influence lines beams

Upload: sukhwinder-singh-gill

Post on 17-Oct-2015

63 views

Category:

Documents


1 download

DESCRIPTION

beam influence lines

TRANSCRIPT

  • 1

    ! Influence Lines for Beams! Influence Lines for Floor Girders! Influence Lines for Trusses! Maximum Influence at a Point Due to a Series

    of Concentrated Loads! Absolute Maximum Shear and Moment

    INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES

  • 2

    Influence Line

    Unit moving load

    A

    B

  • 3

    Example 6-1

    Construct the influence line fora) reaction at A and Bb) shear at point Cc) bending moment at point Cd) shear before and after support Be) moment at point B

    of the beam in the figure below.

    B

    AC

    4 m 4 m 4 m

  • 4

    SOLUTION

    Reaction at A

    + MB = 0: ,0)8(1)8( =+ xAy xAy 811=

    1

    4 m

    8 m 12 m

    -0.5

    0.5

    Ay

    x

    AC

    4 m8 mAy By

    1x

    04812

    x

    10.50

    -0.5

    Ay

  • 5

    AC

    4 mAy By

    8 m

    Reaction at B

    + MA = 0: ,01)8( = xBy xBy 81

    =

    1x

    4 m 8 m 12 m

    By

    x

    1.51

    0.5

    04812

    x

    00.51

    1.5

    By

  • 6

    Shear at C

    AC

    4 mAy By

    1x

    4 m 4 m

    40

  • 7

    04-

    4+

    812

    x VC0

    -0.50.50

    -0.5

    xVC 81

    =

    xVC 811=

    4 m 8 m 12 m

    VC

    x

    -0.5

    0.5

    -0.5xVC 8

    1=

    xVC 811=

    AC

    4 mAy By

    1x

    4 m 4 m

    40

  • 8

    Bending moment at C

    AC

    4 mAy By

    1x

    4 m 4 m

    40

  • 9

    04

    812

    x MC02

    0-2

    xM C 214 =

    xM C 21

    =

    4 m

    8 m 12 m

    MC

    x

    2

    -2

    AC

    4 mAy By

    1x

    4 m 4 m

    40

  • 10

    Or using equilibrium conditions:

    Reaction at A

    + MB = 0: ,0)8(1)8( =+ xAy xAy 811=

    1

    4 m

    8 m 12 m

    -0.5

    0.5

    Ay

    x

    AC

    4 m8 mAy By

    1x

  • 11

    AC

    4 mAy By

    8 m

    Reaction at B1

    x

    4 m 8 m 12 m

    By

    x

    1.51

    0.5

    1

    4 m

    8 m 12 m

    -0.5

    0.5

    Ay

    x

    01 =+ yy BA

    yy AB = 1

    Fy = 0:+

    yy AB = 1

  • 12

    Shear at C

    AC

    4 mAy By

    1x

    4 m 4 m

    40

  • 13

    yC AV =1= yC AV

    1

    4 m

    8 m 12 m

    -0.5

    0.5

    Ay

    x

    -0.5

    VC

    8 m 12 mx

    4 m

    0.5

    -0.5

    B

    AC

    4 m 4 m 4 m

  • 14

    Bending moment at C

    AC

    4 mAy By

    1x

    4 m 4 m

    40

  • 15

    yC AM 4=)4(4 xAM yC =

    2

    1

    4 m

    8 m 12 m

    -0.5

    0.5

    Ay

    x

    4 m

    8 m 12 m

    MC

    x

    -2

    B

    AC

    4 m 4 m 4 m

  • 16

    Shear before support B

    AC

    4 mAy By

    1

    4 m 4 m

    x

    1

    4 m

    8 m 12 m

    -0.5

    0.5Ay

    x

    -0.5

    VB- = AyVB- = Ay-1

    1

    Ay8 m

    VB-

    MBx

    Ay8 m

    VB-

    MB

    VB-x

    -1.0-0.5

  • 17

    Shear after support B

    AC

    4 mAy By

    1

    4 m 4 m

    x

    1

    4 m

    8 m 12 m

    -0.5

    0.5Ay

    x

    VB+x

    1

    VB+ = 0

    4 mVB+

    MB1

    VB+ = 1

    4 mVB+

    MB

  • 18

    Moment at support B

    AC

    4 mAy By

    1

    4 m 4 m

    x

    1

    4 m

    8 m 12 m

    -0.5

    0.5Ay

    x

    -4

    MBx

    1

    MB = 8Ay-(8-x) MB = 8Ay

    1

    Ay8 m

    VB-

    MBx

    Ay8 m

    VB-

    MB

  • 19

    P = 1

    'x

    Reaction

    Influence Line for Beam

    CA B

    P = 1

    Ay By

    y = 1 'y LLs yB

    1==

    CA B

    L

    0)0()(1)1( ' =+ yyy BA

    'yyA =

  • 20

    y = 1'yCA B

    P = 1

    Ay ByLLs yA

    1==

    CA B

    L

    P = 1

    'x

    'yyB =

    0)1()(1)0( ' =+ yyy BA

  • 21

    L

    AB

    a

    - Pinned Support

    RA

    RA

    x

    1

    Lb

    b

    CA B

  • 22

    A B

    A B

    a b

    L

    RA

    RA

    x

    1 1

    - Fixed Support

  • 23

    ShearCA B

    P = 1

    a b

    L

    LsB

    1=

    y=1

    yL

    yR'y

    A B

    VC

    VC

    P = 1

    Ay By

    y=1

    LsA

    1=

    0)0()(1)()()0( ' =+++ yyyRCyLCy BVVA

    ')( yyRyLCV =+

    'yCV =

    BA ssslopes =:

  • 24

    L

    A B

    a

    VC

    VCVC

    x1

    bL

    -a

    L

    1

    -1Slope at A = Slope at B

    - Pinned Support

    b

    CA B

    LsSlope B

    1=

    LsSlope A

    1=

  • 25

    A B

    a b

    L

    A B

    VB

    VB

    VB

    x

    1 1

    - Fixed Support

  • 26

    1=+= BA

    Bending Moment

    a b

    L

    ah

    A =

    'y

    bh

    B =

    1

    A BMC MC

    P = 1

    Ay By

    h

    CA BP = 1

    0)0()(1)()()0( ' =++++ yyBCACy BMMA

    ')( yBACM =+

    'yCM =

    1)( =+bh

    ah

    )(,1)(

    baabh

    abbah

    +==

    +

  • 27

    a

    L

    A B

    Hinge

    MC MC

    baC = A + B = 1

    MC

    x

    aba+b

    - Pinned Support

    b

    CA B

    Lb

    A =La

    A =

  • 28

    A B

    a b

    L

    A B

    MC MC

    MB

    x1

    -b

    - Fixed Support

  • 29

    General Shear

    x

    VBL

    -1

    x

    VC

    -1/4

    3/41

    x

    VD

    -2/4

    2/4

    1

    -3/4

    x

    VE1/4

    1

    AC D E B F G H

    L

    L/4 L/4 L/4 L/4 L/4 L/4 L/4

  • 30

    x

    VBL

    -1

    x

    VG 1

    x

    VF 1x

    VBR 1

    AC D E B F G H

    L

    L/4 L/4 L/4 L/4 L/4 L/4 L/4

  • 31

    General Bending Moment

    A = 3/4 B = 1/4

    = sA + sB = 1

    A = 1/2 B = 1/2

    = sA + sB = 1

    A = 1/4 B = 3/4

    = A + B = 1

    x

    MC 3L/16

    x

    MD 4L/16

    x

    ME 3L/16

    AC D E B F G H

    L

    L/4 L/4 L/4 L/4 L/4 L/4 L/4

  • 32

    x

    MB

    3L/4

    1

    x

    MG

    L/41

    x

    MF

    2L/41

    AC D E B F G H

    L

    L/4 L/4 L/4 L/4 L/4 L/4 L/4

  • 33

    Example 6-2

    Construct the influence line for- the reaction at A, C and E- the shear at D- the moment at D- shear before and after support C- moment at point C

    A B C D E

    2 m 2 m 2 m 4 m

    Hinge

  • 34

    AC D E

    2 m 2 m 2 m 4 m

    B

    RA

    x

    1

    RA

    SOLUTION

  • 35

    AC D E

    2 m 2 m 2 m 4 m

    B

    RC

    RC

    x

    18/6

    4/6

  • 36

    A B C DE

    2 m 2 m 2 m 4 m

    RE

    REx

    -2/6

    2/61

  • 37

    A B C D E

    2 m 2 m 2 m 4 m

    VD

    VD

    VDx

    12/6

    -1

    1

    sE = sC

    sE = 1/6sC = 1/6

    =

    -2/6

    =

    4/6

  • 38

    Or using equilibrium conditions:

    VD = 1 -RE

    1

    VDx

    2/6

    -2/6

    4/6

    RE

    VDMD

    4 m

    1 x

    VD = -RE

    RE

    VDMD

    4 m

    REx

    -2/6

    12/6

    A B C D E

    2 m 2 m 2 m 4 m

    Hinge

  • 39

    A B C

    D

    E

    2 m 2 m 2 m 4 m

    4

    -1.33

    MD

    x

    (2)(4)/6 = 1.33

    D = C+E = 1

    C = 4/6

    2

    2/6 = E

    MD MD

  • 40

    Or using equilibrium conditions:

    MD = -(4-x)+4RE

    1

    RE

    VDMD

    4 m

    1 x

    MD = 4RE

    RE

    VDMD

    4 m

    REx

    -2/6

    12/6

    MD

    x

    -8/6

    8/6

    A B C D E

    2 m 2 m 2 m 4 m

    Hinge

  • 41

    A

    B

    C

    D

    E

    2 m 2 m 2 m 4 m

    VCL

    VCL

    VCLx

    -1-1

  • 42

    A B C D E

    2 m 2 m 2 m 4 m

    Or using equilibrium conditions:1

    RA

    x

    1

    VCL = RA - 1

    VCLx

    -1-1

    VCL = RA

    RA

    1

    VCL

    MB

    RA VCL

    MB

  • 43

    A

    B

    C

    D

    E

    2 m 2 m 2 m 4 m

    VCRx

    VCR

    VCR

    10.333 0.667

  • 44

    A B C D E

    2 m 2 m 2 m 4 m

    Or using equilibrium conditions:1

    VCRx

    0.3331

    0.667

    REx

    -2/6 = -0.333

    12/6=0.33

    VCR = -RE RE

    VCR

    MC

    VCR = 1 -RE RE

    VCR

    MC1

  • 45

    A B C D E

    2 m 2 m 2 m 4 m

    MC MC

    MCx

    1

    -2

  • 46

    A B C D E

    2 m 2 m 2 m 4 m

    MCx

    1

    -2

    Or using equilibrium conditions:

    1

    REx

    -2/6 = -0.333

    12/6=0.33

    MC = 6RE RE

    VCR

    MC6 m

    '6 xRM AC =

    6 m

    'x

    RE

    VCR

    MC

    1

  • 47

    Example 6-3

    Construct the influence line for- the reaction at A and C- shear at D, E and F- the moment at D, E and F

    HingeA B CD E F

    2 m 2 m 2 m 2 m2 m 2 m

  • 48

    SOLUTION

    RA

    RA

    x

    1 1

    -1

    0.5

    -0.5

    2 m 2 m 2 m 2 m

    AB CD E

    2 m 2 m

    F

  • 49

    2 m 2 m 2 m 2 m

    A B CD E

    2 m 2 m

    F

    RC x

    RC

    10.5

    1.52

  • 50

    2 m 2 m 2 m 2 m

    A B CD E

    2 m 2 m

    F

    VD

    VD

    VD

    x

    -1

    0.5

    -0.5

    1 1=

    =

  • 51

    A B CD E

    2 m 2 m 2 m 2 m2 m 2 m

    F

    VE

    VE

    VE

    x1

    -0.5-1

    0.5

    -0.5

    =

    =

  • 52

    2 m 2 m 2 m 2 m

    A B CD E

    2 m 2 m

    F

    VF

    VF

    VF

    x

    1 =

    =

  • 53

    2 m 2 m 2 m 2 m

    A B CD E

    2 m 2 m

    F

    MD MD

    MD

    x

    -2

    D = 1-1

    1

    2

  • 54

    2 m 2 m 2 m 2 m

    A B CD E

    2 m 2 m

    F

    E = 1

    ME ME

    ME

    xC = 0.5B = 0.5

    (2)(2)/4 = 1

    -2-1

  • 55

    2 m 2 m 2 m 2 m

    A B CD E

    2 m 2 m

    FME ME

    MF

    xF = 1

    -2

  • 56

    Example 6-4

    Determine the maximum reaction at support B, the maximum shear at point C andthe maximum positive moment that can be developedat point C on the beam shown due to

    - a single concentrate live load of 8000 N- a uniform live load of 3000 N/m- a beam weight (dead load) of 1000 N/m

    4 m 4 m 4 m

    A BC

  • 57

    0.5(12)(1.5) = 9

    SOLUTION

    RB

    x

    11.5

    0.5

    = 48000 N = 48 kN

    (RB)max + (8000)(1.5)= (1000)(9) + (3000)(9)

    8000 N

    1000 N/m

    3000 N/m

    4 m 4 m 4 m

    ABC

  • 58

    0.5(4)(-0.5) = -10.5(4)(0.5) = 1

    0.5(4)(-0.5) = -1

    = (1000)(-2+1)

    4 m 4 m 4 m

    ABC

    VC

    x

    0.5

    -0.5

    1000 N/m

    (VC)max + (8000)(-0.5)

    = -11000 N = 11 kN

    + (3000)(-2)

    -0.5

    3000 N/m 3000 N/m 8000 N

  • 59

    8000 N 3000 N/m

    1000 N/m

    (1/2)(4)(2) = 4

    +(1/2)(8)(2) = 8

    4 m 4 m 4 m

    ABC

    3000 N/m

    (MC)max positive = (8000)(2)

    = 44000 Nm = 44 kNm

    + (8-4)(1000)+ (3000)(8)

    MC

    x

    2

    -2