indian caste genetics

Upload: halagur75

Post on 03-Jun-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Indian Caste Genetics

    1/11

    BioMedCentral

    Page 1 of 11(page number not for citation purposes)

    BMC Genetics

    Open AccesResearch article

    Genetic affinities among the lower castes and tribal groups of India:inference from Y chromosome and mitochondrial DNA

    Ismail Thanseem1

    , Kumarasamy Thangaraj*1

    , Gyaneshwer Chaubey1,2

    ,Vijay Kumar Singh1, Lakkakula VKS Bhaskar1, B Mohan Reddy3,Alla G Reddy1and Lalji Singh*1

    Address: 1Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad- 500 007, India, 2Estonian Biocentre, Riia, 23, Tartu- 51010, Estoniaand 3Biological Anthropology Unit, Indian Statistical Research Institute, Habsiguda, Hyderabad, India

    Email: Ismail Thanseem - [email protected]; Kumarasamy Thangaraj* - [email protected]; Gyaneshwer Chaubey - [email protected];Vijay Kumar Singh - [email protected]; Lakkakula VKS Bhaskar - [email protected]; B Mohan Reddy - [email protected];Alla G Reddy - [email protected]; Lalji Singh* - [email protected]

    * Corresponding authors

    Abstract

    Background: India is a country with enormous social and cultural diversity due to its positioningon the crossroads of many historic and pre-historic human migrations. The hierarchical caste

    system in the Hindu society dominates the social structure of the Indian populations. The origin ofthe caste system in India is a matter of debate with many linguists and anthropologists suggesting

    that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago.

    Previous genetic studies based on Indian populations failed to achieve a consensus in this regard.

    We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southernIndia, compared the results with available data from the Indian subcontinent and tried to

    reconstruct the evolutionary history of Indian caste and tribal populations.

    Results: No significant difference was observed in the mitochondrial DNA between Indian tribal

    and caste populations, except for the presence of a higher frequency of west Eurasian-specific

    haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the

    study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal

    populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the

    tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as

    M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes.

    Conclusion: The present study suggests that the vast majority (>98%) of the Indian maternal gene

    pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform.

    Invasions after the late Pleistocene settlement might have been mostly male-mediated. However,

    Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations

    in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that

    arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the

    arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this

    already developed caste-like class structure within the tribes.

    Published: 07 August 2006

    BMC Genetics2006, 7:42 doi:10.1186/1471-2156-7-42

    Received: 30 January 2006Accepted: 07 August 2006

    This article is available from: http://www.biomedcentral.com/1471-2156/7/42

    2006 Thanseem et al; licensee BioMed Central Ltd.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    http://www.biomedcentral.com/http://www.biomedcentral.com/http://www.biomedcentral.com/http://www.biomedcentral.com/http://www.biomedcentral.com/info/about/charter/http://www.biomedcentral.com/1471-2156/7/42http://creativecommons.org/licenses/by/2.0http://www.biomedcentral.com/info/about/charter/http://www.biomedcentral.com/http://creativecommons.org/licenses/by/2.0http://www.biomedcentral.com/1471-2156/7/42
  • 8/12/2019 Indian Caste Genetics

    2/11

    BMC Genetics2006, 7:42 http://www.biomedcentral.com/1471-2156/7/42

    Page 2 of 11(page number not for citation purposes)

    Background"Out-of-Africa" hypothesis suggests that the anatomicallymodern humans originated in Africa about 160,000 150,000 years ago, and then spread outward, completelyreplacing the local archaic hominid populations outside

    Africa. India has served as a major corridor for the disper-sal of modern humans out of Africa, owing to the posi-tioning of the Indian Peninsula at the crossroads of Africa,the Pacific and the West and East Eurasia. The enormouscultural, linguistic and genetic diversity of the more thanone billion people living in the contemporary ethnicIndia can be attributed to this. The Indian society and cul-ture might have been affected by multiple waves of migra-tion and gene flow that occurred in the historic and pre-historic times [1]. The first among this is the ancient Pale-olithic migration by the modern humans during their ini-tial colonization of Eurasia. This is followed by the earlyNeolithic migration, probably of proto-Dravidian speak-

    ers, from the eastern horn of the Fertile Crescent. TheIndo-European speakers, who might have arrived ~3,500

    years ago, are the third potential source of Indian genepool. The Austro-Asiatic and Tibeto-Burman speakers

    with ties to East/Southeast Asia form the fourth majorcontributors. The most recent conquerors from Central

    Asia and the colonizers from Europe might also haveadded to this ethnic multiplicity.

    The social structure of the Indian population is domi-nated by the hierarchical Hindu caste system. There are4,635 well-defined endogamous populations in India,

    which are culturally stratified as tribes and non-tribes. The

    532 tribal communities, who are supposed to be the abo-riginal inhabitants of the sub-continent, constitute 7.76%of the total population (Indian Census 2001). The ori-gin of caste system in India is a matter of debate. Previousgenetic studies on Indian castes and tribes failed toachieve a consensus on Indian origins and affinities. A fewstudies reported closer affinity of Indian castes with eitherthe Europeans or the Asians. Studies of Bamshad et al [2]and Basu et al [3]support the genetic differentiation ofcaste and tribal populations, and the North Indian inva-sion of Indo-European speaking nomads, pushing theDravidian tribes to southern peninsula. On the otherhand, Kivisild et al [4] suggest that Indian tribal and caste

    populations derived largely from the same genetic herit-age of Pleistocene southern and western Asians, receivinglimited gene flow from external regions since Holocene.Further, Cordaux et al [5] reports that the paternal line-ages of Indian castes are more closely related to the Cen-tral Asians than to the Indian tribal groups, therebysupporting the view that Indian caste groups are primarilythe descendents of the Indo-European migrants. Morestudies are required for a better understanding of thegenetic structure of the diverse Indian populations, wheremany questions remain unanswered. In the present study,

    mtDNA and Y chromosome of three different tribal pop-ulations of Andhra Pradesh (AP), South India, were ana-lyzed. On comparing the results with available data, we

    were able to reconstruct the evolutionay history of Indiancaste and tribal populations, by providing a comprehen-

    sive picture of their genetic structure.

    Results and discussionMitochondrial DNA variation

    The sequence data corresponding to nucleotide positions15927 16550 [revised Cambridge Reference Sequence(rCRS)] [6] that includes the HVR I region was obtainedfrom 347 individuals belonging to the three tribal popu-lations. Insertions were observed at two positions(16169_16170insC, 16262_16263insT). Nucleotide sub-stitutions were observed at 120 sites, defining 149 HVR Imotifs. Seventy haplotypes were observed among Pard-han, 53 among Naikpod and 48 among Andh tribes. A

    total of 131 (76.5%) unique haplotypes were observed;56 (80%) in Pardhan, 37 (70%) in Naikpod and 38(79%) in Andh. Only two HVR I motifs were found to beshared among all the three populations; 10 haplotypes

    were shared between Pardhan and Naikpod, four betweenPardhan and Andh and six between Naikpod and Andh.

    At the individual level, 43% of haplotypes were shared bytwo or more individuals, 75% of this being within thesame population.

    Demographic expansion of the populations

    Based on AMOVA, the variation among studied popula-tions was only 2.1%, while the remaining 97.9% variation

    was within populations. The number of haplotypes, hap-lotype diversity, nucleotide diversity, mean number ofmismatches, Fu's Fs statistic values, raggedness index (r),expansion ages and initial effective population sizes of thethree populations are summarized in Table 1. The demo-graphic history of each population was examined by com-puting the pairwise difference distributions. Unimodeldistribution curves were observed, which could be inter-preted as signs of demographic expansion. Likewise, theraggedness index was found to be less than 0.02 in all thepopulations studied; values of r lower than 0.05 also sug-gest demographic expansions [7]. Negative values of Fsthat differ significantly from zero, and the significant (P 98%) of theIndian maternal gene pool that consists of the Dravidianand Indo-European speakers is genetically more similar,and received only minor gene flow with the recent inva-sions from both the West and the East, since their initiallate Pleistocene settlement. On the other hand, the Indian

    Y-chromosome lineages show obvious difference in theirdistribution pattern among the tribal and caste popula-

    tions. However, the lower castes, (backward classes andscheduled castes, as per the Indian Constitution) showstriking similarity with the Indian tribal populations.

    These groups, which constitute more than 85% of thehierarchical Hindu caste system, have the indigenousM52, M95 and M89, as their major Y lineages. This resultsuggests that the Indian lower castes are genetically moreassociated with the tribal populations, than to the highercastes, an evocative of their tribal origins. The presence ofthese native haplogroups in the Indo-European nomads,

    who arrived ~3500 ybp and established themselves asupper castes, might be due to the recent admixture withthe local populations. The presence of the so called west/

    central Asian lineages like J2, R1 and R2 in most of theendogamous tribal populations, and its higher STR diver-sity indicates its presence in the sub-continent muchbefore the arrival of the Indo-European pastoralists. Inshort, the impact of their arrival in the Indian sub-conti-nent is rather social and political, than genetic.

    MethodsDNA isolation

    About 10 ml of blood samples from healthy unrelatedindividuals belonging to three tribal populations namelyPardhan (n = 193), Naikpod (88) and Andh (66) werecollected from the northwestern region of Adilabad dis-

    trict of AP, southern India with their informed writtenconsent with the help of the Tribal Welfare Department,Government of AP. DNA was isolated from the samplesusing the standard protocol [29].

    Amplification of mitochondrial DNA

    The hyper-variable regions (HVR I and HVR II) andselected coding regions of the mtDNA were amplifiedfrom 10 ng of template DNA using 10 pM of each primer,100 M dNTPs, 1.5 mM MgCl2 and 1 U of Taq DNApolymerase. Generally, 35 cycles of reaction was per-

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 Indian Caste Genetics

    10/11

    BMC Genetics2006, 7:42 http://www.biomedcentral.com/1471-2156/7/42

    Page 10 of 11(page number not for citation purposes)

    formed with 30 sec denaturation at 94C, 1 min anneal-ing at 58C and 2 min extension at 72C. Annealingtemperature and time were slightly modified for few setsof primers. The reactions were carried out in MJ Researchthermal cycler (PTC-200).

    Y-chromosomal markers

    Sixteen Y-chromosome biallelic polymorphic markers vizM89, M216, M9, M45, M82, M69, M170, M172, M11,M175, M95, M122, M207, M173, M17, and M124 weretyped to construct the Y-chromosome phylogeny of thestudied populations according to Y- Chromosome Con-sortium nomenclature [30]. The PCR cycles were set-up

    with an initial denaturation of 5 min at 95C, followed by3035 cycles of 30 sec at 94C, 30 sec at the primer-spe-cific annealing temperature (52 60C), and 45 sec. at72C, and final extension of 7 min at 72C. Length varia-tions at 6 Y-STR loci, DYS19, DYS389-1, DYS389-2,

    DYS390, DYS391 and DYS393, were typed using previ-ously published primer sequences [31]. The multiplexPCR amplifications were performed in reaction volumesof 10.0 l with 1U of AmpliTaq Gold DNA polymerase(Applied Biosystems, Foster City, CA), 10 mM Tris-HCl(pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 250 m dNTPs, 3.0m of each primer (forward primers are fluorescentlylabeled), and 10 ng of DNA template. Thermal cyclingconditions were as follows: (1) 95C for 10 min, (2) 28cycles: 94C for 1 min, 55C for 1 min, 72C for 1 min,(3) 60C for 45 min, and (4) 25C hold. The PCR ampli-cons along with GS500 LIZ size standard were analyzedusing the ABI 3730 DNA Analyser (Applied Biosystems,

    Foster City, CA). The raw data were analyzed using theGeneMapper v3.7 software program (Applied Biosystems,Foster City, CA).

    Sequencing of the PCR products

    PCR products were directly sequenced using BigDye Ter-minator cycle sequencing kit (Applied Biosystems) in ABIPrism 3730 DNA Analyzer following manufacture's pro-tocol. The individual mtDNA sequences were judgedagainst the rCRS [6] using AutoAssembler ver 2.1(Applied Biosystems, Foster City, USA). The sequences

    were aligned using CLUSTAL X [32,33], and mutationdata were scored with MEGA ver 3.1 [34,35]. Mitochon-

    drial haplogroups were assigned to all samples accordingto Sun et al [36] and Thangaraj et al [9].

    Phylogenetic and statistical analyses

    Data analyses for mtDNA sequences and Y-SNPs were per-formed using the ARLEQUIN software package [37,38].Haplotype- and nucleotide- diversity and their standarddeviations (SD); mismatch distributions, mean pairwisedifferences and their SD; Fu's Fs statistics [39] and associ-ated P-values based on 1000 stimulated samples, ragged-ness index 'r', Fst distances between pairs of populations

    and associated P-values based on 1000 permutations andTajima's Dvalue [40] were calculated. Analyses of molec-ular variance (AMOVA) were performed to evaluate thegenetic structure of the populations; the significance of

    variance components tested with 10,000 permutations.

    Other statistical inferences, including initial theta (a) andvalues of tau () were used to calculate effective popula-tion size (Ne = a/2) and population expansion age (Y=Ax/2) [41]. An average mutation rate = 0.00124 persite per generation with an average generation timeA = 20

    years, was used for calculation. Median joining networks[42] were constructed with the help of Network 4.112program [43] with default settings. Haplotype diversityand STR variance were calculated according to Kivisild etal [4].

    Authors' contributionsLS, KT and IT conceived the study and drafted the final

    manuscript. IT, GC, VKS and LVKSB performed the exper-iments and aligned the sequences. BMR participated inthe design of the study. AGR contributed to the overallstudy design; all authors read, revised and approved thefinal manuscript.

    Additional material

    AcknowledgementsWe are grateful to all the original donors for making this work happen. We

    thank Mr. Aggarwal, Mr. Prasad and primary health officers, Tribal Research

    Institute, Government of Andhra Pradesh for helping in the collection of

    samples. The support offered by the Commissioner, Department of Tribal

    Welfare is also thankfully acknowledged. IT is grateful to Department of

    Biotechnology, Government of India for financial support.

    References1. Ratnagar S: Archaeological perspectives of early Indian socie-

    ties. In Recent perspectives of early Indian historyEdited by: Thapar R.Mumbai, India: Popular Prakashan; 1995:1-52.

    2. Bamshad M, Kivisild T, Watkins WS, Dixon ME, Ricker CE, Rao BB,Naidu JM, Prasad BVR, Reddy PG, Rasanayagam A, Papiha SS, VillemsR, Redd AJ, Hammer MF, Nguyen SV, Carroll ML, Batzer MA, Jorde

    Additional File 1

    Indian Y-SNP data. Y-chromosome biallelic polymorphism data of 1285

    Indian samples are given. The Y-SNP and Y-STR haplotypes of the three

    populations analyzed are also provided.

    Click here for file

    [http://www.biomedcentral.com/content/supplementary/1471-2156-7-42-S1.xls]

    Additional File 2

    Mitochondrial DNA mutation data. The data provided represent the

    mtDNA mutations at the HVR I region and selected coding regions from

    347 tribal samples. Different haplogroups and its frequency are also given.

    Click here for file

    [http://www.biomedcentral.com/content/supplementary/1471-

    2156-7-42-S2.xls]

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://www.biomedcentral.com/content/supplementary/1471-2156-7-42-S1.xlshttp://www.biomedcentral.com/content/supplementary/1471-2156-7-42-S1.xlshttp://www.biomedcentral.com/content/supplementary/1471-2156-7-42-S2.xlshttp://www.biomedcentral.com/content/supplementary/1471-2156-7-42-S2.xlshttp://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://www.biomedcentral.com/content/supplementary/1471-2156-7-42-S2.xlshttp://www.biomedcentral.com/content/supplementary/1471-2156-7-42-S1.xls
  • 8/12/2019 Indian Caste Genetics

    11/11

    BMC Genetics2006, 7:42 http://www.biomedcentral.com/1471-2156/7/42

    Page 11 of 11

    LB: Genetic evidence on the origins of Indian caste popula-tions. Genome Res2001, 11:994-1004.

    3. Basu A, Mukherjee N, Roy S, Sengupta S, Banerjee S, Chakraborty M,Dey B, Roy M, Roy B, Bhattacharyya NP, Roychoudhury S, MajumderPP: Ethnic India: a genomic view, with special reference topeopling and structure. Genome Res2003, 13:2277-2290.

    4. Kivisild T, Rootsi S, Metspalu M, Mastana S, Kaldma K, Parik J, Met-

    spalu E, Adojaan M, Tolk H-V, Stepanov V, Glge M, Usanga E, PapihaSS, Cinnioglu C, King R, Cavalli-Sforza L, Underhill PA, Villems R: Thegenetic heritage of earliest settlers persist in both the Indiantribal and caste populations.Am J Hum Genet2003, 72:313-332.

    5. Cordaux R, Aunger R, Bentley G, Nasidze I, Sirajuddin SM, StonekingM:Independent origins of Indian caste and tribal paternal lin-eages. Curr Biol2004, 14:231-235.

    6. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM,Howell N: Reanalysis and revision of the Cambridge referencesequence for human mitochondrial DNA. Nat Genet 1999,23:14.

    7. Excoffier L, Smouse PE, Quattro JM: Analysis of molecular vari-ance inferred from metric distances among DNA haplo-types: application to human mitochondrial DNA restrictiondata. Genetics1992, 131:479-491.

    8. Metspalu M, Kivisild T, Metspalu E, Parik J, Hudjashov G, Kaldma K,Serk P, Karmin M, Behar DM, Gilbert MTP, Endicott P, Mastana S,Papiha SS, Skorecki K, Torroni A, Villems R: Most of the extant

    mtDNA boundaries in South and Southwest Asia were likelyshaped during the initial settlement of Eurasia by anatomi-cally modern humans. BMC Genet2004, 5:26-50.

    9. Thangaraj K, Chaubey G, Singh V, Vanniarajan A, Thanseem I, ReddyAG, Singh L: In situ origin of deep rooting lineages of mito-chondrial Macrohaplogroup M in India. BMC Genomics2006,7:151.

    10. Bamshad MJ, Watkins WS, Dixon ME, Jorde LB, Rao BB, Naidu JM,Prasad BV, Rasanayagam A, Hammer MF: Female gene flow strat-ifies Hindu castes. Nature1998, 395:651-652.

    11. Kivisild T, Bamshad MJ, Kaldma K, Metspalu M, Metspalu E, Reidla M,Laos S, Parik J, Watkins WS, Dixon ME, Papiha SS, Mastana SS, MirMR, Ferak V, Villems R: Deep common ancestry of Indian andwestern-Eurasian mitochondrial DNA lineages. Curr Biol1999,9:1331-1334.

    12. Mountain JL, Hebert JM, Bhattacharyya S, Underhill PA, Ottolenghi C,Gadgil M, Cavalli-Sforza LL: Demographic history of India andmtDNA-sequence diversity.Am J Hum Genet1995, 56:979-992.

    13. Cordaux R, Saha N, Bentley GR, Aunger R, Sirajuddin SM, StonekingM: Mitochondrial DNA analysis reveals diverse histories oftribal populations from India. Eur J Hum Genet2003, 11:253-264.

    14. Roychoudhury S, Roychoudhury S, Roy S, Dey B, Chakraborty M, RoyM, Roy B, Ramesh A, Prabhakaran M, Usha Rani MV, Vishwanathan H,Mitra M, Sil SK, Majumder PP: Fundamental genomic unity ofethnic India is revealed by analysis of mitochondrial DNA.Curr Sci INDIA2000, 79:1182-1192.

    15. Merriwether DA, Hodgson JA, Friedlaender FR, Allaby R, Cerchio S,Koki G, Friedlaender JS: Ancient mitochondrial M haplogroupsidentified in the Southwest Pacific. Proc Natl Acad Sci U S A2005,102:13034-13039.

    16. Kalaydjieva L, Gresham D, Calafell F: Genetic studies of the Roma(gypsies): a review. BMC Med Genet2001, 2:5-17.

    17. Fraser A: The GypsiesOxford: Blackwell Publishers; 1992.18. Kayser M, Brauer S, Weiss G, Schiefenhovel W, Underhill P, Shen P,

    Oefner P, Tommaseo-Ponzetta M, Stoneking M: Reduced Y-chro-mosome, but not mitochondrial DNA, diversity in human

    populations from west New Guinea. Am J Hum Genet2003,72:281-302.

    19. Kumar V, Reddy BM: Status of Austro-Asiatic groups in thepeopling of India: An exploratory study based on the availa-ble prehistoric, linguistic and biological evidences. J Biosci2003, 28:507-522.

    20. Kumar V, Langsiteh BT, Biswas S, Babu JP, Rao TN, Thangaraj K,Reddy AG, Singh L, Reddy BM: Asian and non-Asian origins ofmon-khmer and mundari speaking Austro-Asiatic Popula-tions of India.Am J Hum Biol2006, 18:461-469.

    21. Qamar R, Ayub Q, Mohyuddin A, Helgason A, Mazhar K, Mansoor A,Zerjal T, Tyler-Smith C, Mehdi SQ: Y-chromosomsal variation inPakistan.Am J Hum Genet2002, 70:1107-1124.

    22. Cinnioglu C, King R, Kivisild T, Kalfoglu E, Atasoy S, Cavalleri GL, LillieAS, Roseman CC, Lin AA, Prince K, Oefner PJ, Shen P, Semino O,

    Cavalli-Sforza LL, Underhill PA: Excavating Y-chromosome hap-lotype strata in Anatolia. Hum Genet2004, 114:127-148.

    23. Passarino G, Semino O, Magri C, Al-Zahery N, Benuzzi G, Quintana-Murci L, Andellnovic S, Bullc-Jakus F, Liu A, Arslan A, Santachiara-Benerecetti AS: The 49a, f haplotype 11 is a new marker of theEU19 lineage that traces migrations from northern regionsof the Black Sea. Hum Immunol2001, 62:922-932.

    24. Sengupta S, Zhivotovsky LA, King R, Mehdi SQ, Edmonds CA, ChowCE, Lin AA, Mitra M, Sil SK, Ramesh A, Usha Rani MV, Thakur CM,Cavalli-Sforza LL, Majumder PP, Underhill PA: Polarity and tempo-rality of high-resolution y-chromosome distributions in Indiaidentify both indigenous and exogenous expansions andreveal minor genetic influence of central Asian pastoralists.

    Am J Hum Genet2006, 78:202-221.25. Dirks NB: Castes of mind: colonialism and making of modern IndiaNew

    Jersey: Princeton University Press; 2001.26. Karve I: Hindu Society An InterpretationPoona, India: Deshmukh Pra-

    kashan; 1961.27. Kosambi DD: The Culture and Civilization of Ancient India in Historical

    OutlineNew Delhi, India: Vikas Publishing House Pvt. Ltd; 1964.28. Majumder PP: Indian caste origins: genomic insights and future

    outlook. Genome Res2001, 11:931-932.29. Thangaraj K, Joshi MB, Reddy AG, Gupta NJ, Chakravarty B, Singh L:

    CAG repeat expansion in the androgen receptor gene is notassociated with male infertility in Indian populations.J Androl

    2002, 23:815-818.30. Jobling MA, Tyler-Smith C: The human Y chromosome: an evo-lutionary marker comes of age. Nat Rev Genet2003, 4:598-612.

    31. Butler JM, Schoske R, Vallone PM, Kline MC, Redd AJ, Hammer MF:A novel multiplex for simultaneous amplification of 20 Ychromosome STR markers. Forensic Sci Int2002, 129:10-24.

    32. CLUSTAL X [http://bips.u-strasbg.fr/fr/Documentation/ClustalX/]33. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ: Mul-

    tiple sequence alignment with Clustal X. Trends Biochem Sci1998, 23:403-405.

    34. Molecular Evolutionary Genetics Analysis [http://www.megasoftware.net/mega.html]

    35. Kumar S, Tamura K, Nei M: MEGA3: Integrated software formolecular evolutionary genetics analysis and sequence align-ment. Brief bioinform2004, 5:15-163.

    36. Sun C, Kong O-P, Palanichamy MG, Agrawal S, Bandelt H-J, Yao Y-G,Khan F, Zhu C-L, Chaudhuri TK, Zhang Y-P: The dazzling array ofbasal branches in the mtDNA macrohaplogroup M from

    India as inferred from complete genomes. Mol Biol Evol2006,23:683-690.37. Arlequin ver 3.01, An integrated software for population

    genetics and data analysis [http://cmpg.unibe.ch/software/arlequin3/]

    38. Schneider S, Rosslie D, Excoffier L:Arlequin ver 2.000: A software forpopulation genetics data analysisGeneva: Genetics and Biometry Labo-ratory, University of Geneva; 1997.

    39. Fu YX: Statistical tests of neutrality of mutations against pop-ulation growth, hitchhiking and background selection. Genet-ics1997, 147:915-925.

    40. Taj ima F: The effect of change in population size on DNA pol-ymorphism. Genetics1989, 123:597-601.

    41. Rogers AR, Harpending H: Population growth make waves inthe distribution of pairwise genetic differences. Mol Biol Evol1992, 9:552-569.

    42. Bandelt H-J, Forster P, Rohl A: Median-joining networks forinferring intraspecific phylogenies.Mol Biol Evol1999, 16:37-48.

    43. Phylogenetic Network Software [http://www.fluxus-engineering.com/sharenet.htm]

    44. Wells RS, Yuldasheva N, Ruzibakiev R, Underhill PA, Evseeva I, Blue-Smith J, Jin L, Su B, Pitchappan R, Shanmugalakshmi S, Balakrishnan K,Read M, Pearson NM, Zerjal T, Webster MT, Zholoshvili I, Jamarjas-hvili E, Gambarov S, Nikbin B, Dostiev A, Aknazarov O, Zalloua P,Tsoy I, Kitaev M, Mirrakhimov M, Chariev A, Bodmer WF: The Eur-asian heartland: a continental perspective on Y-chromo-some diversity. Proc Natl Acad Sci USA2001, 98:10244-10249.

    45. Ramana GV, Su B, Jin L, Singh L, Wang N, Underhill P, Chakraborty R:Y-chromosome SNP haplotypes suggest evidence of geneflow among caste, tribe, and the migrant Siddi populations ofAndhra Pradesh, South India. Eur J Hum Genet2001, 9:695-700.

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381027http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381027http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525929http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525929http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536373http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536373http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536373http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761656http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761656http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761656http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16776823http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16776823http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790184http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790184http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10574762http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10574762http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7717409http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7717409http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12678055http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12678055http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12678055http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16150714http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16150714http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11299048http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11299048http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532283http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532283http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532283http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799497http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799497http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799497http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788903http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788903http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788903http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11898125http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11898125http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14586639http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14586639http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11543894http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11543894http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11543894http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16400607http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16400607http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16400607http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16400607http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381022http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381022http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399527http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399527http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12897772http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12897772http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230993http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230993http://bips.u-strasbg.fr/fr/Documentation/ClustalX/http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9810230http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9810230http://www.megasoftware.net/mega.htmlhttp://www.megasoftware.net/mega.htmlhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361303http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361303http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361303http://cmpg.unibe.ch/software/arlequin3/http://cmpg.unibe.ch/software/arlequin3/http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335623http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335623http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2599369http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2599369http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1316531http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1316531http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331250http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331250http://www.fluxus-engineering.com/sharenet.htmhttp://www.fluxus-engineering.com/sharenet.htmhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11526236http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11526236http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11526236http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571559http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571559http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571559http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571559http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571559http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571559http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11526236http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11526236http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11526236http://www.fluxus-engineering.com/sharenet.htmhttp://www.fluxus-engineering.com/sharenet.htmhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331250http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331250http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1316531http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1316531http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2599369http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2599369http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335623http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335623http://cmpg.unibe.ch/software/arlequin3/http://cmpg.unibe.ch/software/arlequin3/http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361303http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361303http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361303http://www.megasoftware.net/mega.htmlhttp://www.megasoftware.net/mega.htmlhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9810230http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9810230http://bips.u-strasbg.fr/fr/Documentation/ClustalX/http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230993http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230993http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230993http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12897772http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12897772http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399527http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399527http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399527http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381022http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381022http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16400607http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16400607http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11543894http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11543894http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11543894http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14586639http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14586639http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11898125http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11898125http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788903http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788903http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788903http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799497http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799497http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799497http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532283http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532283http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532283http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11299048http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11299048http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16150714http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16150714http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12678055http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12678055http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7717409http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7717409http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10574762http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10574762http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790184http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790184http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16776823http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16776823http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339343http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761656http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761656http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536373http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536373http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536373http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525929http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525929http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381027http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381027