velocity map imaging,

472APS, 439ARAIGNEE, 71Argon

– autoionization, 386– Fano resonance, 386– multiple ionization, 486

ASE, 138ATI, 121, 191, 426Attosecond nanophotonics, 421Attosecond nanoplasmonic streaking, 439

– collective electron dynamics, 442Attosecond nanoscope, 444Attosecond pulse train

– Attosecond pulses, 331, 421– autocorelation, 398

attosecond pulses– from nanoparticles, 452

Attosecond streaking technique, 439Auger cascade, 543Auger decay, 380

– cascaded Auger decay, 391– Krypton, 388– xenon, 391

Auger ionization– of neon, 542

Autocorrelation, 75– field autocorrelation, 53– intensity autocorrelation, 54– interferometric autocorrelation, 53– second-order autocorrelation, 53

Autoionization– argon, 386– autoionization times in helium, 373– helium, 371– krypton, 388– xenon, 391

Azabicyclo[3.3.3]undecane– electron dynamics, 408

BBasis functions, 260Born approximation, 561Born–Oppenheimer approximation, 287Broadband frequency conversion, 23

CCarbon dioxide

– electron hole migration, 409– pump–probe experiment, 398

Carrier envelope offset (CEO), 44Carrier envelope phase

– control of electron emission, 425– control of hydrogen dissociation, 399

Attosecond and XUV Physics, First Edition. Edited by Thomas Schultz and Marc Vrakking.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2014 by WILEY-VCH Verlag GmbH & Co. KGaA.

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 600 — le-tex

600 Index

Carrier envelope phase (CEP), 21, 44, 45, 95,96, 334, 397, 425– amplifier stabilization, 123– closed-loop noise analysis, 103– feedback stabilization, 110– feed-forward stabilization, 114– in amplifiers, 115– in oscillators, 104– noise, 100– open-loop noise analysis, 101– oscillator stabilization, 110

Carrier envelope phase detection, 107– 0-f CEP stabilization, 128– above-threshold ionization (ATI), 121– common-path interferometer, 109– f-2f interferometer, 107, 119– half-cycle cutoff in high harmonic

spectra, 123– Michelson interferometer, 109– multiphoton-induced surface

photoemission, 122– quantum interferences in

semiconductors, 109– spectrally and spatially resolved

interferometry, 110– terahertz-emission spectroscopy, 122

CCA, 435CEO, 44CEP, 44, 45, 95, 334, 397, 425charge oscillation

– krypton, 390Chirped pulse amplification (CPA), 22, 25, 26,

116Chromatic aberration, 48Cluster plasmons, 433Cold-target recoil ion momentum

spectroscopy (COLTRIMS)– in Xe, 472

COLTRIMS– electron dynamics, 472

Constant cross-section approximation, 435CPA, 22, 25, 26, 116Cross-correlation, 55

– with X-rays, 545Cross-phase modulation (XPM), 62

DDelayed photoemission, 384Deuterium

– two-photon double ionization, 487DFG, 127, 128Difference frequency generation (DFG), 127,

128

Discrete-variable grid, 260, 278Dissociative ionization

– of hydrogen, 290Dissociative photoionization (DPI), 294Double ionization

– helium, 373– nonsequential double above threshold

ionization, 377– nonsequential two-photon double

ionization, 375– postionization energy exchange, 377– second ionization during core relaxation,

377– sequential two-photon double ionization,

376DPI, 294Dressed potential energy surfaces

– high-energy cutoff, 399DVR, 260

EEffective range theory, 198Ehrenfest theorem, 396Eigenstates of helium, 365Eigenstates of hydrogen, 362Electron complex canonical momenta, 220Electron correlation, 378Electron dynamics, 397

– coupled to nuclear dynamics, 412– hole migration, 409– in ABCU, 408– in lithium hydride, 405– in Mg-porphyrin, 407– in the DNA backbone, 415– in water and ice, 416

Electron dynamics in hydrogen– in Xe, 406

Electron emission– control by carrier envelope phase, 425– from nanoparticles, 426– from SiO2 nanoparticles, 427

Electron hole migration– in N-methylacetamide, 410– in a peptide, 411– in carbon dioxide, 397, 409– in glycine, 410

Electron localization– hydrogen, 398

Electron ponderomotive energy– in Xe, 341– post-orientation in linear molecules, 326

Electron recollison, 325Electron tunneling, 219

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 601 — le-tex

Index 601

Electron wavefunction– asymptotic part, 217

Electron–electron correlation, 233Electron-hole dynamics, 237, 240Electronic potential curve, 39, 40Electronic wave packet, 366Electrooptic sampling (EOS), 55EOS, 55Exit point in electron tunneling, 210Experimental observables

– modeling by TDSE, 272– TDSE modeling of harmonic response,

274– TDSE modeling of ionization, 272– TDSE modeling of photoelectron spectra,

275

FFactorization of the high harmonic dipole, 221Fano resonance

– argon, 386– helium, 371

FDTD, 441FEL, 530FEM, 441Few-cycle pulses, 20, 22, 23, 425Fiber amplifier, 26Field-enhanced XUV generation, 449Finite difference time domain, 441Finite element, 441Finite element basis functions, 263FLASH, 530Fourier transform spectroscopy (FTS), 53Fraunhofer approximation, 564Free-electron laser

– brilliance, 469– pulse parameters, 470

Free-electron laser (FEL, 530– pulse parameters, 470

Frequency-resolved optical gating (FROG), 55– FROG-CRAB, 80– GRENOUILLE, 59– polarization grating FROG, 56– principle component generalized

projection algorithm, 57– reconstruction algorithm, 57– second harmonic FROG, 56– third harmonic FROG, 56– transient grating FROG, 56

FROG, 55FTS, 53

GGaussian laser profile, 139

GD, 44GDD, 44Glycine

– electron–hole migration, 410GRENOUILLE, 59Group delay (GD), 44Group delay dispersion (GDD), 44Group velocity, 21

HHamilton–Jacobi equation, 186Helium

– autoionization, 371– double ionization, 373– eigenstates, 365– Fano resonance, 371– shake-up states, 376– TDSE modeling of ionization, 279– two-photon double ionization, 476– two-photon ionization, 473

HERALDO, 587HHG, 74

– high-order harmonic generation, 323High harmonic dipole

– factorization in the frequency domain,222

– factorization in the time domain, 224– for one-electron systems, 209

High harmonic generation– cutoff energy, 203, 212, 216, 250– electron propagation, 223, 238– electron propagation with Coulomb

correction, 217– electron recombination, 223, 239– ionization time, 210, 214– laser-induced dynamics in the ion, 234– multielectron effects, 285– multielectron model, 231– one-electron system, 205– plasmon field enhanced, 450– pulse parameters, 470– recombination time, 210, 214– saddle point method, 209– semiclassical description, 195– the simple man model, 203

High-energy oscillators, 23Highest occupied molecular orbital (HOMO),

232High-harmonic generation

– electron trajectories, 328– energy range, 331– from 2 µm NIR radiation, 346, 352– from 3.6 µm IR radiation, 347, 352

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 602 — le-tex

602 Index

– from 243 nm VUV radiation, 323– from 800 nm radiation, 352– from 1064 nm Nd

– YAG radiation, 323– high-energy cutoff, 326, 342, 350– in Ar, 323, 328, 334– in Kr, 323– in Ne, 323, 332– in Xe, 323, 329– pulse duration, 331– pulse parameters, 470– short and long trajectories, 326, 343– three step model, 325

Hole migration– RABITT, 409

Hollow atoms, 538Holography, 583HOMO, 232Hydrodynamic modeling of plasma, 141Hydrogen

– dissociative ionization, 400– eigenstates, 362– electron dynamics, 406– electron localization, 398

Hydrogen atom– photoelectron spectrum, 277

Hydrogen molecule– dissociative ionization, 290– TDSE modeling of ionization, 281

Iindex

– SFA, see strong field approximation, 327Index REMI

– reaction microscope, 472Infinite range exterior complex scaling

(irECS), 270Interferometry, 63

– 2DSI, 73– ARAIGNEE, 71– long crystal SPIDER, 71– multiple spectral shearing

interferometry, 68– SEA-SPIDER, 67– Spectral interferometry, 63– Spectral phase interferometry, 64– SPIDER, 64– SPIRIT, 73

Ion chronoscopy– neon, 384– xenon, 391

Ion momentum distribution– double ionization of helium and neon,

478

Ionization– double ionization of helium and neon,

478– modeling by TDSE, 272– multiple ionization of argon, 486– multiple ionization of neon, 486– nonsequential double ionization, 476– sequential double ionization, 476– sequential two-photon double ionization

of neon, 481– two-photon double ionization of helium,

476– two-photon double ionization of neon,

480– two-photon single ionization of helium,

473Ionization time, 210, 214, 219

– measurement of ionization times, 231irECS, 270

KKeldysh parameter, 382

– from 243 nm VUV radiation, 468– in Ar, 340

Keldysh theory of tunnel ionization– high-order harmonic generation, 340

KER, 488Kerr lens mode-locking (KLM), 21Kinetic energy

– measurement by COLTRIMS, 472– measurement by velocity map imaging,

472kinetic energy release, 488KLM, 21Kramers–Henneberger frame of reference,

259Krypton

– Auger decay, 388– charge oscillation, 390

LLAAD, 545Laser

– average power, 24, 25– broadband frequency conversion, 19, 23– few-cycle pulses, 20, 22, 23, 425– group velocity, 21– high-energy oscillators, 23– intensity regimes, 531– interaction with atoms and molecules,

258– mode-locking, 21– phase velocity, 21– Pulse duration, 22

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 603 — le-tex

Index 603

– THz pulses, 22– Ti:sapphire laser, 20– Ti:sapphire laser parameters, 532– XUV pulses, 22

Laser amplifiers, 25– CEP in amplifiers, 115– CEP stabilization, 123– chirped pulse amplification, 25, 26– fiber amplifier, 26– multipass amplifier, 26– parametric amplifier, 27– plasma-based soft X-ray amplifier, 137– regenerative amplifier, 26

Laser gain media, 105– Cr:ZnSe, 22– sesquioxide, 24– tungstate, 24– Yb:KLuW, 24– Yb:KYW, 24– Yb:Lu2O3, 24

Laser oscillators, 20– CEP in oscillators, 106– CEP stabilization, 110

Laser pulse characterization– attosecond spectral shearing

interferometry, 77– attosecond streak camera, 78– autocorrelation, 53– chronocyclic tomography, 60– cross-correlation, 55– electrooptic sampling, 55– FROG, 55, 344– FROG-CRAB, 80– GRENOUILLE, 59– long crystal SPIDER, 71– multiple spectral shearing

interferometry, 68– PROOF, 81– RABITT, 79, 332, 344, 355– SEA-SPIDER, 67– spectral interferometry, 63– SPIDER, 64, 344– X-SPIDER, 80– XUV autocorrelation, 75– XUV chronocyclic tomography, 78– XUV interferometry, 81– XUV pulses, 73– XUV SPIDER, 81

laser-assisted Auger decay (LAAD), 545Laser-induced dynamics in the ion, 234LCLS, 530Length gauge, 181, 205Linac Coherent Light Source (LCLS), 530

Linear spectrum approximation, 435Lithium hydride

– electron dynamics, 405Local basis functions, 261Lorentzian laser profile, 139LSA, 435

Mmagnetic bottle electron energy spectrometer

– pulse duration, 347Maxwell wave equation, 43MBES

– in Xe, 347Mean field, 430MF, 430MFPAD, 293Mg-porphyrin

– electron dynamics, 407Michelson interferometer, 109Mode-locking, 21Molecular Coulomb explosion

– in Ar, 398Molecular fragmentation

– of deuterium, by EUV pulses, 487– of nitrogen, by EUV pulses, 489

Molecular frame photoelectron angulardistribution (MFPAD), 293

Multielectron model to describe HHG, 231Multipass amplifier, 26

NNanoparticles

– control of electron emission, 426Nanoplasma, 433Neon

– Auger process, 542– multiple ionization, 486– nonresonant multiple ionization, 537– photoionization cross-section, 533– resonant multiple ionization, 540– sequential photon absorption, 537– sequential two-photon double ionization,

481– shake-up states, 381– two-photon double ionization, 480– two-photon ionization, 539– X-ray interaction, 533

Nitrogen– delay in photoionization, 403– EUV ionization and fragmentation, 489– nonresonant multiple ionization, 540

Nodal planes in molecular orbitals, 238nonlinear optical parametric amplification

(NOPA), 28

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 604 — le-tex

604 Index

Nonsequential double above thresholdionization (NS-DATI), 377

Nonsequential double ionization– coupled to nuclear dynamics, 476

Nonsequential two-photon double ionization(NS-TPDI), 375

NOPA, 20, 28NS-DATI, 377NSDI

– in a peptide, 476NS-TPDI, 375Nyquist–Shannon theorem, 573

OOne-electron system

– high harmonic dipole, 209– high harmonic generation, 205

OPA, 28OPCPA, 28, 118optical parametric amplification (OPA), 28optical parametric chirped pulse amplification

(OPCPA), 28

PPAD, 293Parametric amplifier, 27

– carrier envelope phase stabilization, 126Paraxial approximation, 564PCGPA, 57PEC, 39, 40PEEM, 444Peptide

– electron hole migration, 411Periodically poled nonlinear crystals (PPLN),

109PES, 77PFT, 47Phase retrieval by omega oscillation filtering,

81Phase-locked loop (PLL), 110Photoelectron angular distribution (PAD), 293

– concurrent orientation, 310– molecular orientation, 294– one-photon photoionization, 297– orientation by alignment, 314– photoionization cross-sections, 302– postorientation in linear molecules, 304– postorientation in nonlinear molecules,

306Photoelectron emission microscopy

– imaging of plasmonic fields, 444Photoelectron spectroscopy

– IR-XUV ionization of helium, 369

– TDSE simulation, 366– velocity map imaging, 426

Photoelectron spectroscopy (PES), 77Photoelectron spectrum

– hydrogen atom, 277Photoionization cross-sections, 302Photoionization delay

– nitrogen, 403PIEE, 377Pink noise, 101Plasma X-ray amplifier, 137

– Bloch–Maxwell model, 149– chirped pulse amplification, 157, 163– gain and saturation fluence, 143– hydrodynamic modeling, 141– multistage amplifier, 156, 168– spatial profile, 145, 158– temporal profile, 151, 158

Plasmons, 422– attosecond experiments, 439– field-enhanced XUV generation, 449– in clusters, 433

PLL, 110Poles in dipole matrix elements, 212Ponderomotive energies

– in Ar, 469Ponderomotive potential, 383Postionization dynamics

– classical model, 341– classical model, see simple man model,

341Postionization energy exchange (PIEE), 377Potential energy curve (PEC), 39, 40Power spectra density (PSD), 100PPLN, 109PPT theory, 198, 216Principle component generalized projection

algorithm (PCGPA), 57PROOF, 81PSD, 100Pulse front tilt (PFT), 47Pulse parameters of X-ray sources

– electron localization, 470Pulse-shaping, 366Pump–probe experiment

– carbon dioxide, 398Pump-probe spectroscopy, 40

QQuantitative rescattering theory, 198

RRABITT, 79, 332

– nitrogen photoionization, 403

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 605 — le-tex

Index 605

Reaction microscope (REMI)– in lithium hydride, 472

Recombination time, 210, 214Regenerative amplifier, 20, 26Runge–Kutta methods, 267

SSaddle point methods, 209, 242

– approximation, 190, 213– divergence in saddle point solutions, 251– finding the saddle points, 214– saddle point solutions, 219

Sampling theorem, 45SASE, 530SD, 56SDI

– electron hole migration, 476Second ionization during core relaxation

(SICR), 377Second-order harmonic generation (SHG), 56Self-amplified spontaneous emission (SASE),

530Self-diffraction (SD), 56Self-phase modulation (SPM), 22, 62Semiconductor saturable absorber (SESAM),

24Sequential double ionization (SDI), 481

– in glycine, 476Sequential ionization

– of deuterium, 488Sequential two-photon double ionization

(S-TPDI), 376SESAM, 24SFA, 76, 179Shake-up states

– helium, 376– neon, 381

SHG, 56SICR, 377Signal-to-noise ratio

– in X-ray diffraction, 568Signal-to-noise ratio (SNR)

– in autocorrelation, 54Simple man model

– three step model, 341Single active electron approximation, 181

– model high harmonic generation, 205Singular value decomposition (SVD), 58SiO2 nanoparticles

– effective field, 429– electron emission, 427

SNR, 54, 568Sonography, 60

Space-time coupling (STC), 46, 50Spatial chirp, 48Spectral interferometry

– basics, 433– sodium nanoparticles, 437

Spectral shearing interferometry, 64Spectrography, 55SPIDER, 64

– SEA-SPIDER, 67SPIRIT, 73SPM, 62SSI, 64STC, 46, 50S-TPDI, 376Strong field approximation

– orientation by alignment, 327Strong field interactions, 339Strong fields, 467Strong-field approximation (SFA), 76, 184, 186

– comparison with time-dependentHartree–Fock, 286

– limits of the SFA, 188– transition amplitudes, 187

Strong-field ionization, 219, 232, 238– electron correlation effects, 233

Strong-field ionization of Ar– energy range, 348

Strong-field S-matrix, 184SVD, 58

TTabletop X-ray lasers, 135TADPOLE, 64TAS, 39TBP, 45TDCI, 282TDHF, 283TDSE, 81, 179, 257TG, 56The simple man model, 203THG, 56Third-order harmonic generation (THG), 56Three-step model, 341THz pulses, 22Ti:sapphire laser, 20Time-bandwidth product (TBP), 45Time-dependent configuration-interaction

(TDCI), 282Time-dependent Hartree–Fock (TDHF), 283

– comparison with the strong-fieldapproximation, 286

– multiconfiguration TDHF, 283

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 606 — le-tex

606 Index

Time-dependent Schrödinger equation(TDSE), 81, 179, 181, 366– basis functions, 257, 260– discretization of the TDSE, 260– few-electron systems, 282– finite element basis functions, 263– formal solution, 182– grid boundary, 265, 269– grid methods, 260– helium, 278– hydrogen molecule, 278– length gauge, 258– local basis functions, 261– modeling harmonic response, 274– modeling ionization, 272– modeling of observables, 272– modeling of photoelectron spectra, 275– nuclear motion, 287– pseudo-spectral approach, 278– Runge–Kutta time propagation, 267– single active electron, 324– split Hamiltonian, 269– strong-field approximation, 184– time propagation, 266– two electron systems, 278– velocity gauge, 258– Volkov propagator, 185

Time-dependent surface flux (t-SURFF), 276Time-resolved fluorescence spectroscopy

(TRFS), 39Time-resolved spectroscopy (TRS), 39, 40TPDI, 362

– in carbon dioxide, 476TPSI

– from 2 µm NIR radiation, 473TRA, 39Transient absorption spectroscopy (TAS), 39Transient grating (TG), 56TRFS, 39TRS, 39t-SURFF, 276Tunnel ionization

– from 243 nm VUV radiation, 340Tunneling time, 193Two photon absorption

– high-order harmonic generation, 467Two-photon double ionization

– helium, 476– neon, 480– nonsequential, 375– of helium, 476– postionization energy exchange, 377

– second ionization during core relaxation,377

– sequential process in neon, 481– sequential TPDI, 376, 377

Two-photon double ionization (TPDI), 373Two-photon double ionization of deuterium,

487Two-photon ionization

– helium, 473Two-photon single ionization

– of helium, 473Two-photon-photoemission, 444

VVelocity gauge, 181Velocity map imaging, 426

– with X-rays, 472VER Molecular alignment, 413VMI

– seevelocity map imaging, 426Volkov function, 207Volkov propagator, 184, 276

WWave equation, 43Wavepacket

– electronic wave packet, 366White noise, 101Wiegner distribution, 41, 46

XXenon

– above-threshold ionization, 427– Auger decay, 391

XPM, 62X-ray

– Auger process in neon, 542– brilliance of synchrotrons and FELs, 530– characterization of LCLS pulses, 544– cross-correlation, 545– induced transparency, 538– interaction with neon, 533– LCLS pulse parameters, 532– light sources, 469– nonresonant multiple ionization of neon,

537– nonresonant multiple ionization of

nitrogen, 540– Rabi cycling, 541– radiation dose, 569– resonant multiple ionization of neon, 540– streaking, 545– two-photon ionization, 539– ultrafast X-ray probe, 543

Marc Vrakking and Thomas Schultz: Attosecond and XUV Physics — 2013/10/28 — page 607 — le-tex

Index 607

X-ray diffraction– before sample destruction, 557, 571– Born approximation, 561– far-field diffraction, 559– iterative phase retrieval, 574, 577– nanocrystal structure analysis, 592– of biological samples, 579– phase retrieval, 557, 572, 577– protein imaging, 592– Resolution, 562, 570, 577– signal-to-noise ratio, 557, 568– source requirements, 565– with XFEL pulses, 578

X-ray gratings, 165– conical diffraction grating, 166

X-ray holography, 583– HERALDO, 587– of Co/Pt magnetic domains, 585– of iron nanotubes, 589– time resolved sequential imaging, 586

X-SPIDER, 80XUV photoionization, 75XUV pulses, 22XUV simplified chronocyclic tomography

(XUV-SCT), 78XUV sources, 572XUV-SCT, 78

YYb-doped laser, 20