inductorless 0.3-2.6 ghz cmos receiver front end · an inductorless 0.3-2.6 ghz cmos receiver...

22
An Inductorless 0.3-2.6 GHz CMOS Receiver Front-end Group 3 Muhammad Faisal, David Pfeiffer, and Brian Stump

Upload: ngokien

Post on 02-May-2018

229 views

Category:

Documents


2 download

TRANSCRIPT

An Inductorless 0.3-2.6 GHz CMOS Receiver Front-end

Group 3 Muhammad Faisal, David Pfeiffer,

and Brian Stump

Outline

1. Motivation2. Architecture3. Low Noise Amplifier4. Mixer5. Baseband Filter6. Results7. Layout and Comparison8. Conclusions

1. Motivation

• Need to support each wireless standard– Software-Defined Radio Wideband

LNA

Widely Tunable LO

Tunable Baseband

Filter(s)

ADC

This Work

• Solutions:1. GHz Analog-to-Digital ConvertersExpensivePower Hungry

2. Flexible Wideband RF Front-ends Lower Cost Low Power

1. Why Inductorless?

• Smaller area Lower cost– 50 Ω at 300 MHz L ≈ 27 nH– Outer Dimension 1 (n=15):

Octagonal = 310 μm; Hexagonal = 315 μm; Square = 290 μm

• Wideband operation– Wideband matching with inductors requires a ladder

• Less substrate coupling• Easier to integrate with baseband/digital circuitry

1. S.S. Mohan, T.H. Lee, “Integrated Spiral Inductor Calculator”, Stanford Microwave Integrated Circuits Laboratory.

2. Front-end Architecture

• Direct conversion• Quadrature• Variable gain LNA

– Dynamic Range

• Fully differential– Reduce common

mode noise– Help IIP2

• Tunable filters

3. Low Noise Amplifier

• Inverter with feedback resistor input

• Low noise• Large bandwidth

3. Low Noise Amplifier

• Source follower output– Isolates– Drives large mixer input

• Variable gain• No need for output

impedance matching

4. Mixer• Two Stages

– Transconductance– double-balanced

switching quad

• Goals:– Noise– Linearity– Conversion Gain– Power

Gm

Zf

Zf

Cpar

Cpar

VRF VIF

Zgm

LO+

LO+

LO-

Z’gm

4. Mixer: Gm Stage

• Complementary Input– Higher effective Gm

• DC coupled to the switching quad– No DC Current Output– Mid-rail VOUT

• Multi-gated Transistors– Subthreshold– Linearity

Vin+Vin-

VDD

GND

Io+

Io-

Vb1

Vb_MGN

Vb_MGP

4. Gm Linearity (Multi-gated FETs)

• IIP3 Second Derivative of gm

Highly non-linear• Solution: Parallel FET

in subthreshold• [No] Additional Power

RFin

Rugh, J. W. “Nonlinear System Theory: The Volterra/Wiener Approach”, 1981

EECS 522 View

Volterra Series

0 0.4 0.8 1.2

-2

0

2

4

VGS (V)

d/dv

gs(d

/dv g

s(gm

))

Effective g’’m

0 0.4 0.8 1.2-2

0

2

4

VGS (V)d/

dvgs

(d/d

v gs(g

m))

4. “Passive” Mixer LO+

LO+

LO-VRFTo Opamp

• No IDC Low Flicker Noise• Biased at in triode • VG= Vthreshold

• LO-to-RF/LO-to-IF feedthrough and RON trade-off

RON

GateCgdCgs

Rsub

CdjCsj

IFRF

“ON” Switch

GateCgdCgs

Rsub

CdjCsjCgb

“OFF” Switch

W for RON vs. W for Feedthrough Cap

5. Active RC Filter• Active RC filter

– Tunable with Off-Chip Passives– Open-Loop Attributes

• BW = 20 MHz• Gain = 70dB

• Topology– Folded Cascode

• Simplicity• Noise/Linearity tradeoff

– Common-Mode Feedback

Vref

Vbias2

VDD

Vref

Vbias2

Vx Vy

Vx Vy

Vout-Vout+

Vin-

Vbias1

Vin+M1 M2

M7 M8

M9 M10

5. Amplifier Linearity

• Importance of last stage in cascade

• Design Considerations– Differential circuit– Decrease gain error

• Common-mode feedback– Basic resistor divider– Cross-coupled topology

6. Results: LNA S11

0 0.5 1 1.5 2 2.5 3

-10

-8

-6

-4

-2

0

RF Frequency (GHz)

S11

(dB

)

LNA Low Gain

LNA High Gain

6. Results: Conversion Gain

105 10 6 10 7 1080

10

20

30

40

Intermediate Frequency (Hz)

Con

vers

ion

Gai

n (d

B)

6. Results: Noise Figure

2 4 6 8 103.2

3.6

4

4.4

4.8

Intermediate Frequency (MHz)

Noi

se F

igur

e (d

B)

LO = 2.5GHz

LO = 2.0GHz

LO = 1.5GHz

LO = 900MHz

6. Results: Linearity

-30 -20 -10 0 10-80

-40

0

40

80

Input Power (dBm)

Out

put P

ower

(dB

m)

First Order

Third Order

IP3

1 1.5 2 2.5-8

-6

-4

-2

0

2

4

LO Frequency (Offset Frequency = 5 MHz)

IIP3

(dB

m)

• Improves with LO frequency• Example for 2GHz (right)

7. Layout

I MixerQ Mixer

RC Filters

LNA

Area: 772 μm x 554 μm < Two Inductors!

7. Performance ComparisonParameters [1] [2] [6] This Work

Bandwidth RF (GHz) .3-2.6 .9 .1-3.85 .3-2.6

Conversion Gain (dB) 38 18 20 35

Bandwidth IF (MHz) .250 - 70 1-10

NF (dB) 3.6 DSB 10 SSB 8.4-11.5 3.3 DSB*IIP3 (dBm) 4 30 - -3.8**

Power (mW) 52.5 16.2 9.78 23.3***Technology (µm) 0.13 CMOS 0.35 CMOS 0.09 CMOS 0.13 CMOS

Notes Mixer only LNA + Mixer

* LO 900 MHz, IF 5 MHz ** LNA in high gain mode*** Excludes Biasing and LO circuitry

8. Conclusion

• Inductorless Front-end– Low Noise– High Linearity– Wideband– Appropriate for SDR

• Future improvements– Addition of LO Circuitry

Thank you!

Questions?

References

[1] Poobuapheun, N.; Wei-Hung Chen; Boos, Z.; Niknejad, A.M.; , "An inductorless high dynamic range 0.3 − 2.6 GHz receiver CMOSfront- end," Radio Frequency Integrated Circuits Symposium, 2009. RFIC 2009. IEEE , vol., no., pp.387-390, 7-9 June 2009

[2] Poobuapheun, N.; Wei-Hung Chen; Boos, Z.; Niknejad, A.M.; , "A 1.5V 0.7-2.5GHz CMOS Quadrature Demodulator for Multi-BandDirect-Conversion Receivers," Custom Integrated Circuits Conference, 2006. CICC '06. IEEE , vol., no., pp.797-800, 10-13 Sept. 2006

[3] A. Amer, E. Hegazi, and H. F. Ragaie, “A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323–328, Feb. 2007.

[4] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 1998.[5] M. T. Terrovitis and R. G. Meyer, “Intermodulation distortion in current- commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol.

35, no. 10, pp. 1461–1473, Oct. 2000.[6] E. Sacchi, I. Bietti, S. Erba, L. Tee, P. Vilmercati, and R. Castello, “A 15 mW, 70 kHz 1/f corner direct conversion CMOS receiver,” in

Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, Sep. 2003, pp. 459–462.[7] Nam, I.; Bonkee Kim; Kwyro Lee; , "CMOS RF amplifier and mixer circuits utilizing complementary Characteristics of parallel

Combined NMOS and PMOS devices," Microwave Theory and Techniques, IEEE Transactions on , vol.53, no.5, pp. 1662- 1671, 2005[8] Tae Wook Kim; Bonkee Kim; Kwyro Lee; , "Highly linear receiver front-end adopting MOSFET transconductance linearization by

multiple gated transistors," Solid-State Circuits, IEEE Journal of , vol.39, no.1, pp. 223- 229, Jan. 2004[9] Mallya, S.; Nevin, J.H.; , "Design procedures for a fully differential folded-cascode CMOS operational amplifier," Solid-State Circuits,

IEEE Journal of , vol.24, no.6, pp.1737-1740, Dec 1989[10] D.D. Wentzloff, “Lecture 9: Intermodulation”, EECS 522 Lecture Notes, University of Michigan, April 2010,